
Making Smart Contracts Predict and Scale
Syed Badruddoja, Ram Dantu, Yanyan He, Mark Thompson, Abiola Salau, Kritagya Upadhyay

Dept. of Computer Science & Engineering
University of North Texas
Denton, TX, 76207, USA

E-mail: syedbadruddoja@my.unt.edu, ram.dantu@unt.edu, yanyan.he@unt.edu,
mark.thompson2@unt.edu, abiolasalau@my.unt.edu, kritagyaupadhyay@my.unt.edu

Abstract—The machine learning algorithms can predict the
events based on the trained models and datasets. However,
a reliable prediction requires the model to be trusted and
tamper-resistant. Blockchain technology provides trusted output
with consensus-based transactions and an immutable distributed
ledger. The machine learning algorithms can be trained on
blockchain smart contracts to produce trusted models for reliable
prediction. But most smart contracts in the blockchain do
not support floating-point data type, limiting computations for
classification, which can affect the prediction accuracy. In this
work, we propose a novel method to produce floating-point
equivalent probability estimation to classify labels on-chain with
a Naive Bayes algorithm. We derive a mathematical model with
Taylor series expansion to compute the ratio of the posterior
probability of classes to classify labels using integers. Moreover,
we implemented our solution in Ethereum blockchain smart-
contract with the Solidity programming language, where we
achieved a prediction accuracy comparable to the scikit-learn
library in Python. Our derived method is platform-agnostic
and can be supported in any blockchain network. Furthermore,
machine learning and deep-learning algorithms can borrow the
derived method.

Index Terms—Blockchain, DApp, Smart Contract, Machine
Learning, Artificial Intelligence, Naive Bayes

I. INTRODUCTION & MOTIVATION

Trustable AI Model: The machine learning training models
are prepared with well-known algorithms proven to yield high
accuracy. One of the crucial problems in recent development
involves the trust of data and model [1], [2]. If the data and
model of the machine learning process are altered, then the
artificially intelligent applications fail to produce good results.
A machine learning model and training data can be trusted by
securing the training process by ensuring integrity. A trusted
model that has not been tampered with can produce a trusted
prediction.

Smart Contract Limitations: Most of the supervised
machine learning algorithms produce floating-point output
for classifying labels. For example, k-nearest neighbor [3]
distance computation has square root values, naive Bayes
yields probability values [4], and decision-trees [5] use entropy
with information gain where decimal numbers are inevitable.
However, the lack of standardized libraries, signed exponent
computation and floating-point data type in blockchain smart
contracts has made it hard to develop intelligent applications
with such complex computational requirements [6], [7].
Hence, the decentralized application(DApp) development to
learn and predict is limited.

Smart Contract
Limitation?

Floating-point support?
Standardized library?
Signed exponent support?

Blockchain Scalability?

How data size affects time?
How data size affect cost?
Platform independece?

Algorithm Performance?

Prediction Accuracy ?

Probabilistic outcome
Computational difference error
Integer output affects theaccuracy

 Developer
worry to create DAPP
for machine learning

algorithms with
smart contracts Number of computations

Delay of predictions
Impact of data size

Smart Contract

Coding

Fig. 1. DApp developers face challenges in developing smart contracts for
machine learning algorithms with language limitation, scalability, prediction
accuracy, and algorithm performance

Prediction Accuracy Of Learning Smart Contracts:
Smart contracts [8] of blockchain technology execute functions
with static rules to secure transactions that are recorded in
the distributed ledger as a result of mining a block [6], [9]–
[11]. Financial trades, reputation systems, legal contracts ,
and ownership validation are static transactions that do not
require to learn updates or possess cognitive intelligence
[12]–[18]. Machine learning algorithms require a dynamic
update of learning models that can sustain the needs of
training models at different times. Smart contracts must
support such dynamic updates to learning model parameters
and predict with reasonable accuracy. With the limitations of
smart contracts discussed earlier, it is difficult to guarantee
good prediction accuracy. Due to the lack of fixed-point
computation support, the training model may not produce the
correct prediction output due to computational differences.

Scalability of Blockchain: One of the limitations that
restrict the use of blockchain is the scalability factor [19],
[20]. With large computational requirements, the blockchain
platform will not be able to withstand the number of
computations, and single transactions may become very
expensive. Furthermore, the block creation delay may also
limit the support of the application that requires faster
transaction output which is not guaranteed. For example,
figure 1 shows some issues with smart contracts limiting a
reliable AI prediction with smart contracts.

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

978-1-6654-9958-3/22/$31.00 ©2022 IEEE 127

20
22

 F
ou

rt
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

lo
ck

ch
ai

n
Co

m
pu

tin
g

an
d

Ap
pl

ic
at

io
ns

 (B
CC

A)
 |

 9
78

-1
-6

65
4-

99
58

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
BC

CA
55

29
2.

20
22

.9
92

24
80

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:35:39 UTC from IEEE Xplore. Restrictions apply.

Blockchain Consensus Language Float Support Number of DApps
Ethereum PoW (Expected Upgrade to PoS) Solidity [26] No 2970 [23]
Algorand PoS TEAL [27] No 7 [25]
Cardano PoS Marlowe [28] No 72 [22]
Polkadot (Ethereum Compatible) PoS Solidity [29] No 50 [21]
NEO DBFT-POS C [30] No 176 [24]
Binance T-BFT Solidity [26] No 3494 [25]

TABLE I
FLOAT SUPPORT IN DIFFERENT SMART CONTRACTS AND BLOCKCHAIN PLATFORMS FOR POPULAR BLOCKCHAIN DAPPS

Algorithm Performance: Machine learning algorithms
have different computational complexity per their training
and prediction structure. The computational complexity of
training a model can range from O(nd) in the Naive Bayes
algorithm to O(n2) in support vector machine models, where
n is the number of samples and d is the dimension [31],
[32]. With known limitations of blockchain smart contracts, it
will be interesting to see how the machine learning algorithm
performance will be affected when we develop smart contracts
to learn and predict.

