
Smarter Contracts to Predict using
Deep-Learning Algorithms

Syed Badruddoja, Ram Dantu, Yanyan He, Mark Thompson, Abiola Salau, Kritagya Upadhyay
Dept. of Computer Science & Engineering

University of North Texas
Denton, TX, 76207, USA

E-mail: syedbadruddoja@my.unt.edu, ram.dantu@unt.edu, yanyan.he@unt.edu,
mark.thompson2@unt.edu, abiolasalau@my.unt.edu, kritagyaupadhyay@my.unt.edu

Abstract—Deep learning techniques can predict cognitive in-
telligence from large datasets involving complex computations
with activation functions. However, the prediction output needs
verification for trust and reliability. Moreover, these algorithms
suffer from the model’s provenance to keep track of model
updates and developments. Blockchain smart contracts provide
a trustable ledger with consensus-based decisions that assure
integrity and verifiability. In addition, the immutability feature
of blockchain also supports the provenance of data that can help
deep learning algorithms. Nevertheless, smart contract languages
cannot predict due to the absence of floating-point operations
required by activation functions of neural networks. In this paper,
we derive a novel method using the Taylor series expansion
to compute the floating-point equivalent output for activation
functions. We train the deep learning model off-chain using a
standard Python programming language. Moreover, we store
models and predict on-chain with blockchain smart contracts to
produce a trusted forecast. Our experiment and analysis achieved
an accuracy (99%) similar to popular Keras Python library
models for the MNIST dataset. Furthermore, any blockchain
platform can reproduce the activation function using our derived
method. Last but not least, other deep learning algorithms can
reuse the mathematical model to predict on-chain.

Index Terms—Deep-learning security, Blockchain, Smart Con-
tract, Immutability, DApp, On-chain Prediction

I. INTRODUCTION & MOTIVATION

Trustworthy AI: Artificial Intelligence (AI) applications
face challenges with data, models, and predictions with poi-
soning attacks [1]–[4]. The performance of AI applications
may not be reliable under such exposure when left unprotected.
Moreover, a tampered dataset may produce an incorrect model,
and an incorrect model will result in wrong predictions. For
instance, deep learning algorithms work with large datasets
and build a multi-layer neural network to perform image
classification, speech recognition, and many other prediction
applications that require trustworthy models and predictions.
The training from deep learning algorithms can be unreliable
due to the damaged data. Furthermore, attackers can manipu-
late a model on a central server, producing a fake prediction.
Therefore, trust in deep learning applications can be assured
with the integrity of data, models, and algorithms.

Data & Model Provenance of AI With Blockchain:
Blockchain integration with AI provides provenance of data
and model [1], [5], [6]. Provenance refers to the tracking

of unaltered data and models that can be relied upon for
further development of applications. AI applications require
the provenance of information to create explainable AI that
ensures the audit-ability of model training. A trained model
with provenance maintains accountability that helps identify
any underlying learning problems with the algorithm. Finally,
the model predicting the unknown data can provide the nature
of predictions, explaining the classification. Consequently, AI
model provenance with immutability features [7], [8] can
facilitate reproducibility to debug a prediction problem.

Automation & Decentralized Voting: The absence of
third parties in blockchain applications increases the reliability
and trustworthiness of the resulting decisions [1], [9]. Addi-
tionally, the automation feature of blockchain allows anyone
to train a model and predict without changing the smart
contracts defined for the particular AI algorithm. Besides,
the Blockchain decentralized platform has a consensus-based
decision-making mechanism that does not depend on a single
server computation but on multi-server output validation. For
instance, swarm robots and deep reinforcement learning are
agent-based decision-making systems that borrow the features
of automation and decentralization from blockchain [10]–[12].

Model Ownership & Incentivization: One of the signifi-
cant aspects of current research in AI is the ownership of data
and training model [13]–[15]. The data owners can share the
data with a cooperative blockchain and retain their credibility
in the blockchain. In addition, the model trainers can train
their models and be incentivized based on the usage of the
models.

Smart Contract Limitations: Smart contracts in
blockchain cannot execute floating-point mathematical com-
putations [16], [19]. Moreover, the smart contracts do not sup-
port signed exponents, which again limits many exponential
operations required by the deep learning algorithms of AI.
For example, deep learning algorithms often involve floating-
point mathematical computations [20] which cannot train and
predict with smart contracts. Additionally, blockchain is facing
challenges in scaling applications because of block size limits,
delays in output and expensive transactions over time [17],
[18]. Furthermore, with increasing demands of decentralized
finance requests and complex applications, the verification

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

978-1-6654-9958-3/22/$31.00 ©2022 IEEE 280

20
22

 F
ou

rt
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

lo
ck

ch
ai

n
Co

m
pu

tin
g

an
d

Ap
pl

ic
at

io
ns

 (B
CC

A)
 |

 9
78

-1
-6

65
4-

99
58

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
BC

CA
55

29
2.

20
22

.9
92

22
40

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:33:59 UTC from IEEE Xplore. Restrictions apply.

Data

Features

Neural Network

Training

Trained

Model

Prediction

Data

Features

Blockchain + AI

Test

Data

No Trust, Unreliable prediction, Untraceable ownership,

Incentive issue, Third-party Intervention

Neural

Network

Training

Trained

Model

Prediction

Trusted

Data &

model

Ownership

retained

Guaranteed

Incentive

Reliable

Prediction

Standalone AI

Blockchain Consensus

Nodes Process Transactions

Fig. 1. Comparison of standalone AI and Blockchain integrated AI for deep learning systems

costs and networking costs are rising.
AI Marketplace: AI model marketplace sells models

to users to avoid the laborious process of training [21].
Anybody can request a model without training by outsourcing
the arduous job. This training requires the provenance of
information to maintain trust in the model. For instance,
amazon web service (AWS), Genesis AI, and SingularityNet
[22] are some of the marketplaces currently available that
provide AI marketplace services. However, AWS and Genesis
AI marketplace solutions lack a trusted platform to provide
model provenance. SingularityNet uses a blockchain platform
for storing models but fails to predict on-chain. Figure 1
shows the disadvantages of standalone AI applications and
the advantages of blockchain-based AI applications.

