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Abstract—Blockchain technology develops static smart
contracts for decentralized business transactions, lacks dynamic
decision-making capabilities that limit the possibilities of ever-
increasing demands of modern business applications. Artificial
intelligence, a computational prediction platform provides
intelligent predictions, actions, and recognition that lacks the
ability to hold on to the integrity of the prediction result and
requires the help of external authorities to secure the system.
Blockchain-based AI prediction can cover the gaps of individual
technologies and can mutually benefit from one another to
develop a decentralized machine learning architecture that
promises to yield better security, automation, and dynamism of
the application. This paper proposes a Naive Bayes prediction
algorithm to perform prediction with inside blockchain smart
contracts that promises to open up more opportunities in the
field of Blockchain-AI decentralized applications.

Index Terms—Blockchain, DApp, Smart Contract, Machine
Learning, Artificial Intelligence, Naive Bayes

I. INTRODUCTION

Artificial intelligence (AI) is a branch of science that
specializes in mimicking decisions that are normally taken
by a human being with certain experiences. The intelligence
in humans comes from learning history, exploring data, and
recognizing patterns [1]. Blockchain is a distributed ledger
that contains chained information hashes that are the results
of transactions made in a decentralized fashion with consensus
protocols between a group of miners [2].

Both AI and blockchain technology have had their success
stories in industry and academic research but still many
applications today demand much more than what is available.
With AI and blockchain each having unique features and
advantages, the collaboration between these two technologies
could be a boon to both the industrial and academic fields for
development, implementation, and operation.

II. MOTIVATION

A. Blockchain Helping AI

Liu et al. [3] mentioned that blockchain can help Machine
Learning (ML) in many aspects. Data-model sharing is one
of the challenges faced by ML application developers where
ownership of data and training models are difficult to control.
Blockchain can address these problems with its built-in
security feature. Using cryptographic techniques, blockchain
can provide data confidentiality, authenticity, and auditability

to ensure security and privacy. The immutability feature can
ensure that the records are free from any tampering [2].

B. AI Helping Blockchain

AI can greatly overcome some inherent requirements
and limitations of blockchain that are hindering application
development. One of the disadvantages of the distributed
ledger of blockchain is that the size of the ledger can become
very big if the data input size is very large. ML techniques
can preprocess the data with normalization and cleaning
before feeding into the blockchain framework so that the
overburdening of the ledger is removed. Smart contracts can
be made legally viable with the help of ML techniques that has
a dynamic nature with the help of natural language processing
(NLP) [3].

C. Industrial and Academic Research

DeepBrainChain [4] performs decentralization of compute
load to reduce costs. CortexAI [5] created a platform
for the open participation of developers to build AI-based
blockchain applications. Danku [6] allows anyone to post a
dataset and ML model that will be evaluated and rewarded
ensuring ownership of models. Several academic works [7]–
[10] boost the idea of predictive intelligence with blockchain
smart contracts providing, automation, trust, privacy, model
sharing, and security enhancements to the mutual collaboration
benefits. The current industrial implementations and academic
research lack the actual collaborative strategy of performing
prediction inside blockchain smart contracts due to the
limitation of data types that are available with solidity
language [11].

III. PROBLEM STATEMENT

Ethereum [12] blockchain platforms define smart contracts
for decentralized applications with a set of rules to be
followed before making a transaction available in the ledger.
The instructions are mostly static whereas most of the
modern applications require dynamism and automation. The
automation of ML and blockchain would pave the way
for many applications to eliminate any third party to make
the predictions more reliable, flawless, and free from any
manipulations.
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IV. DESIGN ARCHITECTURE

A. Design Overview

The design involves encoding the Naive Bayes machine
learning algorithm inside a smart contract to perform
prediction based on a previously trained model. The
architecture consists of on-chain and off-chain components
where on-chain components involve computation inside the
blockchain and off-chain involves computation outside the
blockchain. The training of the components is done off-
chain and the prediction is performed on-chain. Naive Bayes
algorithm can compute the posterior probability of a class
given the training data along with prior probability and
likelihood probability.
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Fig. 1. Layers of ML technique in Blockchain

Figure 2, shows the event flow between different parties
in the decentralized application. The off-chain components
include the data and training phase for preprocessing the data
with feature extraction. Once the training phase is completed,
the model can be prepared inside a smart contract with
solidity to perform prediction. The on-chain component has
two functions to be performed at a high level, probability
finder, and class predictor. After completing the process, the
prediction is performed and output classification is determined.
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Fig. 2. Event flow in Smart Contract Prediction

B. Naive Bayes Algorithm

The design implementation involves greater work in
building the Naive Bayes algorithm for probability calculation
inside the smart contract. The computations involved Taylor
series expansion [13] derivation that helped to build posterior
probability function to compute integer equivalent probability.

V. IMPLEMENTATION & RESULTS

Off-chain: Initially, the dataset was divided into a training
and test set. The training set is preprocessed and training

weights are recorded that will be used for prediction. In our
case, we have taken the means and variances of each feature
of each class as a training parameter that will be used by the
smart contracts for prediction purposes.

On-chain: The test set of the data is taken along with the
means and variances of each class to calculate the probability
equivalent value inside the smart contract. We do not find the
actual value of probability but perform a comparison of values
that can provide an estimate of a probable class out of the two
classes compared. In this way, the comparison of all classes
is performed in pairs of classes to yield the prediction of the
highest probable class.

Dataset: We have considered real datasets for testing our
algorithm in a smart contract. The datasets chosen are the iris
flowers [14] , pima diabetes [15] and heart disease [17]. The
iris dataset originally consists of four features and three classes
with 150 samples. The pima diabetes dataset has eight features,
two classes, and 750 samples. The heart disease dataset has
five features, five classes, and 303 samples.

Result: We have achieved significant accuracy of predictions
in smart contract-based implementation when compared with
the python based Naive Bayes prediction. As we can see from
Figure 3, the iris dataset has an accuracy of 94.66% in the
python built-in function and 87.8% in smart contract functions.
The pima Diabetes dataset has 78% accuracy in python’s built-
in function and 67% in smart contract functions. The heart
disease dataset has 62% accuracy in python’s built-in function
while it maintained 58% accuracy in smart contract-based
functions.
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Fig. 3. Prediction Accuracy of real datasets

VI. CONCLUSION

Though blockchain smart contracts do not support floating
point calculation, the numerical expansion with the Taylor
series for Naive Bayes algorithm provided promising results
to build applications performing the intelligent computation
in the blockchain. This opens the possibility to many
applications such as DeFi, weather forecast, healthcare,
insurance, agriculture, etc. that require the blend of two
technologies for highly complex secure decisions to make
decentralized predictions
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