II. PROBLEM DEFINITION
Machine learning algorithms require a trusted platform

to secure the training and prediction of classification tasks.
Ethereum blockchain smart contracts can learn and make
predictions, providing security with decentralized consensus.
However, machine learning algorithms use floating-point
computations to learn and predict. Due to a lack of support
for floating-point calculations, signed integer exponents,
and standardized libraries, the Ethereum blockchain cannot
accurately provide computational output. Moreover, due to
these limitations, the training accuracy of a model and
prediction accuracy of new data may not be reliable. One
such algorithm is Naive Bayes which requires probability
computation with floating-point output. Naive Bayes uses
Gaussian probability that has exponent computation and
floating-point requirements. Furthermore, the performance of
blockchain networks to produce such complex calculations
can affect the scalability, computational costs, and prediction
delays.

III. OUR CONTRIBUTION
• We have proposed a novel method to secure a machine

learning algorithm using the Ethereum blockchain. Our
solution performs training and prediction with smart
contracts. See figure 3.

• We have derived a platform-agnostic numerical method
to compute Gaussian probability based on Taylor series
expansion inside the smart contract. See section VI.

• Our solution can help other AI algorithms compute
relevant output using smart contracts. See table III.

• The prediction accuracy of the smart contracts with
probability estimation is comparable to that of the scikit-
learn python library prediction. See figure 4.

• We have shown that the cost of training and prediction
of our model forms a linear relationship with the rising
number of samples and features. See figure 5.

• The prediction time of the test dataset is given by a
gamma probability distribution function, with most of
the predictions occurring between 15-25 seconds. See
figure 7.

IV. RELEVANT LITERATURE

Existing Applications: DeepBrainChain aimed to reduce
the cost of computing involved in research and development
[33] to share the computing load by decentralizing the work
while protecting the privacy of data shared for training
purposes and trained the model outside the smart contract.
Artificial intelligence(AI) algorithm developers can participate
openly in building AI-based blockchain applications. Cortex
[34] Labs prepared a Cortex virtual machine ensuring
capabilities of Ethereum virtual machines with a separate
GPU processing engine for training data in deep neural
networks. Cortex Labs also has its public chain and transaction
wallets with Cortex coins for transactions. The platform
takes the input of the image and feeds the parameters to
choose an algorithm already stored off-chain. It allows the
developers to be incentivized based on model performance.
Danku-Algorithmia developed a Danku project [35] that
allows anyone to post a dataset and ML model that
will be evaluated and rewarded, ensuring ownership of
models. MATRIX project [36] develops AI-based blockchain
applications promising growth of intelligent blockchain
applications. MATRIX has made auto-coding smart contracts
one of the key aspects for developers to create applications
without knowing the language of smart contracts.

Blockchain-AI Fusion: In decentralized and collaborative
AI on blockchain [37], the perceptron algorithm is proposed
to train the model and test for prediction outside the
blockchain network and store the model for inference.
This work aimed to find evil and good input in the
machine learning model with some incentivization benefits.
Blockchain provides automation features lacking in the ML
algorithm, eventually improving performance [38]. Machine
learning can take the help of blockchain to build a privacy-
preserving model for its prediction technique [39]. Liu et al.
[43] bring to light the advantage of collaboration between
machine learning and blockchain technology that can benefit
network and communication systems. The proposed idea
that blockchain can facilitate training data and a sharing
model for decentralized intelligence is highly feasible but
hardly implemented. Machine learning applications can use
blockchain in communication and networking systems to
provide security, scalability, and privacy in intelligent smart
contracts.

Solidity Restrictions: Table I provides a list of the
popular blockchain platforms that lack floating-point data type
support, and most use Solidity programming language for
smart contract development. The current version of Solidity
does not support fixed-point numbers that impede blockchain

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

128

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:35:39 UTC from IEEE Xplore. Restrictions apply.

Contribution Cortex [34] Danku [35] Deepbrainchain [33] Miscellaneous Works [36]–[39] Our Solution
On-chain prediction No No No No Yes
On-chain training No No No No Yes
Platform-agnostic No No No No Yes
Secure prediction No No No No Yes
Update AI learning model Yes Yes Yes Yes Yes

TABLE II
COMPARISON OF OUR PROPOSED SOLUTION WITH EXISTING BLOCKCHAIN APPLICATION INTEGRATING ARTIFICIAL INTELLIGENCE. CORTEX, DANKU,

DEEPBRAINCHAIN, AND MISCELLANEOUS AI-BLOCKCHAIN PROJECTS DO NOT PERFORM ON-CHAIN TRAINING AND PREDICTION USING SMART
CONTRACT

Model
Developer Contract-based

 Training

Prediction
Requester Contract-based

Prediction

Consensus Nodes On
Blockchain

ML Model

Blockchain Platform

Classification

Block n Block n+1 Block n+2 Block n+3 Block n+4 Block n+5

Prediction
Accuracy

1 2
3

4

5

6 7

8 9

Fig. 2. The trusted prediction platform with AI and Blockchain integration
with smart contracts to train and predict using a machine learning algorithm.

from developing any application that requires decimal number
computations [40]. We can currently declare the decimal
values in the Solidity language, but operations like division,
square root, and logarithmic outputs are impossible. There is
a lack of standardized libraries that application developers
can efficiently utilize to create applications without spending
much time on small computations or functions. Fixidity [41]
and ABDK [42] are two libraries trying to implement fixed-
point equivalent outcomes but pose challenges on how the
converted values will impact the probability results. The
ABDK library performs 64x64 fixed-point numbers that define
the numerator as a 128-bit integer type with the denominator
representing 264 [42]. These libraries are helpful for simple
mathematical calculations with low complexity but not for
iterative computations that make the computations more
convoluted and expensive for blockchain smart contracts.