II. PROBLEM DEFINITION

Deep learning algorithms are data-hungry approaches to
prediction where a slight change in data can impact the
model’s performance, resulting in unreliable predictions. Be-
sides, third-party involvement in artificial intelligence can
cause such manipulation to produce superficial and untrust-
worthy projections. Moreover, deep learning model develop-
ment ownership requires a trusted platform to reward owners.
Blockchain is one such platform that offers immutability,
provenance, and incentivization to help deep learning algo-
rithms with smart contracts. However, there are challenges
with floating-point arithmetic operations in smart contracts,
which limit the ability of prediction. Moreover, the activation
functions involved in deep learning algorithms require the
calculation of signed exponents such as sigmoid and softmax,
which are not supported by smart contracts. Therefore, deep
learning algorithms cannot develop a decentralized application
to predict with blockchain smart contracts as per current
literature.

III. OUR CONTRIBUTIONS

• We propose a novel, platform-agnostic, and reusable
mathematical method to estimate activation functions
output for prediction using Taylor series expansion us-
ing smart contracts. The activation function outputs are
shown in Figure 5 and 6.

• We have tested our smart contract-based prediction for the
MNIST digit recognition dataset and achieved almost the

same accuracy as the built-in library function available
for deep learning applications. See Figure 7.

• We have shown that the on-chain prediction is scalable
with linearly increasing gas consumption for an increas-
ing number of features and neurons. See Figure 8 and
9 and 10.

• We have shown the analysis of the cost of prediction
for the MNIST digit recognition dataset in different
blockchain platforms. See Table V.

IV. RELEVANT LITERATURE

Trusted Model & Security: Table I shows the recent
literature on the requirements of trustworthy AI by National
Institute of Standard and Technology (NIST) and the National
Artificial Intelligence Institute(NAII). The literature mainly
focuses on the failure of AI to hold faith in the intelligence
system. Blockchain with distributed ledger technology can
make AI applications tamper-proof [1], [6], [24] and trust-
worthy. Moreover, one of the main contributions of [23]
is to create trustworthy machine learning contracts where
evaluations of machine learning contracts require an exchange
of models. However, the trustworthy application requires
blockchain smart contracts that cannot learn and predict with
AI algorithms, which limits the efficacy of a trustworthy AI
system.

Programming Language Barrier: Neural networks in
deep learning algorithms require computations of activation
functions that involve exponential operations and divisions.
However, as per the latest release of Solidity programming
language version 0.8.13 [25], the fixed-point variable cannot
compute floating-point mathematical calculations and signed
exponents. Fixidity [26], ABDK [27], Decimalmath [32] and
PRBMath [31] are some of the recent libraries developed
to provide additional floating-point mathematical operations.
Nevertheless, these libraries fail to produce exponent com-
putations, thereby limiting the smart contracts to predict
with neural networks. Table II provides the summary of the
latest fixed-point non-standard libraries. Table III shows the
blockchain platforms along with the programming languages
that do not allow floating-point computations.

Existing Applications: Many applications are trying to
secure AI with blockchain primitives and help blockchain with
AI intelligence. In SingularityNet [39], AI developers are
given a platform to monetize their creations with different

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

281

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:33:59 UTC from IEEE Xplore. Restrictions apply.

Literature Year Author Purpose
Evaluate trust
in AI [28]

2021 NIST Propose method to evaluate
user trust in AI

Trust and AI
[29]

2021 NIST AI system trustworthiness con-
cerns

Trustworthy AI
[30]

2021 NAII AI system trustworthiness con-
cerns

TABLE I
THE TABLE SHOWS THE RECENT LITERATURE ARTICLE FROM THE

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, NATIONAL AI
INITIATIVE ON TRUSTWORTHY AI SYSTEMS.

Library Year Required Mathe-
matical Operation

Function Limi-
tation

PRBMath [31] 2021 Sigmoid/Softmax Exponents
require off-chain
computation

Decimalmath [32] 2020 Sigmoid/Softmax Exponent not
supported

ABDK [26] 2019 Sigmoid/Softmax Negative
exponents not
supported

Fixidity [27] 2019 Sigmoid/Softmax Exponents not
supported

TABLE II
LIMITATIONS OF NON-STANDARDIZED LIBRARIES TO COMPUTE FIXED
POINT CALCULATIONS, NOT SUITABLE FOR COMPLEX DEEP LEARNING

PREDICTION

Blockchain Language Float Support
Ethereum Solidity [33] No
Algorand TEAL [34] No
Cardano Marlowe [35] No
Polkadot Solidity [36] No
NEO C# [37] No
Binance Solidity [33] No

TABLE III
TABLE SHOWING THE ABSENCE OF FLOATING-POINT COMPUTATION

SUPPORT IN POPULAR BLOCKCHAIN SMART CONTRACT LANGUAGES.

On-chain Prediction

Off-chain Training

Prediction

Contract

Consensus on

Prediction

Training DataInitial Model Parameters

Training

Data

Unlabeled

Data

Testing

Data

Training of

dataset outside

blockchain

Prediction of

unclassified

data inside

blockchain

Trained

Model

Fig. 2. AI models developed off-chain and stored on-chain. A smart contract
with the model can predict on-chain with sigmoid and softmax activation
functions through our solutions

AI techniques. For instance, an AI developer can create
a node on the blockchain platform and start offering and
receiving tasks for monetizing their work. Coin.AI [38] is
another theoretical work that emphasizes validating a deep
learning model on exceeding a performance threshold with a
proof-of-useful-work consensus mechanism. Moreover, Raven
protocol [40] introduces the incentivization benefits of anyone

willing to share their computing resources to train compute-
intensive deep learning tasks. Furthermore, Cortex [41] is
an AI-Blockchain platform allowing storage of models on-
chain for inference and incentivizing the model creators in
the process. Anytime the model needs training or retraining,
the model updates with off-chain training in the proprietary
cortex machines called CVM (Cortex Virtual Machine). Addi-
tionally, the Cortex AI stores models to incentivize the model
owners. However, these contributions fail to establish a trusted
prediction system using smart contracts.