Novelty Of Our Work: To the best of our knowledge,
existing solutions do not address the problems with Solidity
smart contracts, so they cannot train and predict inside a smart
contract. Table II shows the comparison of contributions from
different existing literature and the novelty of our solution.

V. METHODOLOGY
Research Approach: Designing a blockchain application

to train a model and predict requires a machine-learning
algorithm to be defined in smart contracts. Figure 2 shows
a high-level design of smart contract-based training and
prediction in a blockchain network. The smart contract will
train the model on a blockchain network to record model
parameters with a Naive Bayes algorithm. The prediction
formula of Gaussian probability will classify objects based on
the trained model. Our proposed solution is platform-agnostic
and can be used in any blockchain smart contract.

Naive Bayes Algorithm: In supervised machine learning

techniques, the Naive Bayes algorithm is one of the least
complex algorithms for classification tasks. The training
involves computations of means, variance and prior probability
concerning each class and prediction involves simple
Gaussian probability computations. Moreover, the training
time complexity of the Naive Bayes algorithm is O(n*d) and
prediction complexity is O(c*d) where n is the number of
samples, d is the number of features, and c is the number
of classes [44], [45]. Due to its low complexity, the cost
of training and prediction is expected to be low, enabling
more applications to use this algorithm with blockchain smart
contracts.

p(C|x) = p(x|C)p(C)

p(x)
. (1)

The posterior probability term p(C|x) will be calculated in
our case for all the classes to obtain the highest probability
for the prediction. The C stands for class and x stands for
features in the test dataset. The term p(C) is the probability
of class in the training dataset. This term will take the number
of the same targets in the training class.

Get Posterior probability
with Gaussian naive Bayes

formula

Compare probability to
classify labels

On-Chain Prediction On-Chain Training
Get mean of

features for each
class

Get variance of
features for each

class

Get prior probability
of each class

Testing DatasetTraining Dataset

Dataset

Normalize Dataset

Store Model
On-Chain

Off-Chain Data Input

Fig. 3. Flow diagram of blockchain application to train and predict with smart
contract function with Gaussian probability estimation

Naive Bayes likelihood is p(x|C) =
p(x1|C)p(x2|C) . . . p(xN |C) under the assumption of
independence among features. As per Bayes’ theorem, we
can also calculate prior probability and have a product of all
the likelihood and priors to find the probability of that class.

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

129

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:35:39 UTC from IEEE Xplore. Restrictions apply.

After all the iterations, the class with the highest probability
will be the predicted class.

Ethereum Blockchain: Ethereum [11] is a blockchain
platform with a proof of work consensus protocol providing a
distributed ledger transaction with security, planned to merge
with a proof of stake(PoS) network chain soon [11]. As
of the Ethereum white paper source from [11], Ethereum
decentralized applications will not be affected actively by the
merge. Moreover, the Ethereum virtual machine (EVM) used
by Ethereum is the most stable platform and is borrowed by
other blockchain platforms such as Polygon, Binance, Fantom,
Polkadot, Avalanche and many more [46]–[48]. Due to this
reason, our proposed solution can run on many blockchain
platforms that use EVM.

On-chain Training & Prediction: Figure 3 shows the
diagram of our proposed solution to train and predict on-chain
with a naive Bayes algorithm. The input dataset is divided into
training and testing datasets. The training dataset is normalized
with a built-in python function. The smart contract function
inside on-chain training computes means, variances, and the
prior probability of each class with respective features. The
on-chain prediction part calculates the estimated probability
of class with the Gaussian probability distribution function in
fractions for testing the dataset.

Probability Ratio Derivation: To overcome the limitation
of floating-point support that hinders the accuracy of
prediction, we have derived a probability estimation (discussed
in section 6) to estimate the probable values of each class
by comparing ratios of estimated values to perform the
classification of labels using Gaussian naive Bayes.

Reusability of Derivation: The derivation used in this
work can be adapted to different AI algorithms such as
decision tree, logistic regression, random-forest and neural
network, which can classify objects by comparing probability
or likelihood. Decision-tree and random-forest must compute
entropy(randomness) with logarithmic computations involving
exponents. Logistic regression can use the Taylor series
expansion for binary classification with sigmoid computation.
Neural networks use sigmoid and softmax activation functions
that involve ex, which can utilize our solution. Table III shows
a reusability matrix.

Performance Baseline: Scikit-learn [49] is a Python library
providing simple and efficient tools for predictive data
analysis. The library is open to everyone and can be reused
in many contexts. We have generated a baseline prediction
performance with this library to compare the accuracy of the
smart contract with the respective datasets.

Expected Analysis: Our earlier work from [54] shows
preliminary results on prediction. We have improved our
derivations which is expected to provide higher prediction
accuracy. Furthermore, we planned to record the blockchain
transaction fee concerning the number of features and data
samples that can provide us trend line for training and
prediction. Moreover, we also considered registering the delays
per prediction to give valuable insight into application choice.