V. METHODOLOGY

Design Overview: Our design prepares blockchain to pre-
dict with neural network algorithms to offer trusted prediction
with reliable data. Data is stored in a distributed files system
that assures data integrity by creating a hash value. We deploy
an interplanetary file system(IPFS) to record hashes of data
sets. The trustworthy AI design consists of a training and
prediction phase. First, the AI developer trains data outside
blockchain with a neural network algorithm and produces
a model with reasonable accuracy. Secondly, we prepare a
smart contract to compute the sigmoid and softmax activation
function where a user request prediction to classify objects.
Since smart contracts can only use integer operations, we
derive a numerical method with Taylor’s series expansion
to produce floating-point equivalent output for prediction.
The smart contracts ensure the integrity of the model and
prediction output in the prediction phase. Moreover, our design
also offers provenance of the model for future development
and incentivization for prediction on the blockchain network.
Figure 2 shows a high-level plan of off-chain training and an
on-chain prediction scheme. Figure 3 shows the event flow
between the model developer and prediction requester for our
solution.

Model

Developer

Prediction
Requester

Smart Contract

Binaries and Functions

Upload Model

Request Prediction

Consensus Nodes

for On-Chain
Prediction

Prediction OutputIncentivize

Developer

Prediction

Transaction

Fig. 3. Event flow between a model developer and prediction requester for
on-chain prediction requests.

Neural Network: We consider a basic neural network
design with an input layer, an output layer, and a hidden layer
[42]. The input layer consists of data input, while the hidden
layer consists of neurons with sigmoid activation functions
and the output layer consists of the same number of neurons
as the required output classes with softmax activation function
(10 neurons for digit recognition). A neural network is trained
off-chain, and a final set of weights and biases are stored on-
chain through the smart contract. These weights and biases
with forward propagation of our neural network predict the

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

282

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:33:59 UTC from IEEE Xplore. Restrictions apply.

Function 4:
Compute

Exponent

Function2: Get
Sigmoid Activation

At layer 1

Ethereum Smart Contract

Function1 : Get Layer 1

multiplications

Neural Network

Layer 1 Operation

Function 3:
Get Layer 2

multiplications
with layer 1

outputs

Neural Network

Layer 2 Operation

Input, Weights &
Biases for Layer 1

& Layer 2

Classification

of LabelsFunction 5:

Compute
Exponent

Summation

Function 6:
Softmax

computation

Fig. 4. Block diagram representing the flow of data in smart contract function where layer one operations calculate hidden layer multiplication with sigmoid
activation and layer two operations calculate output layer multiplication with softmax activation.

Algorithm Function Reusability
Convolutional Neural Net-
work

Sigmoid/Softmax Yes

Recurrent Neural Network Sigmoid Yes
Reinforcement Learning Softmax Yes
Naive Bayes Gaussian Proba-

bility
Yes

TABLE IV
RE-USABILITY MATRIX SHOWING THAT OUR DERIVED METHOD CAN BE

USED FOR FURTHER PREDICTION SERVICES FOR FUTURE DEVELOPMENTS
IN OTHER ALGORITHMS.

class of AI task in the smart contract. For this, we derived
a novel method to compute sigmoid and softmax functions
without floating-point computations, which are discussed later.
The forward propagation in a smart contract uses the linear
combination of weighted features (with weights W1), adds
biases (B1), and computes sigmoid output at the hidden
layer (Layer one in Figure 4). Later, the hidden layer output
multiplies the second set of weights W2, adds a second set
of biases (B2), and computes softmax (Layer two Figure 4).
Finally, argmax function (maximum of an array) returns final
outcome of prediction [44]. Figure 4 shows the layer one
process that obtains the first set of sigmoid output, and layer
two functions compute softmax activation and predict the final
classification of labels.

Consensus Protocol:Proof of Stake(PoS) [45] consensus
protocol PoS save energy and still provide consensus with
security for blockchain networks. With PoS, the consensus
protocol is more robust in security, ensuring persistence,
liveness, safety, and openness. Persistence defines the im-
mutability of blocks. Liveness means that honest validators
in a blockchain can create a block given that the participants
are honest. Safety refers to the fact that all honest participants
have the same data. Finally, Openness states that anyone can
participate in the consensus process.

Sigmoid Activation Function For sigmoid activation func-
tion [43], we used Taylor series expansion to approximate
sigmoid output and obtain the sigmoid output in fraction
format. Equation 1 shows the formula for sigmoid activation.

Algorithm 1 shows the pseudo-code for sigmoid activation.

σ(x) =
1

1 + e−x
(1)

For x >= 0, we consider ex

1+ex ; while for x < 0, we calcu-
late 1

1+e|x| . Therefore, the major calculation of the sigmoid
function is the calculation of the exponential of a positive
number. Rewrite |x| to be a summation of an integer q and
a fraction r/b with an absolute value smaller than one as
|x| = a/b = q + r/b. Then the exponent of |x| can be
written as e|x| = eqer/b. For the term with integer exponent,
we approximate the value of e with 19/7, and consequently,
eq ≈ 19q/7q . For the terms with fraction exponent, we
approximate it using five-term Taylor expansion as follows:

er/b = 1 +
r

b
+

(r/b)2

2!
+

(r/b)3

3!
+

(r/b)4

4!
. (2)

With simple arithmetic operations, e|x| can be written as a
fraction formula depending on q, r, b with both numerator and
denominator requiring only integer operations.

e|x| =
19q(24b4 + 24rb3 + 12r2b2 + 4r3b+ r4)

24 ∗ 7qb4
(3)

Consequently, the sigmoid function can be represented as a
fraction supporting integer operations for both numeration and
denominator, with its output in fraction format. Algorithm 1
provides the logic of sigmoid activation function.

Softmax Activation Function Algorithm 2 provides the
logic of softmax computation. Softmax is an activation func-
tion [43] used to classify labels when there is a multi-class
prediction system. Softmax defines the probability of each
class and predicts the most probable class to be the predicted
outcome. Equation 4 shows the formula for softmax activation.

Softmax(xi) =
exi∑k
j=0 e

xj

(4)

For xi >= 0, as shown in Section V, with the help of Taylor
expansion, the exponential function of xi (and consequently
the softmax function) can be written as a fraction formula
depending on q, r, b with both the numerator and denominator
requiring only integer operations. In algorithm 2, first we

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

283

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:33:59 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Sigmoid Activation

1: function SIGMOID (a,b) ▷ getting input in fraction with
x as numerator and y as denominator

2: if (a/b ≥ 1) then
3: q ← a/b
4: r ← a%b
5: num← 19q ∗ 24b4
6: den← 19q ∗24b4+7q ∗ (24b4−24rb3+12r2b2−

4br3 + r4)
7: else if (a/b == 0) ∧ (a ∗ b > 0) then
8: num← 24b4

9: den← 48b4 − 24rb3 + 12r2b2 − 4br3 + r4

10: else if (a/b = 0) ∧ (a ∗ b < 0) then
11: num← 24b4

12: den← 48b4 + 24rb3 + 12r2b2 + 4br3 + r4

13: else
14: q ← a/b
15: r ← a%b
16: num← 7q ∗ 24b4
17: den← 7q ∗24b4+19q ∗ (24b4+24rb3+12r2b2+

4br3 + r4)
18: end if
19: return num, den
20: end function

compute the exponents(ex) with EXPONENT function for
all input values of array x represented in fraction form of
array a as numerator values and array d as denominator
values. Next, we compute the sum of all the exponents with
the SUM EXPONENT function. Finally, we compute the
Softmax with the GET SOFTMAX function and predict
the class.

Expected Performance Analysis According to our pro-
posed design, we have performed prediction tests on un-
classified data sets to compare the performance accuracy of
neural network prediction with smart contracts concerning the
existing Keras [65] library function (A Python library for
deep learning algorithms). Furthermore, we have compared
the outputs of sigmoid and softmax activation to check our
proposed solution implemented within smart contracts. Apart
from these, we have studied the cost analysis of the Ethereum
smart contract concerning computations performed for on-
chain prediction.

VI. EXPERIMENTAL SETUP

Dataset: We have chosen the MNIST digit recognition
dataset for our experiment [46]. The MNIST dataset has
784 features and 60000 samples with ten classes for digit
classification problems. The training parameters of the neural
network model (i.e., weights and biases) are converted to in-
teger format with scalar multiplication. Dataset is divided into
50,000 training samples and 10,000 testing samples. Moreover,
for testing our method, 101 random samples between 5.0 to

Algorithm 2 Softmax Activation

1: function EXPONENT (Array a,Array b) ▷ array
”x” is represented as fraction with array ”a” as numerator
and array ”b” as denominator where x[i] = a[i]/b[i]

2: N ← length(a)
3: for i← 1 to N do
4: q ← a[i]/b[i]
5: r ← a[i]%b[i]
6: if (q ≤ 1) then
7: num← 7q ∗ 24b[i]4
8: den← 19q ∗ (24b[i]4 + 24rb[i]3 + 12r2b[i]2 +

4b[i]r3 + r4)
9: else if (q == 0) ∧ (a[i] ∗ b[i] > 0) then

10: num ← 24b[i]4 − 24rb[i]3 + 12r2b[i]2 −
4b[i]r3 + r4

11: den← 24b[i]4

12: else if (q == 0) ∧ (a[i] ∗ b[i] < 0) then
13: num← 24b[i]4

14: den← 24b[i]4+24rb[i]3+12r2b[i]2+4b[i]r3+
r4

15: else
16: num← 19q ∗ (24b[i]4+24rb[i]3+12r2b[i]2+

4b[i]r3 + r4)
17: den← 7q ∗ 24b[i]4
18: end if
19: z[i] = num/den ▷ array z store output of this

function
20: end for
21: return z
22: end function
23: function SUM EXPONENT (Array z) ▷ This function

adds exponents which takes z as an array of exponents
24: N ← length(z)
25: for i← 1 to N do
26: sum← sum+ z[i]
27: end for
28: return sum
29: end function
30: function GET SOFTMAX (Array z, sum) ▷

This function returns the classification output with z as
an array of exponents and sum as the summation of all
exponents

31: N ← length(z)
32: maxn← length(z) ▷ Numerator of softmax
33: maxd← length(z) ▷ Denominator of softmax
34: for i← 1 to N do
35: maxn[i]← z[i]
36: maxd[i]← sum
37: end for
38: predicted class← argmax(maxn,maxd) ▷ output

index of greatest of fractions maxn[item]/maxd[item]
39: return predicted class
40: end function

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

284

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:33:59 UTC from IEEE Xplore. Restrictions apply.

-5.0 for sigmoid activation tests and 41 samples between +20
to -20 for softmax activation tests are generated.

Software Framework: The software framework of our
experiment involves a blockchain network, a Metamask plug-
in, ethers from the Ethereum faucets, Ethereum smart contracts
with required functions, and a Python framework for handling
data flow between the components. We have developed six
smart contract functions for our experiment: one for sigmoid
activation, three for softmax activation, and two for neural
network layer-wise multiplication-addition. The three smart
contract functions in softmax computation involve the com-
putation of exponential values, the summation of exponents,
and finding the final value of softmax output.

Blockchain Network: To test our hypothesis, we have
considered Ethereum local blockchain Ganache-cli and the
public test net Ropsten test network to conduct experiments.
The local blockchain Ganache-cli is for testing and stabilizing
our transactions with the fair output accuracy of our proposed
work. Moreover, smart contracts are deployed on Binance
smart chain [49] and Polygon [48] to generalize the cost of
predictions. Our project implementation is available in GitHub
[47].