Algorithm Algorithm
Function

Mathematical
Function

Re-usability

Decision Tree Entropy Logarithm Yes
Random Forest Entropy Logarithm Yes
Logistic Regression Sigmoid Exponent Yes
Neural Network Sigmoid

/Softmax
Exponent Yes

Reinforcement Learning Softmax Exponent Yes
TABLE III

RE-USABILITY OF THE DERIVATION IN OTHER AI ALGORITHM FUNCTIONS

VI. DERIVATION OF ALGORITHM FOR COMPUTING
GAUSSIAN PROBABILITY PARAMETERS

As mentioned earlier, the comparison of posterior
probabilities of a specific case x belonging to the classes C
(i.e., p(C|x)) is required to predict the classification of case x.
In this section, we provide the details of the calculation of the
posterior probability, the techniques to reduce error in integer
arithmetic, and the procedure of probability comparison using
integers.

Posterior Probability: Let Ck denote the k-th (k =
1, . . . , NC) class and xi denote i-th (i = 1, . . . , N) feature.
Under the assumption of Gaussian Naive Bayes with normal
distributions N (µk,i, σ

2
k,i) for i-th feature of class Ck and

conditional independence for the features of a given class, the
numerator of the posterior probability can be rewritten as

p(x|Ck)p(Ck) = p(x1|Ck) . . . p(xN |Ck)p(Ck)

=
p(Ck) ∗ 1√

((2π)NΠiσ2
k,i)

e
−

(x1−µk,1)2

2σ2
k,1

−...−
(xN−µk,N)2

2σ2
k,N . (2)

Techniques To Reduce Error In Integer Arithmetic:
Some operations in the calculation of posterior probability,
such as square root, divisions, and exponential function
evaluations, may produce errors in integer arithmetic. We have
implemented the following techniques in the current work to
reduce the error.
1) Reduce the number of divisions.

We combine multiple divisions in the exponent of Eqn. (2)
together to have a single division as

p(x|Ck)p(Ck) =
p(Ck)√

((2π)NΠiσ2
k,i)

e
−

∑
i(xi−µk,i)

2Πj ̸=iσ
2
k,j

2Πiσ
2
k,i .

(3)
2) Eliminate the operation square root.

We take the square from both sides of Eqn. 3 to eliminate
the operation of the square root as

(p(x|Ck)p(Ck))
2 =

(p(Ck))
2

((2π)NΠiσ2
k,i)

e
−

∑
i(xi−µk,i)

2Πj ̸=iσ
2
k,j

Πiσ
2
k,i .

(4)
3) Approximation of exponential function.

Consider the exponential function ea/b where a, b > 0 are
integers. With the quotient remainder theorem, we have

a

b
= q +

r

b
, (5)

where q, r, b are integers and |r| < |b|. Then the exponential
function becomes

ea/b = eq+r/b = eqer/b, (6)
To deal with the term eq , we approximate e ≈ 19/7 and

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

130

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:35:39 UTC from IEEE Xplore. Restrictions apply.

consequently approximate eq ≈ 19q/7q .

The Taylor series deals with the remaining term er/b. The
Taylor series of exponential function ey is

ey =
∞∑

n=0

yn

n!
= 1 + y +

y2

2!
+

y3

3!
+

y4

4!
+ (7)

Since |y| = |r/b| < 1 in our current work, we can use the
first five terms to approximate the full exponential function.
Similarly, to reduce the number of operations of division,
we combine the divisions into a single one as

er/b ≈ 24b4 + 24rb3 + 12r2b2 + 4r3b+ r4

24b4
. (8)

Probability Comparison: Regardless of the number of
classes, pairwise comparison is implemented each time. Since
the comparison of p(Ck|x) and p(Cl|x) and the comparison
of p(Ck|x)2 and p(Cl|x)2 indicate the same preference over
the classes, we compare p(Ck|x)2 and p(Cl|x)2 to avoid the
operation of square root. Specifically, the ratio of the two
probabilities p(Ck|x)2/p(Cl|x)2 is calculated, which indicates
that x is more likely to be in Ck if the ratio is greater than 1
and Cl if it is less than 1.

Denote A0 = A1 = 1, B0 = D0 = (Πiσ
2
k,i),

C0 =
∑

i(xi − µk,i)
2Πj ̸=iσ

2
k,j , B1 = D1 = (Πiσ

2
l,i),

C1 =
∑

i(xi − µl,i)
2Πj ̸=iσ

2
l,j . With the cancellation of the

constant, the ratio is
p(Ck|x)2

p(Cl|x)2
=

A0
B0e

−C0
D0

A1
B1e

−C1
D1

(p(Ck))
2

(p(Cl))2
,

=
A0 ∗B1

B0 ∗A1
e−

C0∗D1−C1∗D0
D0∗D1

(p(Ck))
2

(p(Cl))2
,

=
A

B
e−

C
D
(p(Ck))

2

(p(Cl))2
,

=
A

B
e−Qe−

R
D
(p(Ck))

2

(p(Cl))2
,

Note that C/D = Q+R/D so we can simplify the notation
using A = A0 ∗B1, B = B0 ∗A1, C = C0 ∗D1−C1 ∗D0
and D = D0∗D1. With the aforementioned technique for the
exponential function, e−Q can be approximated by a ratio of
integers M1/N1, and e−

C
D can be approximated by another

ratio of integers M2/N2. Denote M = A∗M1∗M2∗(p(Ck))
2

and N = B ∗N1 ∗N2 ∗ (p(Cl))
2, then the ratio (p(Ck|x))2

(p(Cl|x))2 is
approximated by a ratio of integers M/N . We can conclude
that x is more likely to be in Ck if M > N .