VII. PERFORMANCE RESULTS

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Values of x ranging from -5.0 to 5.0

0.0

0.2

0.4

0.6

0.8

1.0

Si
gm

oi
d

Fu
nc

tio
n

Ou
tp

ut
 v

al
ue

Library Function Output
Smart Contract Output

sdafsdfPython Function Output

Smart Contract Output

Fig. 5. Output of Sigmoid Activation Function for 101 values ranging from
+5.0 to -5.0 with intervals of 0.1 inside Smart Contract shows similar values
for Python function and smart contract function

Smart Contract Activation Function Output: From fig-
ure 5, we can see that the derived sigmoid activation function
with the smart contract has almost the same output as the
Python library-based computations. Moreover, the softmax
activation function in smart contracts is even more accurate
and produces the same output as non-smart contract library
functions, as shown in figure 6. The curve forms an exponen-
tial behavior as expected by the softmax activation function.
The blue curve of the library function is not seen due to the
exact values produced by smart contract output.

20 10 0 10 20
Input values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ou
tp

ut
 V

al
ue

s i
n

pr
ob

ab
ilit

y

Library Function Output
 Smart Contract Output
Python Function Output

Smart Contract Output

Fig. 6. Output of softmax activation function for 41 values ranging between
-20 to +20 of inside smart contracts produce similar values to Python function

4-Neuron 8-Neuron 12 neuron
Hidden Layer Neurons

0

20

40

60

80

Pr
ed

ict
io

n
Ac

cu
ra

cy

Keras Library
Smart Contract

Fig. 7. Prediction accuracy of Keras library-based prediction and on-chain
smart contract prediction for MNIST dataset for 10,000 samples

On-Chain Prediction Accuracy: One of the major contri-
butions of this work is to produce reasonable accuracy for pre-
dicting a neural network-based prediction task. Figure 7 shows
the prediction accuracy of smart contract-based functions that
produced 71 percent accuracy for the 4-neuron trained model,
86 percent accuracy for the 8-neuron trained model, and 89
percent accuracy for the 12-neuron trained model. Our model
produces an accuracy of 99 percent compared to the Python
Keras library.

Prediction Gas Usage : Figure 8 shows the rise of gas
consumption with the number of input features for multiplying
inputs with weights and adding biases. The line equation given
in the graph estimates the gas consumption for more com-
ponents in this setup. Moreover, feature scalability depends
on the block gas limit to create a block. For the Ethereum
Ropsten test network, the creation of a block is restricted to a
gas consumption of 30,000,000 Gwei [51]. Provided we do not
exceed the gas limit, the layer one multiplication would run

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

285

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:33:59 UTC from IEEE Xplore. Restrictions apply.

Smart Contract Function Ethereum Mainnet Ethereum Testnet Binance Testnet Polygon Testnet
Layer 1 Computation 0.005263 0.00473 0.06282 0.004739
Sigmoid Activation 0.00241 0.000167 0.00062 0.000167
Layer 2 Computation 0.00037 0.00068 0.00309 0.000687
Softmax Activation 0.00077 0.00069 0.00151 0.000401
Total Cost 0.023413 0.010687 0.085868 0.010725

TABLE V
COST OF PREDICTION WITH SMART CONTRACTS CONSIDERING 4 NEURONS FOR THE HIDDEN LAYER AND 10 NEURONS FOR THE OUTPUT LAYER FOR

MNIST DIGIT CLASSIFICATION DATASET WITH 784 FEATURES

0 100 200 300 400 500 600 700 800
Number of input features

0

250000

500000

750000

1000000

1250000

1500000

1750000

Ga
s U

se
d

in
 G

we
i

Gas use = 2204*(Number of features) + 43620

Fig. 8. Gas consumption of layer one operation (Hidden layer computations)
with an increasing number of features and fixed number of neurons(4 neurons).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of neurons

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

Ga
s U

se
d

in
 G

we
i

 Gas use = 405008*(number of neurons) + 275477

Fig. 9. Gas consumption of neural network with a rising number of neurons
(Hidden layer computations) and fixed number of features(784 features)

without any obstruction. Figure 9 shows the gas consumption
with a rising number of neurons. The gas consumption is
linear, and the equation provides estimated gas for many
features.

We tested our hypothesis for scalability with the multi-
hidden-layer neural network with two hidden layers. Figure 10
shows a 3D plot of the rising gas consumption of this architec-
ture with an increasing number of neurons. When the number
of neurons grows on both the x and y-axis, multiplication
complexity rises, resulting in higher gas consumption along
the z-axis. This trend is expected to follow and grow with
more hidden layers as per our study.

Hidden Layer 1 Neurons

2 4 6 8 10 12 14 16 18 20 Hidd
en

 La
ye

r 2
 Neu

ron
s

2
4

6
8
10

12
14

16
18

20

Ga
s C

on
su

m
pt

io
n

in
 G

W
ei

0.00
200000.00
400000.00
600000.00
800000.00
1000000.00
1200000.00
1400000.00

0.2

0.4

0.6

0.8

1.0
1e6

Fig. 10. 3D plot showing gas consumption for multi-layer computations
concerning different units of neurons for two hidden layers

Cost Analysis: Table V shows the cost of prediction for
a single classification inside a smart contract with different
blockchain platforms. While Ethereum Ropsten and polygon
networks have an average price of 0.010 ether and matic, the
main network has 0.023 ether. However, the Binance smart
chain has an average cost of 0.085868 bnb, which is higher
than the rest of the test networks.

VIII. LIMITATION AND CHALLENGES

Integer Overflow: Since we used fraction equivalence of
exponent values, which is of the form 19/7, the exponent
of this fraction will be a very high number depending on
the power value. An Ethereum smart contract using Solidity
language has a limitation of integer representation with 256
bits for a signed and unsigned integer [50]. That means the
value of a signed integer will range from −2256/2 to +2256/2.
An unsigned integer value ranges from 0 to about 2256. Any
value that goes beyond this range cannot be used for measuring
softmax computations.

Block Gas Limit: The block gas limit of the Ethereum
Ropsten test network limits the number of computations that
can be performed in a single block. As of the current Etherscan
website, report [52], the Ropsten test network can create a
block with a gas limit of 30,000,000. Anything over this gas
consumption needs to be transacted in a different block.

Multiple Block Creation: With our current deployment and
smart contract functions, each of the predictions inside the
blockchain smart contracts will require 6 blocks of informa-

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

286

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:33:59 UTC from IEEE Xplore. Restrictions apply.

tion: one for layer one multiplication input, one for layer two
multiplication, 1 for sigmoid activation, and 3 for softmax
multiplication. With an increase in the prediction count, the
ledger will increase with 6 blocks each time as each of these
transactions are part of individual blocks.

IX. CONCLUSION

Deep learning prediction services lack trust, provenance,
immutability, accountability, and security. The blockchain-
based deep learning prediction can provide a solution for
untampered prediction, ownership retainment, and consensus-
based transactions that can address the security concerns of
deep learning. However, the smart contracts programming
languages in blockchain technology are not designed to han-
dle complex activation functions required by deep learning
algorithms. We derived a platform-agnostic novel method to
compute the activation function with Taylor series expansion to
estimate the classification of an unknown dataset. Our derived
method produced an excellent accuracy and can be reused in
other deep learning algorithms for predictions.

X. FUTURE WORK

Off-chain Model Validation: Off-chain training needs to
be secured under a blockchain platform for better trust and
security. For off-chain training, we need to explore scalable
blockchain solutions with faster transactions and cheaper com-
putational costs. There are many scalability platforms such
as sharding [53], optimistic and zero-knowledge proof roll-
ups [54], plasma [55], and validium [50] that can provide the
training of our algorithm at a little cost and time. We plan to
implement the off-chain training component on these scalable
solutions in our future work.

Other Deep Learning Techniques: Our current work
studies the specific requirements concerning individual layers
and activation functions of deep learning models. In our
subsequent works, we aim to study different deep learning
models such as convolutional neural networks, recurrent neural
networks, and reinforcement learning. We expect these models
would involve more intense implementation than our current
work.

XI. ACKNOWLEDGMENTS

We thank National Security Agency for the partial sup-
port through grants H98230-20-1-0329, H98230-20-1-0403,
H98230-20-1-0414, and H98230-21-1-0262.

REFERENCES

[1] R. Shinde et al., “Blockchain for securing AI applications and open
innovations,” Journal of Open Innovation: Technology, Market, and
Complexity, vol. 7, no. 3, p. 189, 2021.

[2] Shafay et al. (2022). Blockchain for deep learning: review and open
challenges. Cluster Computing, 1-25.

[3] Tariq et al., (2020). A review of deep learning security and defensive
privacy techniques. Mobile Information Systems, 2020.

[4] Comiter, M. Attacking Artificial Intelligence AI’s Security Vulnerability
and What Policymakers Can Do About It. 2019. Available online:
https://www.belfercenter.org/publication/AttackingAI

[5] P. by Jerry Cuomo, “How blockchain adds
trust to AI and IoT,” 2020. [Online]. Available:
https://www.ibm.com/blogs/blockchain/2020/08/howblockchain-adds-
trust-to-ai-and-iot/

[6] K. Sarpatwar, R. Vaculin, H. Min, G. Su, T. Heath, G. Ganapavarapu,
and D. Dillenberger, “Towards enabling trusted artificial intelligence via
blockchain,” in Policy-based autonomic data governance. Springer, 2019,
pp. 137–153

[7] F. P. Hjalmarsson et al., ”Blockchain-Based E-Voting System,” 2018 IEEE
11th International Conference on Cloud Computing (CLOUD), 2018, pp.
983-986, DOI: 10.1109/CLOUD.2018.00151.

[8] T. Alladi et al., ”Blockchain Applications for Industry 4.0 and Industrial
IoT: A Review,” in IEEE Access, vol. 7, pp. 176935-176951, 2019, DOI:
10.1109/ACCESS.2019.2956748.

[9] D. Campbell, “Combining ai and blockchain to push
frontiers in healthcare,” Nov 2018. [Online]. Available:
https://www.macadamian.com/learn/combining-ai-and-blockchain-in-
healthcare/

[10] S. Janson et al., “A decentralization approach for swarm intelligence al-
gorithms in networks applied to multi Swarm PSO,” International Journal
of Intelligent Computing and Cybernetics, vol. 1, no. 1, pp. 25–45, Jan
2008. [Online]. Available: https://doi.org/10.1108/17563780810857112

[11] K. Hassan et. al., “On relative-output feedback approach for group
consensus of clusters of multiagent systems,” IEEE Transactions on
Cybernetics, pp. 1–12, 2021.

[12] D. Magazzeni, P. McBurney, and W. Nash, “Validation and verification
of smart contracts: A research agenda,” Computer, vol. 50, no. 9, pp.
50–57,2017.

[13] Sriraman, A., Bragg, J., & Kulkarni, A. (2017, February). Worker-owned
cooperative models for training artificial intelligence. In Companion of
the 2017 ACM Conference on computer supported cooperative work and
social computing (pp. 311-314).

[14] N. Baranwal Somy et al., ”Ownership Preserving AI Market Places
Using Blockchain,” 2019 IEEE International Conference on Blockchain
(Blockchain), 2019, pp. 156-165, DOI: 10.1109/Blockchain.2019.00029.

[15] Salau, A., Dantu, R., & Upadhyay, K. (2021, May). Data Cooperatives
for Neighborhood Watch. In 2021 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC) (pp. 1-9). IEEE.