Note that all the calculations are integer operations
if the inputs xi, mean µk,i, variance σ2

k,i, and ratio
(p(Ck))

2/(p(Cl))
2 are integers. Algorithm 1 shows functions

relating to posterior probability estimation and prediction to
classify objects.

VII. EXPERIMENTAL SETUP
Dataset: The datasets for machine learning algorithms

are usually smaller than deep learning algorithms, which
helps in low computation and reliable prediction accuracy.
We gathered popular datasets from the UCI repository for
our experiment. The three datasets are ”Pima diabetes” [50]
(diabetes detection), ”Banknote authentication” [51] (banknote
detection) and ”Page block detection” [52] (Memory page

Algorithm 1 Posterior Probability Comparison

1: function MULTIPLY VARIANCE(variance[], position) ▷
function to multiply variances

2: x← 1
3: for (each i values in variance[]) do
4: if i == position then continue
5: else
6: x← x ∗ v[i]
7: end if
8: end for
9: return x

10: end function
11: function GET PARAMETERS(features[], variance[],

mean[]) ▷ Returns Gaussian probability parameters for
each class in the form of A

B e
−C
D)

12: A0, B0, C0, D0← 1
13: for (each feature i in feature[]) do
14: B0← B0 ∗ variance[i]
15: C0 ← C0 + (feature[i] − mean[i])2 ∗

Multiply variance(variance, i)
16: D0← B0
17: end for
18: return A0,B0,C0,D0
19: end function
20: function COMPARE PROBABILITY(A0,B0,C0,D0,Prior0,

A1,B1,C1,D1,Prior1) ▷ Compare Gaussian probability of
two class

21: A← A0 ∗B1
22: B ← B0 ∗A1
23: C ← ((C0 ∗D1)− (D1 ∗ C0))
24: D ← D0 ∗D1
25: Q← C/D
26: R← C%D
27: eden← 24D4

28: enum← 24D4 + 24D3R+ 12D2R2 + 4R3D +R4

29: Y 0← A ∗ 7Q ∗ eden ∗ Prior02

30: Y 1← B ∗ 19Q ∗ enum ∗ Prior12

31: return Y0,Y1
32: end function

block), are shown in Table 1. All of the datasets perform binary
classification. The training and testing dataset is created from
the main dataset with 80% weight on training and 20% weight
on testing. We have also generated a simulated dataset with
64 random features to stress test the performance of the smart
contract for scalability for prediction.

Data Pre-processing: The division of the dataset,
preprocessing, normalization and conversion of floating points
to integers are all executed with the Python framework. The
input of features (if found to be decimal) is transformed into an
integer instead of a floating-point variable. We have multiplied
the features with a constant number, preferably with a power
of 10, depending on the number of decimal values. This step
makes sure that we would only feed integer input to the smart

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

131

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:35:39 UTC from IEEE Xplore. Restrictions apply.

Dataset Features Samples Training
Samples

Testing
Samples

Pima Diabetes 8 768 614 154
Bank Note Authentication 4 1372 1097 278
Page Block Detection 10 5473 4378 1095

TABLE IV
POPULAR DATASETS WITH NUMBER OF FEATURES, NUMBER OF SAMPLES,

TRAINING SAMPLES AND TESTING SAMPLES

contracts.
Blockchain Platform: We have tested our hypothesis on the

local blockchain by deploying the smart contracts on ganache-
cli for verifying prediction accuracy. We have deployed our
smart contracts in a public test network for a real system test.
Ropsten is a public test network for Ethereum widely used for
testing smart contract deployments. We deployed our smart
contract on the Ropsten network to record final performance
metrics. The GitHub access to our project implementation, is
provided in [53].

VIII. PERFORMANCE EVALUATION
Prediction Accuracy: The Pima Indian Diabetes dataset

prediction provided an accuracy of 75 percent with smart
contracts, similar to scikit-learn library function prediction
accuracy. The banknote authentication provided an accuracy
of 71 percent and page block detection datasets produced an
accuracy of 85 percent. All of these prediction accuracies are
comparable to a baseline accuracy of Python-based prediction
using the same dataset. It is expected that the larger datasets
will also produce similar accuracy.

Dataset

P
re

di
ct

io
n

A
cc

ur
ac

y
in

 %

0

25

50

75

100

Pima Diabetes
Detection

Bank Note
Authentication

Page Block
Detection

Scikit-Learn Library Function Smart Contract Function

Fig. 4. Prediction accuracy comparison scikit-learn Python library versus
smart contract deployment for ”Pima diabetes detection”, ”Banknote
authentication” and ”Page block detection” dataset with our proposed
derivation of Gaussian naive Bayes method inside smart contract

Training & Prediction Cost: Fig. 5 show the rise of cost in
Ethers for training the number of sample inputs. The training
cost involves the computation of the mean, variance, and prior
probability of features concerning each class. Training costs
rise linearly, providing a trendline for estimating the cost. The
sample size can be expanded to increase training costs but
will fall on the same linear line. Moreover, the prediction cost
is given in figure 6 which also reveals a linear relationship
between the number of features and the price of prediction,
assuring scalability of our proposed model. Gas consumption
is one of the units of measurement for the difficulty of
function. We can convert the gas consumption to ethers by the
formula of transactionfee = (gasconsumed ∗ (gasprice +

 Number of features

0 2 4 6 8 10 12 14 16 18 20 Num
be

r o
f s

am
ple

s

0
1000

2000
3000

4000
5000

Tr
an

sa
ct

io
n

Co
st

 In
 E

th
er

s

0.00
0.05
0.10
0.16
0.21
0.26
0.31
0.36
0.41
0.46

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fig. 5. Ethereum Ropsten Transaction cost (Ethers) for training naive Bayes
algorithm, computing mean, variance, and prior probability. The relationship
between the number of samples, number of features, and transaction cost are
linear.