[16] J. D. Harris and B. Waggoner, ”Decentralized and Collaborative AI
on Blockchain,” 2019 IEEE International Conference on Blockchain
(Blockchain), 2019, pp. 368-375, DOI: 10.1109/Blockchain.2019.00057.

[17] Catalini, C., & Gans, J. S. (2020). Some simple economics of the
blockchain. Communications of the ACM, 63(7), 80-90.

[18] W. Gao, W. G. Hatcher and W. Yu, ”A Survey of Blockchain: Tech-
niques, Applications, and Challenges,” 2018 27th International Confer-
ence on Computer Communication and Networks (ICCCN), 2018, pp.
1-11, DOI: 10.1109/ICCCN.2018.8487348.

[19] Battah, A., Iraqi, Y., & Damiani, E. (2021). Blockchain-based reputation
systems: Implementation challenges and mitigation. Electronics, 10(3),
289.

[20] S. Marchese, ”AI Chips Must get The Floating-
Point Math Right”, https://semiengineering.com/
artificial-intelligence-chips-must-get-the-floating-point-math-
right/#: :text=Floating%2Dpoint%20representations%20of
%20real,of%20values%20without%20losing%20precision., Retrieved
March 2022

[21] Sarpatwar, K., Vaculin, R., Min, H., Su, G., Heath, T., Ganapavarapu, G.,
Dillenberger, D. (2019). Towards enabling trusted artificial intelligence
via blockchain. In Policy-based autonomic data governance (pp. 137-153).
Springer, Cham.

[22] Sandro Luck, ”3 AI Marketplaces Everyone Has To Know [One Will
Define The Century]”, https://towardsdatascience.com/3-ai-marketplaces-
everyone-has-to-know-one-will-define-the-century-a4295d4f0229

[23] Kurtulmus, A. B., & Daniel, K. (2018). Trustless machine learning
contracts; evaluating and exchanging machine learning models on the
Ethereum blockchain. arXiv preprint arXiv:1802.10185.

[24] Wang, T., Wu, X., & He, T. (2019). Trustable and automated machine
learning running with blockchain and its applications. arXiv preprint
arXiv:1908.05725.

[25] ”Solidity Language Documentation”,
https://docs.soliditylang.org/en/v0.8.13/, Retrieved March 2022

[26] ”Fixidity Library” , https://github.com/CementDAO/Fixidity, Retrieved
March 2022

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

287

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:33:59 UTC from IEEE Xplore. Restrictions apply.

[27] ”ABDK Libraries For Solidity”, https://github.com/abdk-
consulting/abdk-libraries-solidity, Retrieved March 2022

[28] NIST, https://www.nist.gov/news-events/news/2021/05/nist-proposes-
method-evaluating-user-trust-artificial-intelligence-systems, 2021

[29] NISTIR, https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8332-
draft.pdf, 2021

[30] NAAI, https://www.ai.gov/strategic-pillars/advancing-trustworthy-
ai/: :text=To %20be%20trustworthy%2C%20AI%20technologies,ensure
%20that%20bias%20is%20mitigated.

[31] ”PRBMath library” , https://github.com/paulrberg/prb-math, Accessed
July 2022

[32] ”Decimalmath”,https://github.com/alcueca/DecimalMath, Accessed July
2022

[33] ”Solidity Smart Contract language Documentation”,
https://docs.Soliditylang.org/en/v0.8.14/

[34] ”TEAL Smart Contract Language Documentation”,
https://developer.algorand.org/docs/get-details/dapps/avm/teal
/specification/

[35] ”Marlowe Smart Contract Language Documentation”
https://plutus-apps.readthedocs.io/en/latest/marlowe/tutorials/marlowe-
data.htmlmarlowe

[36] ”Polkadot Smart Contract Language Documentation”,
https://wiki.polkadot.network/docs/build-smart-contracts

[37] ”Neo Smart Contract Language Documentation”,
https://docs.neo.org/docs/en-us/develop/write/basics.html

[38] Baldominos, A., & Saez, Y. (2019). Coin. AI: A proof-of-useful-work
scheme for blockchain-based distributed deep learning. Entropy, 21(8),
723.

[39] Singularitynet, White paper , https://public.singularitynet.io/ whitepa-
per.pdf

[40] Raven Protocol, White Paper, https://drive.google.com/file/d/1FA
aVKkg CjxMj-n1yHZc6ufcVDtOU1Ct/view

[41] Cortex- AI on Blockchain, Whitepa-
per, https://cryptorating.eu/whitepapers /Cor-
tex/Cortex AI on Blockchain EN.pdf

[42] M.Ardi, Simple Neural Network on MNIST Handwritten Digit Dataset”,
https://becominghuman.ai/simple-neural-network-on-mnist-handwritten-
digit-dataset-61e47702ed25, Retrieved March 2022

[43] S. Polamuri, ”Difference Between Softmax Function And Sigmoid
Function”, https://dataaspirant.com/difference-between-softmax-function-
and-sigmoid-function/, Retrieved March 2022

[44] Agarwal, S., ”Argmax and softmax”,
https://medium.com/@s hash wat/argmax-and-softmax-496714956aab,
Retrieved April 2022

[45] ”Ethereum whitepaper”, https://ethereum.org/en/developers
/docs/consensus-mechanisms/pos/: :text=on%20consensus
%20mechanisms.-,What%20is%20proof%2Dof%2Dstake%20(PoS)
%3F,a%20smart%20contract %20on%20Ethereum.

[46] Deng, L. (2012). The mnist database of handwritten digit images for
machine learning research. IEEE Signal Processing Magazine, 29(6),
141–142.

[47] Implementation code, https://github.com/syber2020/Python-NN-SC.git
[48] Polygon lightpaper, https://polygon.technology/lightpaper-polygon.pdf,

Retrieved March 2022
[49] Binance Whitepaper, https://polygon.technology/lightpaper-polygon.pdf,

Retrieved March 2022
[50] Ethereum White Paper, https://ethereum.org/en/developers/docs/

scaling/state-channels/,Retrieved March 2022
[51] ”Etherscan latest block gas limits”, https://ropsten.etherscan.io/blocks,

Retrieved April 2022.
[52] Ropsten Etherscan transactions, https://ropsten.etherscan.io/blocks, Re-

trieved April 2022.
[53] Zamani, M., Movahedi, M., & Raykova, M. (2018, October). Rapid-

chain: Scaling blockchain via full sharding. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security
(pp. 931-948).