0 10 20 30 40 50 60
Number of features

2000000

4000000

6000000

8000000

10000000

12000000

14000000

Ga
s C

on
su

m
tio

n
in

 G
W

ei

y = 205166*features + 470833

Fig. 6. Transaction fee for computing posterior probability with respect to
the rising number of features reveals a linear relationship assuring scalability.

basefee)/109 as per the Ethereum white paper [11]. We can
calculate the prediction cost of ethers using the formula in
figure 6.

Prediction Time: Fig. 7 shows the distribution of time taken
for each prediction per class, revealing a gamma distribution of
seconds by Ethereum miners. The y-axis shows the probability
density value of the particular event’s duration. The x-axis
represents the transaction duration of the events. Gamma
distribution has a shape parameter that defines the shape of
the curve, while the rate parameter specifies the spread of
the curve. The shape parameter does not vary much, but the
rate parameter varies between 0.07 to 0.12, with 0.12 making
the spread narrow and 0.07 making the spread wider. The
distribution is found to be independent of several features of
the datasets. We have concluded that the distribution of time
for the transaction of prediction forms a gamma curve where

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

132

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:35:39 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100
Prediction Time (Seconds)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Pr

ob
ab

ilit
y

Di
st

rib
ut

io
n

Pima Diabetes Detection | Shape=3.11 | Rate = 0.11
Bank Note Authentication | Shape = 2.71 | Rate = 0.12
Page Block Detection | Shape = 2.01 | Rate = 0.07

Fig. 7. Prediction time of test dataset forms a gamma distribution showing a
high probability of prediction events within the range of 15-25 seconds

most of the number of transactions varies between 15 - 25
seconds and is independent of the number of features.

Algorithm Performance: The Naive Bayes algorithms have
a time complexity of O(nd) for training and O(dc) for
prediction, where n is the number of samples, d is the number
of features and c is the number of classes with built-in
Python scikit-learn functions. With our derived method of the
algorithm for smart contracts, we have also achieved the time
complexity of O(nd) for training and O(dc) for prediction.

IX. LIMITATION AND CHALLENGES
Block Gas Limit: One of the challenges faced in this project

is related to the limitation of the blockchain network to support
more computation within the given block gas limit of the
Ethereum network. Currently, the Ethereum main chain has
a gas limit of 30,000,000 Gwei and the Ropsten test network
with 30,000,000. For this reason, sending more than 6000 sets
of input data points for training creates a block gas limit error
and requires a separate transaction. Ethereum blockchain gas
limit has been growing with rising demands of applications.
The gas limit is expected to expand more to support more data
inputs in the future.

Integer Value Overflow: Solidity smart contracts in
Ethereum blockchain support signed integer values ranging
from negative 2256/2 to positive 2256/2. The probability
computations of multiplying integers for Gaussian probability
with more than ten features emitted integer overflow errors
that provided outputs out of the specified range. This created
a low prediction accuracy. This problem was solved using
a reduction method of dividing the large number with a
value close to 230 that minimized the individual probability
estimated values and made predictions more accurate.

Algorithm Accuracy Machine learning algorithms do not
perform well with the rising number of samples as the
algorithms cannot perform feature engineering on their own.
Naive Bayes is one of the algorithms that consider the features
naive and independent, which cannot produce high accuracy
predictions. The prediction accuracy of our proposed solution

also suffers from this limitation.
X. CONCLUSION

We have proposed a novel solution to develop a trusted
machine learning model with a smart contract in the
blockchain framework that can train the model and produce
predictions with high accuracy. We proposed an on-chain
training and prediction model of blockchain deployment to
meet our hypothesis. The training of the naive Bayes algorithm
included computing means, variances, and the prior probability
of features concerning each class performed inside a smart
contract. The smart contract slashes any floating-point output
due to a lack of compatibility. The derivation of the posterior
probability with Gaussian naive Bayes rule using Taylor series
expansion provides a novel method to obtain probability
estimations between different classes. Our derivation can be
used in machine learning algorithms such as decision-tree,
random-forest, and logistic-regression. With this derivation,
our prediction experiment produced accuracy similar to scikit-
learn Python library functions. The cost of training forms
a linear relationship with the rising number of samples and
features. The prediction cost graph also shows a linear rise
assuring the scalability of our proposed method.

XI. FUTURE WORK
More AI Algorithms : From table III, We have

already implemented neural network-based prediction on smart
contract and submitted a conference paper to a different
conference (pending review). We plan to deploy other
mentioned algorithms in a similar way to prove our hypothesis
with convincing results. The implementation of decision-tree
and random-forest will involve logarithmic computations for
building trees with splits. Logistic regression will again use
the sigmoid function for binary classification. These projects
are under development and will soon be ready for submission
to conferences.

Other Blockchain Platforms : Different blockchain
platforms emerged with more scalability and low-cost
computation targets. Different consensus protocols are also
used in those platforms. We plan to implement our solution
on other platforms such as Polkadot, Binance, Cardano,
and Algorand to study the performance statistics to help
researchers and users choose the right platform considering
scalability, delay, and efficiency.