[54] Schaffner, T. (2021). Scaling Public Blockchains. A comprehensive
analysis of optimistic and zero-knowledge rollups. University of Basel.

[55] Poon, J., & Buterin, V. (2017). Plasma: Scalable autonomous smart
contracts. White paper, 1-47.

[56] NIST, https://www.nist.gov/blogs/taking-measure/zero-trust-
cybersecurity-never-trust-always-verify, 2020

[57] Badruddoja, S., Dantu, R., He, Y., Upadhayay, K., Thompson, M.
(2021, May). Making smart contracts smarter. In 2021 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC) (pp. 1-3). IEEE.

[58] Badruddoja, S., Dantu, R., Widick, L., Zaccagni, Z., Upadhyay, K.
(2020, May). Integrating DOTS With Blockchain Can Secure Massive IoT
Sensors. In 2020 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW) (pp. 937-946). IEEE.

[59] Upadhyay, K., Dantu, R., Zaccagni, Z., Badruddoja, S. (2020, Novem-
ber). Is your legal contract ambiguous? Convert to a smart legal contract.
In 2020 IEEE International Conference on Blockchain (Blockchain) (pp.
273-280). IEEE.

[60] Upadhyay, K., Dantu, R., He, Y., Salau, A., Badruddoja, S. (2021,
December). Make Consumers Happy by Defuzzifying the Service Level
Agreements. In 2021 Third IEEE International Conference on Trust,
Privacy and Security in Intelligent Systems and Applications (TPS-ISA)
(pp. 98-105). IEEE.

[61] K. Upadhyay, R. Dantu, Y. He, A. Salau and S. Badruddoja, ”Paradigm
Shift from Paper Contracts to Smart Contracts,” 2021 Third IEEE
International Conference on Trust, Privacy and Security in Intelligent Sys-
tems and Applications (TPS-ISA), 2021, pp. 261-268, doi: 10.1109/TP-
SISA52974.2021.00029.

[62] K. Upadhyay, R. Dantu, Y. He, S. Badruddoja and A. Salau, ”Can’t
Understand SLAs? Use the Smart Contract,” 2021 Third IEEE Inter-
national Conference on Trust, Privacy and Security in Intelligent Sys-
tems and Applications (TPS-ISA), 2021, pp. 129-136, doi: 10.1109/TP-
SISA52974.2021.00015.

[63] A. Salau, R. Dantu, K. Morozov, K. Upadhyay, S. Badruddoja, ”Multi-
Tier Reputation for Data Cooperatives”, The 3rd International Conference
on Mathematical Research for Blockchain Economy, 2022

[64] A. Salau, R. Dantu, K. Morozov, K. Upadhyay, and S. Badruddoja
(2022). Towards a Threat Model and Security Analysis for Data Coopera-
tives. In Proceedings of the 19th International Conference on Security and
Cryptography - SECRYPT, ISBN 978-989-758-590-6; ISSN 2184-7711,
pages 707-713. DOI: 10.5220/0011328700003283

[65] Gulli, A., Pal, S. (2017). Deep learning with Keras. Packt Publishing
Ltd

[66] Mark Robins, Publish Date: May 27, “The difference between
Artificial intelligence, Machine learning and Deep learning.”
[Online]. Available: https://www.intel.la/content/www/xl/es/artificial-
intelligence/posts/difference-between-ai-machine-learning-deep-
learning.html

[67] S. Gupta, Publish Date: January 16, 2018, ”Deep
Learning Performance breakthrough” [Online]. Available:
https://www.ibm.com/blogs/systems/deep-learning-performance-
breakthrough/

[68] K. Salah et al., “Blockchain for AI: Review and open research chal-
lenges,” IEEE Access, vol. 7, pp. 10 127–10 149, 2019.

[69] Zheng et al., (2021). Agatha: Smart Contract for DNN Computation.
arXiv preprint arXiv:2105.04919.

[70] Liu et al.,(2021). Proof of Learning (PoLe): Empowering neural network
training with consensus building on blockchains. Computer Networks,
201, 108594.

[71] Zapotochny. A, ”101 On Deep Learning + Blockchain [A Brief In-
troduction]”, https://blockgeeks.com/101-on-deep-learning-blockchain-a-
brief-introduction/, Accessed March 2022

[72] da Cruz et al.,, (2020, May). Blockchain-based Traceability of Carbon
Footprint: A Solidity Smart Contract for Ethereum. In ICEIS (2) (pp.
258-268).

[73] Otoum, S., Al Ridhawi, I., & Mouftah, H. T. (2020, December).
Blockchain-supported federated learning for trustworthy vehicular net-
works. In GLOBECOM 2020-2020 IEEE Global Communications Con-
ference (pp. 1-6). IEEE.

[74] Zhang et al., (2020). Blockchain-based federated learning for device
failure detection in industrial IoT. IEEE Internet of Things Journal, 8(7),
5926-5937.

[75] ur Rehman et al.,(2020, July). Towards blockchain-based reputation-
aware federated learning. In IEEE INFOCOM 2020-IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS) (pp.
183-188). IEEE.

[76] Z. Zheng, S. Xie, H. Dai, X. Chen and H. Wang, ”An Overview of
Blockchain Technology: Architecture, Consensus, and Future Trends,”
2017 IEEE International Congress on Big Data (BigData Congress), 2017,
pp. 557-564, DOI: 10.1109/BigDataCongress.2017.85.

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

288

Authorized licensed use limited to: University of North Texas. Downloaded on December 02,2022 at 17:33:59 UTC from IEEE Xplore. Restrictions apply.