XII. ACKNOWLEDGEMENT
We thank National Security Agency for partially supporting

our research work through grants H98230-20-1-0329, H98230-
20-1-0403, H98230-20-1-0414, and H98230-21-1-0262.

REFERENCES
[1] Brundage, M., Avin, S., Wang, J., Belfield, H., Krueger, G.,

Hadfield, G., ... & Anderljung, M. (2020). Toward trustworthy AI
development: mechanisms for supporting verifiable claims. arXiv
preprint arXiv:2004.07213.

[2] N. Pitropakis, E. Panaousis, T. Giannetsos, E. Anastasiadis,
G. Loukas, ”A Taxonomy and Survey of attacks against
machine learning”,Volume 34,2019,100199,ISSN 1574-0137,
https://doi.org/10.1016/j.cosrev.2019.100199.

[3] Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia, 4(2), 1883.
[4] Rish, I. (2001, August). An empirical study of the naive Bayes classifier.

In IJCAI 2001 workshop on empirical methods in artificial intelligence
(Vol. 3, No. 22, pp. 41-46).

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

133

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:35:39 UTC from IEEE Xplore. Restrictions apply.

[5] Safavian, S. R., Landgrebe, D. (1991). A survey of decision
tree classifier methodology. IEEE transactions on systems, man, and
cybernetics, 21(3), 660-674.

[6] Stuart D. Levi and Alex B. Lipton, Skadden, Arps, Slate, Meagher &
Flom LLP, ”An introduction to Smart Contracts and their Potential and
Inherent Limitations” https://corpgov.law.harvard.edu/2018/05/26/an-
introduction-to-smart-contracts-and-their-potential-and-inherent-
limitations/, Accessed September 2021

[7] ”Solidity Programming guide”, https://docs.Soliditylang.org/en/v0.8.9/,
Accessed September 2021

[8] ”Introduction to Smart Contract”, https://ethereum.org/en/developers/
docs/smart-contracts/, Accessed September 2021

[9] S. Wang, Y. Yuan, X. Wang, J. Li, R. Qin and F. -Y. Wang, ”An Overview
of Smart Contract: Architecture, Applications, and Future Trends,” 2018
IEEE Intelligent Vehicles Symposium (IV), 2018, pp. 108-113, DOI:
10.1109/IVS.2018.8500488.

[10] Szabo, Nick. ”Smart contracts: building blocks for digital markets.”
EXTROPY: The Journal of Transhumanist Thought,(16) 18, no. 2
(1996): 28

[11] Buterin, Vitalik. ”A next-generation smart contract and decentralized
application platform.” white paper 3, no. 37 (2014).

[12] K. Upadhyay, R. Dantu, Z. Zaccagni and S. Badruddoja, ”Is Your Legal
Contract Ambiguous? Convert to a Smart Legal Contract,” 2020 IEEE
International Conference on Blockchain (Blockchain), 2020, pp. 273-
280, doi: 10.1109/Blockchain50366.2020.00041.

[13] K. Upadhyay, R. Dantu, Y. He, A. Salau and S. Badruddoja, ”Make
Consumers Happy by Defuzzifying the Service Level Agreements,” 2021
Third IEEE International Conference on Trust, Privacy and Security in
Intelligent Systems and Applications (TPS-ISA), 2021, pp. 98-105, doi:
10.1109/TPSISA52974.2021.00011.

[14] K. Upadhyay, R. Dantu, Y. He, A. Salau and S. Badruddoja,
”Paradigm Shift from Paper Contracts to Smart Contracts,” 2021
Third IEEE International Conference on Trust, Privacy and Security in
Intelligent Systems and Applications (TPS-ISA), 2021, pp. 261-268, doi:
10.1109/TPSISA52974.2021.00029.

[15] K. Upadhyay, R. Dantu, Y. He, S. Badruddoja and A. Salau,
”Can’t Understand SLAs? Use the Smart Contract,” 2021 Third
IEEE International Conference on Trust, Privacy and Security in
Intelligent Systems and Applications (TPS-ISA), 2021, pp. 129-136, doi:
10.1109/TPSISA52974.2021.00015.

[16] A. Salau, R. Dantu, K. Morozov, K. Upadhyay, S. Badruddoja,
”Multi-Tier Reputation for Data Cooperatives”, The 3rd International
Conference on Mathematical Research for Blockchain Economy, 2022

[17] A. Salau, R. Dantu, K. Morozov, K. Upadhyay, and S. Badruddoja
(2022). Towards a Threat Model and Security Analysis for Data
Cooperatives. In Proceedings of the 19th International Conference on
Security and Cryptography - SECRYPT, ISBN 978-989-758-590-6;
ISSN 2184-7711, pages 707-713. DOI: 10.5220/0011328700003283

[18] A. Salau, R. Dantu and K. Upadhyay, ”Data Cooperatives for
Neighborhood Watch,” 2021 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), 2021, pp. 1-9, doi:
10.1109/ICBC51069.2021.9461056.

[19] Yang, D., Long, C., Xu, H., & Peng, S. (2020, March). A review
on scalability of blockchain. In Proceedings of the 2020 The 2nd
International Conference on Blockchain Technology (pp. 1-6).

[20] A. Chauhan, O. P. Malviya, M. Verma and T. S. Mor, ”Blockchain and
Scalability,” 2018 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C), 2018, pp. 122-128, DOI:
10.1109/QRS-C.2018.00034.

[21] Online article, ”Polkadot Dapps”, https://www.dapp.com/topics/polkadot
banner.

[22] Online article, ”Cardano Crowd”, https://cardanocrowd.com/dapps.
[23] Online article, ”State of the Dapps”, https://www.stateofthedapps.com/

stats/platform/ethereumnew
[24] Online article, ”Neo Dapps” , https://ndapp.org/overview
[25] Online article, ”Dapp Radar”, https://dappradar.com/rankings
[26] ”Solidity Smart Contract language Documentation”, https://

docs.Soliditylang.org/en/v0.8.14/
[27] ”TEAL Smart Contract Language Documentation”, https://developer.

algorand.org/docs/get-details/dapps/avm/teal /specification/
[28] ”Marlowe Smart Contract Language Documentation” https://plutus-apps.

readthedocs.io/en/latest/marlowe/tutorials/marlowe-data.htmlmarlowe
[29] ”Polkadot Smart Contract Language Documentation”, https://wiki.

polkadot.network/docs/build-smart-contracts

[30] ”Neo Smart Contract Language Documentation”, https://docs.neo.
org/docs/en-us/develop/write/basics.html

[31] P. Kumar, ”Computational Complexity Of ML Models” ,
https://medium.com/analytics-vidhya/time-complexity-of-ml-models-
4ec39fad2770, Retrieved March 2022

[32] Prashant, ” Computational Complexity Of ML Algorithms”,
https://medium.com/analytics-vidhya/computational-complexity-of-
ml-algorithms-1bdc88af1c7a, Retrieved March 2022

[33] D. Wang, C. Chang, J. Pai, B. Xu, H. Gu, S. Liu, K. Ye,
”Artificial Intelligence Computing Platform Driven By BlockChain”,
https://www.deepbrainchain.org/assets/pdf/DeepBrainChainWhitepaper
en.pdf

[34] Cortex labs.2018. ”AI Smart Contracts — The Past, Present, and
Future”,December 6, 2018, Retrieved September 3, 2020 from
https://medium.com/cortexlabs/ai-smart-contract-5018dc56e2d8

[35] A. B. Kurtulmus and K. Daniel, Trustless machine learning contracts;
evaluating and exchanging machine learning models on the Ethereum
Blockchain, 2018, [online] Available: https://arXiv:1802.10185.
https://github.com/algorithmiaio/danku

[36] Matrix Technical Whitepaper, Sep. 2018, [online] Available:
https://www.matrix.io/html/MATRIXTechnicalWhitePaper.pdf.

[37] J. D. Harris and B. Waggoner, ”Decentralized and Collaborative
AI on Blockchain,” 2019 IEEE International Conference on
Blockchain (Blockchain), Atlanta, GA, USA, 2019, pp. 368-375,
DOI: 10.1109/Blockchain.2019.00057.

[38] Tao Wang and Xinmin Wu and Taiping He.2019.” Trustable and
Automated Machine Learning Running with Blockchain and Its
Applications”, KDD 2019 Auto ML

[39] H. Kim. S. Kim. J. Y. Hwang and C. Seo.2019. ”Efficient
Privacy-Preserving Machine Learning for Blockchain Network”,in
IEEE Access, vol. 7, pp. 136481-136495, 2019, DOI:
10.1109/ACCESS.2019.2940052.

[40] Solidity v0.7.4- Documentation, https://docs.Soliditylang.org/en/v0.7.4
/abi-spec.html#types

[41] B. Vieira, Fixidity Library, https://github.com/CementDAO/Fixidity
[42] M. Vladimirov, ABDK Fixed Point Libraries, https://github.com/abdk-

consulting/abdk-libraries-Solidity
[43] Y. Liu, F. R. Yu, X. Li, H. Ji and V. C. M. Leung, ”Blockchain and

Machine Learning for Communications and Networking Systems,” in
IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 1392-
1431, Second quarter 2020, DOI: 10.1109/COMST.2020.2975911.

[44] P. Kumar, ”Computational Complexity of ML Models”,
https://medium.com/analytics-vidhya/time-complexity-of-ml-models-
4ec39fad2770, Retrieved March 2022

[45] Sunil, ”6 Easy Steps to Learn Naive Bayes
Algorithm With Codes in Python and R”,
https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-
explained/#: :text=Pros%3A,you%20need%20less%20training%20data.,
Retrieved March 2022

[46] ”Ethereum State of the dapps”, https://www.stateofthedapps.com/stats,
Retrieved March 2022

[47] Master ventures, ”The Explosion of EVM Blockchains”,
https://masterventures.medium.com/the-explosion-of-evm-blockchains-
7dd10537aaba, February 2022

[48] Coin guides, ”List of all EVM blockchains and how to add any
EVM network to Metamask”, https://coinguides.org/evm-blockchains-
add-evm-network/, November 2021

[49] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., ... Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. the Journal of Machine Learning Research, 12, 2825-2830.

[50] PIMA Indian diabetes dataset https://www.kaggle.com/uciml/pima-
indians-diabetes-database

[51] Bank Note Authentication Dataset https://archive.ics.uci.edu/ml/datasets/
banknote+authentication

[52] Page Block Detection Dataset https://archive.ics.uci.edu/ml
/datasets/Page+Blocks+Classification

[53] ”Project Implementation Github Link”,
https://github.com/syber2020/Blockchain NB.git

[54] Badruddoja, S., Dantu, R., He, Y., Upadhayay, K., Thompson, M. (2021,
May). Making smart contracts smarter. In 2021 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC) (pp. 1-3). IEEE.

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

134

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:35:39 UTC from IEEE Xplore. Restrictions apply.

